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BOOSTING: A STATISTICAL PERSPECTIVE

By Peter Bühlmann and Torsten Hothorn

ETH Zürich and Universität Erlangen-Nürnberg

We present a statistical perspective on boosting. Special empha-
sis is given to estimating potentially complex parametric or nonpara-
metric models, including generalized linear and additive models as
well as regression models for survival analysis. Concepts of degrees
of freedom and corresponding Akaike or Bayesian information cri-
teria, particularly useful for regularization and variable selection in
high-dimensional covariate spaces, are discussed as well.

The practical aspects of boosting procedures for fitting statistical
models are illustrated by means of the dedicated open-source soft-
ware package mboost. This package implements functions which can
be used for model fitting, prediction and variable selection. It is flex-
ible, allowing for the implementation of new boosting algorithms op-
timizing user-specified loss functions, and it is especially attractive
for variable selection in high-dimensional generalized linear models.

1. Introduction. Freund and Schapire’s AdaBoost algorithm for clas-
sification [26–28] has attracted much attention in the machine learning com-
munity [cf. 61, and the references therein] as well as in related areas in statis-
tics [14, 15, 30]. Various versions of the AdaBoost algorithm have proven to
be very competitive in terms of prediction accuracy in a variety of applica-
tions. Boosting methods have been originally proposed as ensemble methods,
see Section 1.1, which rely on the principle of generating multiple predictions
and majority voting (averaging) among the individual classifiers.

Later, Breiman [14, 15] made a path-breaking observation that the Ada-
Boost algorithm can be viewed as a gradient descent algorithm in function
space, inspired by numerical optimization and statistical estimation; see also
Friedman et al. [30] and Rätsch et al. [54]. This insight opened new per-
spectives, namely to use boosting methods in many other contexts than
classification. We mention here boosting methods for regression (including
generalized regression) [19, 29, 55], for density estimation [56], for survival
analysis [37, 55] or for multivariate analysis [30, 46]. In quite a few of these
proposals, boosting is not only a black-box prediction tool but also an es-
timation method for models with a specific structure such as linearity or
additivity [17, 19, 37]. Boosting can then be seen as an interesting regular-
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2 BÜHLMANN & HOTHORN

ization scheme for estimating a model. This is what we call the “statistical
perspective” which will drive the focus of our exposition of boosting.

We present here some coherent explanations and illustrations of concepts
about boosting, some derivations which are novel and we aim to increase
understanding of the methods and selected known results. Besides giving
an overview on theoretical concepts of boosting as an algorithm for fitting
statistical models, we look at the methodology from a practical point of
view as well. The associated add-on package mboost [“model boosting”, 36]
to the R system for statistical computing [53] implements computational
tools which enable the data analyst to compute on the theoretical concepts
explained in this paper as close as possible. The theoretical ingredients of
boosting algorithms, such as loss functions and its negative gradients, base
learners and internal stopping criteria, find their computational counterparts
in the mboost package. Its implementation and user-interface reflect our
“statistical perspective” of boosting as a tool for estimation in structured
models. For example, and extending the reference implementation of tree-
based gradient boosting from the gbm package [57] in this respect, mboost
allows to fit potentially high-dimensional linear or smooth additive models,
and it has methods to compute degrees of freedom which in turn allow
for the use of information criteria such as AIC or BIC or for estimation
of variance. Moreover, for high-dimensional (generalized) linear models, our
implementation is fast enough to fit models in reasonable time when the
dimension of the predictor space is in the ten-thousands.

The illustrations presented throughout the paper focus on three regres-
sion problems with continuous, binary and censored response variables and
a potential large number of covariates. For each example, we only present
the most important steps of the analysis. Because reproducibility is a nat-
ural and essential requirement for research on new statistical methods, the
mboost package includes a vignette containing the complete sources of each
analysis as well as the sources of our implementations of the boosting algo-
rithms utilized in these analyses. Access to open-source software is not only
important for reproducibility of numerical results but serves as a basis for
further computational implementations and research in the area of boosting.
The mboost package is freely available from http://CRAN.R-project.org
and the reader can install our package directly from the R prompt via

R> install.packages("mboost", dependencies = TRUE)
R> library("mboost")

The rendered output of the data analyses presented in this paper is available
by the R-command
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BOOSTING: A STATISTICAL PERSPECTIVE 3

R> vignette("mboost_illustrations", package = "mboost")

whereas the R code for reproducibility of our analyses can be assessed by

R> edit(vignette("mboost_illustrations", package = "mboost"))

Unless stated differently, we assume that the data are realizations of ran-
dom variables

(X1, Y1), . . . , (Xn, Yn)

from a stationary process with p-dimensional predictor variables Xi and one-
dimensional response variables Yi; for the case of multivariate responses,
some references are given in Section 9.1. In particular, the setting above
includes independent, identically distributed (i.i.d.) observations. In the se-
quel, the jth component of a vector c will be denoted by c(j).

1.1. Ensemble schemes: multiple prediction and aggregation. Ensemble
schemes construct many function estimates or predictions from re-weighted
data and use a linear (or sometimes convex) combination thereof for pro-
ducing the final, aggregated estimator or prediction.

First, we specify a base procedure which constructs a function estimate
ĝ(·) with values in R, based on some data (X1, Y1), . . . , (Xn, Yn):

(X1, Y1), . . . , (Xn, Yn)
base procedure−→ ĝ(·).

For example, a very popular base procedure is a regression tree.
Then, generating an ensemble from the base procedures, i.e., an ensemble

of function estimates or predictions, works generally as follows:

re-weighted data 1
base procedure−→ ĝ[1](·)

re-weighted data 2
base procedure−→ ĝ[2](·)

· · · · · ·
· · · · · ·

re-weighted data M
base procedure−→ ĝ[M ](·)

aggregation: f̂A(·) =
M∑

m=1
αmĝ[m](·).

What is termed here with “re-weighted data” means that we have assigned
individual data weights to every of the n sample points. We have also implic-
itly assumed that the base procedure allows to do some weighted fitting, i.e.,
estimation is based on a weighted sample. Throughout the paper (except in
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4 BÜHLMANN & HOTHORN

Section 1.2), we assume that a base procedure estimate ĝ(·) is real-valued
(i.e. a regression procedure) making it more adequate for the “statistical
perspective” on boosting, in particular for the generic FGD algorithm in
Section 2.1.

The above description of an ensemble scheme is too general to be of any
direct use. The specification of the data re-weighting mechanism as well as
the form of the linear combination coefficients {αm}M

m=1 are crucial, and var-
ious choices characterize different ensemble schemes. Most boosting methods
are special kinds of sequential ensemble schemes, where the data weights in
iteration m depend on the results from the previous iteration m − 1 only
(memoryless with respect to iterations m− 2,m− 3, . . .). Examples of other
ensemble schemes include bagging [13] or random forests [2, 16].

1.2. AdaBoost. The AdaBoost algorithm for binary classification [28] is
the most well known boosting algorithm. The base procedure is a classifier
(slightly different from a real-valued function estimator as assumed above),
e.g. a classification tree.

AdaBoost algorithm

1. Initialize some weights for individual sample points: w
[0]
i = 1/n for

i = 1, . . . , n. Set m = 0.
2. Increase m by 1. Fit the base procedure to the weighted data, i.e.,

do a weighted fitting using the weights w
[m−1]
i , yielding the classifier

ĝ[m](·).
3. Compute the weighted in-sample misclassification rate

err[m] =
n∑

i=1

w
[m−1]
i I(Yi 6= ĝ[m](Xi))/

n∑
i=1

w
[m−1]
i ,

α[m] = log

(
1− err[m]

err[m]

)
,

and up-date the weights

w̃i = w
[m−1]
i exp(α[m]I(Yi 6= ĝ[m](Xi))),

w
[m]
i = w̃i/

n∑
j=1

w̃j .

4. Iterate steps 2 and 3 until m = mstop and build the aggregated classifier
by weighted majority voting:

f̂AdaBoost(x) = argmin
y∈{0,1}

mstop∑
m=1

α[m]I(ĝ[m](x) = y).
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By using the terminology mstop (instead of M as in the general description
of ensemble schemes), we emphasize here and later that the iteration process
should be stopped to avoid overfitting. It is a tuning parameter of AdaBoost
which may be selected using some cross-validation scheme.

1.3. Historical remarks. The idea of boosting as an ensemble method for
improving the predictive performance of a base procedure seems to have its
root in machine learning. Kearns and Valiant [43] proved that if individual
classifiers perform at least slightly better than guessing at random, their
predictions can be combined and averaged yielding much better predictions.
Later, Schapire [60] proposed a boosting algorithm with provable polynomial
run-time to construct such a better ensemble of classifiers. The AdaBoost
algorithm ([26–28]) is considered as a first path-breaking step towards prac-
tically feasible boosting algorithms.

The results from Breiman [14, 15], showing that boosting can be un-
derstood as a functional gradient descent algorithm, uncover older roots of
boosting. In the context of regression, there is an immediate connection to
the Gauss-Southwell algorithm [63] for solving a linear system of equations
(see Section 4.1) and to Tukey’s [67] method of “twicing” (see Section 5.1).

2. Functional gradient descent. Breiman [14, 15] showed that the
AdaBoost algorithm can be represented as a steepest descent algorithm in
function space which we call functional gradient descent (FGD). Consider
the problem of estimating a real-valued function

f∗(·) = argmin
f(·)

E[ρ(Y, f(X))],(2.1)

where ρ(·, ·) is a loss function which is typically assumed to be differentiable
and convex with respect to the second argument. For example, the squared
error loss ρ(y, f) = |y − f |2 yields the well-known population minimizer
f∗(x) = E[Y |X = x].

2.1. The generic FGD or boosting algorithm. In the sequel, FGD and
boosting are used as equivalent terminology for the same method or algo-
rithm.

Estimation of f∗(·) in (2.1) with boosting can be done by considering the
empirical risk n−1∑n

i=1 ρ(Yi, f(Xi)) and pursuing iterative steepest descent
in function space as follows.

Generic FGD algorithm

1. Initialize f̂ [0] with an offset value. Common choices are f̂ [0] ≡ Y or
f̂ [0] ≡ 0. Set m = 0.
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6 BÜHLMANN & HOTHORN

2. Increase m by 1. Compute the negative gradient − ∂
∂f ρ(Y, f) and eval-

uate at f̂ [m−1](Xi):

Ui = − ∂

∂f
ρ(Y, f)|f=f̂ [m−1](Xi)

, i = 1, . . . , n.

3. Fit the negative gradient vector U1, . . . , Un to X1, . . . , Xn by the real-
valued base procedure (e.g. regression)

(Xi, Ui)n
i=1

base procedure−→ ĝ[m](·).

Thus, ĝ[m](·) can be viewed as an approximation of the negative gra-
dient vector.

4. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-
length factor (see below), i.e. proceed along an estimate of the negative
gradient vector.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The stopping iteration, which is the main tuning parameter, can be esti-
mated via cross-validation or some information criterion, see Section 5.4.
The choice of the step-length factor ν in step 5 is of minor importance, as
long as it is “small” such as ν = 0.1. A smaller value of ν typically requires a
larger number of boosting iterations and thus more computing time, while
the predictive accuracy has been empirically found to be potentially better
and almost never worse when choosing ν “sufficiently small” (e.g. ν = 0.1)
[29]. Friedman [29] suggests to use an additional line search between steps 3
and 4 (in case of different loss functions ρ(·, ·) than squared error): it yields a
slightly different algorithm but the additional line search seems unnecessary
to pursue for achieving a good estimator f̂ [mstop].

2.1.1. Alternative formulation in function space. In steps 2 and 3 of the
generic FGD algorithm, we associated with U1, . . . , Un a negative gradient
vector. A reason for this can be seen from the following formulation in func-
tion space which is similar to the exposition in Mason et al. [49].

Consider the empirical risk functional C(f) = n−1∑n
i=1 ρ(Yi, f(Xi)) and

the usual inner product 〈f, g〉 = n−1∑n
i=1 f(Xi)g(Xi). We can then calculate

the negative Gâteaux derivative dC(·) of the functional C(·),

−dC(f)(x) = − ∂

∂α
C(f + αδx)|α=0, f : Rp → R, x ∈ Rp,

where δx denotes the delta- (or indicator-) function at x ∈ Rp. In particular,
when evaluating the derivative −dC at f̂ [m−1] and Xi, we get

−dC(f̂ [m−1])(Xi) = Ui,

imsart-sts ver. 2005/10/19 file: BuehlmannHothorn_Boosting.tex date: June 21, 2006



BOOSTING: A STATISTICAL PERSPECTIVE 7

with U1, ..., Un exactly as in steps 2 and 3 of the generic FGD algorithm.
Thus, the negative gradient vector U1, . . . , Un can be interpreted as a func-
tional (Gâteaux) derivative evaluated at the data points.

3. Some loss functions and boosting algorithms. Various boosting
algorithms can now be defined by specifying different loss functions ρ(·, ·).
The mboost package provides infrastructure for defining loss functions via
boost family objects, as exemplified below.

3.1. Binary classification. For binary classification where Y ∈ {0, 1}
with P[Y = 1] = p, we may use the negative binomial log-likelihood as
loss function:

− (y log(p) + (1− y) log(1− p)) .

We parameterize p = exp(f)/(exp(f)+exp(−f)) so that f = log(p/(1−p))/2
equals half of the log-odds ratio; the factor 1/2 is a bit unusual but it will
enable that the population minimizer of the loss in (3.1) will be the same as
for the exponential loss in (3.3) below. The negative log-likelihood becomes
then

log(1 + exp(−2(2y − 1)f)).

By scaling, we prefer to use the equivalent loss function

ρlog-lik(y, f) = log2(1 + exp(−2ỹf)), ỹ = 2y − 1 ∈ {−1,+1}(3.1)

which then becomes an upper bound of the misclassification error, see Fig-
ure 1. In mboost, the negative gradient of this loss function is implemented
in a pre-fabricated function

R> bin <- Binomial()

returning an object of class boost family which contains the negative gradient
function as a slot (with input response y ∈ {−1,+1}):

R> bin@ngradient

function (y, f)
{

exp2yf <- exp(-2 * y * f)
-(-2 * y * exp2yf)/(log(2) * (1 + exp2yf))

}
<environment: 0x8456d40>
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8 BÜHLMANN & HOTHORN

The population minimizer can be shown to be

f∗log-lik(x) =
1
2

log
(

p(x)
1− p(x)

)
, p(x) = P[Y = 1|X = x].

We point out that ỹ = 2y−1 ∈ {−1,+1} is the usual encoding for binary
responses in the machine learning literature (and it is used in mboost as
well). The loss function in (3.1) becomes then a function of ỹf , the so-called
margin value, where the function f induces the following classifier for Y :

C(x) =


1 if f(x) > 0
0 if f(x) < 0
undetermined if f(x) = 0.

Therefore, a misclassification (including the undetermined case) happens if
and only if Ỹ f(X) ≤ 0. Hence, the misclassification loss is

ρ0-1(y, f) = I{ỹf≤0}, ỹ = 2y − 1 ∈ {−1,+1}(3.2)

whose population minimizer is equivalent to the Bayes classifier (for ỹ ∈
{−1,+1})

f∗0-1(x) =

{
+1 if p(x) > 1/2
−1 if p(x) ≤ 1/2,

where p(x) = P[Y = 1|X = x]. Note that the 0-1 loss in (3.2) cannot be
used for boosting or FGD: it is non-differentiable and also non-convex as
a function of the margin value ỹf . The negative log-likelihood loss in (3.1)
can be viewed as a convex upper approximation of the (computationally
intractable) non-convex 0-1 loss, see Figure 1. We will describe in Section 3.3
the BinomialBoosting algorithm (similar to LogitBoost [30]) which uses the
negative log-likelihood as implementing loss function.

Another upper convex approximation of the 0-1 loss function in (3.2) is
the exponential loss

ρexp(y, f) = exp(−ỹf), ỹ = 2y − 1 ∈ {−1,+1}(3.3)

implemented (again assuming y ∈ {−1,+1}) in mboost as

R> AdaExp()

Adaboost Exponential Error

Loss function: exp(-y * f)
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The population minimizer can be shown to be the same as for the log-
likelihood loss:

f∗exp(x) =
1
2

log
(

p(x)
1− p(x)

)
, p(x) = P[Y = 1|X = x].

Using functional gradient descent with different implementing loss func-
tions yields different boosting algorithms. When using the log-likelihood loss
in (3.1), we obtain LogitBoost [30] or BinomialBoosting from Section 3.3;
and with the exponential loss in (3.3), we essentially get AdaBoost [27] from
Section 1.2.

We interpret the boosting estimate f̂ [m](x) as an estimate of the popu-
lation minimizer f∗(x). Thus, the output from AdaBoost, Logit- or Bino-
mialBoosting are estimates of half the log odds ratio. In particular, we can
obtain probability estimates via

p̂[m](x) =
exp(f̂ [m](x))

exp(f̂ [m](x)) + exp(−f̂ [m](x))
.

Also very popular in machine learning is the hinge function, the standard
loss function for support vector machines:

ρSVM(y, f) = [1− ỹf ]+, ỹ = 2y − 1 ∈ {−1,+1},

where [x]+ = xI{x>0} denotes the positive part. It is also an upper convex
bound of the misclassification error, see Figure 1. Its population minimizer
is

f∗SVM(x) = sign(p(x)− 1/2)

which is the Bayes classifier for Ỹ ∈ {−1,+1}. Since f∗SVM(·) is a classifier
and non-invertible function of p(x) there is no direct way to obtain condi-
tional class probability estimates.

[Fig 1 about here.]

3.2. Regression. For regression with response Y ∈ R, we use most of-
ten the squared error loss (scaled by the factor 1/2 such that the negative
gradient vector equals the residuals, see Section 3.3 below),

ρL2(y, f) =
1
2
|y − f |2(3.4)

with population minimizer

f∗L2
(x) = E[Y |X = x].
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The corresponding boosting algorithm is L2Boosting, see Friedman [29] and
Bühlmann and Yu [19]. It is described in more detail in Section 3.3. This
loss function is available in mboost (without the irrelevant factor 1/2) as

R> GaussReg()

Squared Error (Regression)

Loss function: (y - f)^2

Alternative loss functions which have some robustness properties (with re-
spect to the error distribution, i.e., in “Y-space”) include the L1- and Huber-
loss. The former is

ρL1(y, f) = |y − f |

with population minimizer

f∗(x) = median(Y |X = x)

and is implemented in mboost as

R> Laplace()

Absolute Error

Loss function: abs(y - f)

Although the L1-loss is not differentiable at the point y = f , we can com-
pute partial derivatives since the single point y = f (usually) has probability
zero to be realized by the data. A compromise between the L1- and L2-loss
is the Huber-loss function from robust statistics:

ρHuber(y, f) =

{
|y − f |2/2, if |y − f | ≤ δ
δ(|y − f | − δ/2), if |y − f | > δ.

which is available in mboost as (here with δ = 2)

R> Huber(d = 2)

Huber Error (with d = 2)

Loss function: ifelse((a <- abs(y - f)) < d,
a^2/2, d * (a - d/2))

A strategy for choosing (a changing) δ adaptively has been proposed by
Friedman [29]:

δm = median({|Yi − f̂ [m−1](Xi)|; i = 1, . . . , n}),

where the previous fit f̂ [m−1](·) is used. This method is available in mboost
via Huber(d = NULL).
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3.2.1. Connections to binary classification. We point out that the L2-
or L1-loss can also be used for binary classification. For Y ∈ {0, 1}, the
population minimizers are then

f∗L2
(x) = E[Y |X = x] = p(x) = P[Y = 1|X = x],

f∗L1
(x) = median(Y |X = x) =

{
1 if p(x) > 1/2
0 if p(x) ≤ 1/2.

Thus, the population minimizer of the L1-loss is the Bayes classifier.
Both L2- and L1-loss functions can be parameterized as functions of the

margin value ỹf with ỹ = 2y − 1 ∈ {−1,+1}:

|ỹ − f |2 = 1− 2ỹf + (ỹf)2,
|ỹ − f | = |1− ỹf |.(3.5)

The L2-loss for classification (with y ∈ {−1,+1}) is implemented in mboost
as

R> GaussClass()

Squared Error (Classification)

Loss function: 1 - 2 * y * f + (y * f)^2

All loss functions mentioned for binary classification (displayed in Figure 1)
can be viewed and interpreted from the perspective of proper scoring rules,
cf. Buja et al. [21]. We usually prefer the negative log-likelihood loss in (3.1)
because: (i) it yields probability estimates; (ii) it is a monotone loss function
of the margin value ỹf ; (iii) it grows linearly as the margin value ỹf tends to
−∞, unlike the exponential loss in (3.3). The third point reflects a robustness
aspect: it is similar to Huber’s loss function which also penalizes large values
linearly instead of quadratically (as with the L2-loss).

3.2.2. Specifying a loss function of your own choice in mboost. The Fam-
ily function in mboost can be used to create an object of class boost family
implementing the negative gradient for general loss functions. Such an ob-
ject can later be fed into the fitting procedure of a linear or additive model
which optimizes the corresponding empirical risk. An example is given in
Section 5.2.

3.3. Two important boosting algorithms. Table 1 summarizes the most
popular loss functions and their corresponding boosting algorithms.

[Table 1 about here.]
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We describe now in detail the two algorithms appearing in the last two rows
of Table 1.

3.3.1. L2Boosting. L2Boosting is the simplest and most instructive boost-
ing algorithm. It is very useful for regression, in particular when there are
very many predictor variables. Applying the general description of the FGD-
algorithm from Section 2.1 to the squared error loss function ρL2(y, f) =
|y − f |2/2, we obtain the following algorithm.

L2Boosting algorithm

1. Initialize f̂ [0] with an offset value. The default value is f̂ [0] ≡ Y . Set
m = 0.

2. Increase m by 1. Compute the residuals Ui = Yi − f̂ [m−1](Xi) for
i = 1, . . . , n.

3. Fit the residual vector U1, . . . , Un to X1, . . . , Xn by the real-valued
base procedure (e.g. regression)

(Xi, Ui)n
i=1

base procedure−→ ĝ[m](·).

4. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length
factor (as in the general FGD-algorithm).

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The stopping iteration mstop is the main tuning parameter which can be
selected using cross-validation or some information criterion as described in
Section 5.4.

The derivation from the generic FGD algorithm in Section 2.1 is straight-
forward. Note that the negative gradient vector becomes the residual vector.
Thus, L2Boosting amounts to refitting residuals multiple times. Tukey [67]
recognized this to be useful and proposed “twicing” which is nothing else
than L2Boosting using mstop = 2 (and ν = 1).

3.3.2. BinomialBoosting: the FGD version of LogitBoost. We already
gave some reasons at the end of Section 3.2.1 why the negative log-likelihood
loss function in (3.1) is very useful for binary classification problems. Fried-
man et al. [30] proposed LogitBoost which is very similar to the generic
FGD algorithm when using the loss from (3.1): they propose to use New-
ton’s method involving the Hessian matrix.

For the sake of coherence with the generic functional gradient descent
algorithm in Section 2.1, we describe here a version of LogitBoost: to avoid
conflicts of terminology, we call it BinomialBoosting.
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BinomialBoosting algorithm

Apply the generic FGD algorithm from Section 2.1 using the loss func-
tion ρlog-lik from (3.1). The default offset value is f̂ [0] = log(p̂/(1 −
p̂))/2, where p̂ is the relative frequency of Y = 1 (i.e. p̂ = Y ).

With BinomialBoosting, there is no need that the base procedure is able
to do weighted fitting: this constitutes a slight difference to the requirement
for LogitBoost [30].

3.4. Other data structures and models. Due to the generic nature of
boosting or functional gradient descent, we can use the technique in very
many other settings. For data with univariate responses and loss functions
which are differentiable with respect to the second argument, the boosting
approach to be followed is described in Section 2.1; see also Section 3.2.2.
Survival analysis is an important area of application with censored observa-
tions: we describe how one can deal with it in Section 8.

4. Choosing the base procedure. Every boosting algorithm requires
the specification of a base procedure. This choice can be driven by the aim
of optimizing the predictive capacity only or by considering some structural
properties of the boosting estimate in addition. We find the latter usually
more interesting as it allows for better interpretation of the resulting model.

We recall that the generic boosting estimator is a sum of base procedure
estimates

f̂ [m](·) = ν
m∑

k=1

ĝ[k](·).

Therefore, structural properties of the boosting function estimator are in-
duced by a linear combination of structural characteristics of the base pro-
cedure.

The following important examples of base procedures yield useful struc-
tures for the boosting estimator f̂ [m](·). The notation is as follows: ĝ(·) is an
estimate from a base procedure which is based on data (X1, U1), . . . , (Xn, Un)
where (U1, . . . , Un) denotes the current negative gradient.

4.1. Componentwise linear least squares for linear models. Consider the
base procedure

ĝ(x) = β̂(Ŝ)x(Ŝ),

β̂(j) =
n∑

i=1

X
(j)
i Ui/

n∑
i=1

(X(j)
i )2, Ŝ = argmin

1≤j≤p

n∑
i=1

(Ui − β̂(j)X
(j)
i )2.(4.1)
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14 BÜHLMANN & HOTHORN

It selects the best variable in a simple linear model in the sense of ordinary
least squares fitting.

When using L2Boosting with this base procedure, we select in every itera-
tion one predictor variable, not necessarily a different one for each iteration,
and we up-date the function linearly:

f̂ [m](x) = f̂ [m−1](x) + νβ̂(Ŝm)x(Ŝm),

where Ŝm denotes the index of the selected predictor variable in iteration
m. Alternatively, the up-date of the coefficient estimates is

β̂[m] = β̂[m−1] + ν · β̂(Ŝm).

The notation should be read that only the Ŝmth component of the coefficient
estimate β̂[m] (in iteration m) has been up-dated. For every iteration m,
we obtain a linear model fit. As m tends to infinity, f̂ [m](·) converges to
a least squares solution which is unique if the design matrix has full rank
p ≤ n. The method is also known as matching pursuit in signal processing
[47], weak greedy algorithm in computational mathematics [65], and it is a
Gauss-Southwell algorithm [63] for solving a linear system of equations. We
will discuss more properties of L2Boosting with componentwise linear least
squares in Section 5.2.

When using BinomialBoosting with componentwise linear least squares
from (4.1), we obtain a fit, including variable selection, of a linear logistic
regression model.

As will be discussed in more details in Section 5.2, boosting typically
shrinks the (logistic) regression coefficients towards zero. Usually, we do not
want to shrink the intercept: we advocate to use boosting on mean centered
predictor variables X̃

(j)
i = X

(j)
i − n−1∑n

k=1 X
(j)
k without an intercept term

in the model. In case of a linear model, when centering also the response
Ỹi = Yi − n−1∑n

k=1 Yk, this becomes

Ỹi =
p∑

j=1

β(j)X̃
(j)
i + noisei

which forces the regression surface through the center (x̃(1), . . . , x̃(p), ỹ) =
(0, 0, . . . , 0) as with ordinary least squares. Note that it is not necessary to
center the response variables when using the default offset value f̂ [0] = Y in
L2Boosting (for BinomialBoosting, we would center the predictor variables
only but never the response).
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Illustration: Prediction of Total Body Fat. Garcia et al. [31] report on the
development of predictive regression equations for body fat content by means
of p = 9 common anthropometric measurements which were obtained for
n = 71 healthy German women. In addition, the women’s body compo-
sition was measured by Dual Energy X-Ray Absorptiometry (DXA). This
reference method is very accurate in measuring body fat but finds little
applicability in practical environments, mainly because of high costs and
the methodological efforts needed. Therefore, a simple regression equation
for predicting DXA measurements of body fat is of special interest for the
practitioner. Backward-elimination was applied to select important variables
from the available anthropometrical measurements and Garcia et al. [31] re-
port a final linear model utilizing hip circumference, knee breadth and a
compound covariate which is defined as the sum of log chin skinfold, log
triceps skinfold and log subscapular skinfold:

R> bf_lm <- lm(DEXfat ~ hipcirc + kneebreadth + anthro3a,
data = bodyfat)

R> coef(bf_lm)

(Intercept) hipcirc kneebreadth anthro3a
-75.23478 0.51153 1.90199 8.90964

Since a simple and easy to communicate regression formula, such as a linear
combination of only a few covariates, is of special interest in this applica-
tion, we employ the glmboost function from package mboost to fit a linear
regression model by means of L2Boosting with componentwise linear least
squares. We first center the covariates and specify a formula describing the
model we want to fit:

R> indep <- names(bodyfat)[names(bodyfat) != "DEXfat"]
R> cbodyfat <- bodyfat
R> cbodyfat[indep] <- lapply(cbodyfat[indep],

function(x) x - mean(x))
R> bffm <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth +

kneebreadth + anthro3a + anthro3b + anthro3c +
anthro4

By default, the function glmboost fits a linear model (with initial mstop =
100 and shrinkage parameter ν = 0.1) by minimizing squared error (argu-
ment family = GaussReg() is the default):

R> bf_glm <- glmboost(bffm, data = cbodyfat)

Note that, by default, the mean of the response variable is used as an offset
in the first step of the boosting algorithm. As mentioned above, the special
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16 BÜHLMANN & HOTHORN

form of the base learner, i.e., componentwise linear least squares, allows for
a reformulation of the boosting fit in terms of a linear combination of the
covariates which can be assessed via

R> coef(bf_glm)

(Intercept) age waistcirc hipcirc
0.000000 0.013602 0.189716 0.351626

elbowbreadth kneebreadth anthro3a anthro3b
-0.384140 1.736589 3.326860 3.656524

anthro3c anthro4
0.595363 0.000000

[Fig 2 about here.]

We notice that most covariates have been used for fitting and thus no
extensive variable selection was performed in the above model. Thus, we
need to investigate how many boosting iterations are appropriate. Resam-
pling methods such as cross-validation or the bootstrap can be used to study
the empirical risk for a varying number of boosting iterations. The out-of-
bootstrap mean squared error for 100 bootstrap samples is depicted in the
upper part of Figure 2. The plot leads to the impression that approximately
mstop = 44 would be a sufficient number of boosting iterations. In Sec-
tion 5.4, a corrected version of the Akaike information criterion (AIC) is
proposed for determining the optimal number of boosting iterations. This
criterion attains its minimum for

R> mstop(aic <- AIC(bf_glm))

[1] 45

boosting iterations, see the bottom part of Figure 2 in addition.
The coefficients of the boosted linear model with mstop = 45 boosting

iterations are

R> coef(bf_glm[mstop(aic)])

(Intercept) age waistcirc hipcirc
0.0000000 0.0023271 0.1893046 0.3488781

elbowbreadth kneebreadth anthro3a anthro3b
0.0000000 1.5217686 3.3268603 3.6051548

anthro3c anthro4
0.5043133 0.0000000

and thus only 7 covariates have been selected for the final model (intercept
equal to zero occurs here for mean centered response and predictors and
hence, n−1∑n

i=1 Yi = 30.783 is the intercept in the uncentered model). Note
that the variables hipcirc, kneebreadth and anthro3a, which we have

imsart-sts ver. 2005/10/19 file: BuehlmannHothorn_Boosting.tex date: June 21, 2006



BOOSTING: A STATISTICAL PERSPECTIVE 17

used for fitting a simple linear model at the beginning of this paragraph,
have been selected by the boosting algorithm as well.

4.2. Componentwise smoothing spline for additive models. We may choose
a nonparametric base procedure for function estimation. Suppose that

f̂ (j)(·) is a least squares smoothing spline estimate based on

U1, . . . , Un against X
(j)
1 , . . . , X

(j)
n with fixed degrees of freedom df.(4.2)

That is,

f̂ (j) = argmin
f

n∑
i=1

(Ui − f(X(j)
i ))2 + λ

∫
(f ′′(x))2dx,(4.3)

where λ > 0 is a tuning parameter such that the trace of the corresponding
hat matrix equals df. For further details, we refer to Green and Silverman
[33].

The base procedure is then

ĝ(x) = f̂ (Ŝ)(x(Ŝ)),

f̂ (j)(·) as above and Ŝ = argmin
1≤j≤p

n∑
i=1

(Ui − f̂ (j)(X(j)
i ))2,

where the degrees of freedom df is the same for all f̂ (j)(·).
L2Boosting with the componentwise smoothing spline yields an additive

model, including variable selection, i.e., a fit which is additive in the pre-
dictor variables. This can be seen immediately since L2Boosting proceeds
additively for up-dating the function f̂ [m](·), see Section 3.3. Typically, we
then normalize and obtain the following additive model estimator:

f̂ [m](x) = µ̂ +
p∑

j=1

f̂ [m],(j)(x(j)),

n−1
n∑

i=1

f̂ [m],(j)(X(j)
i ) = 0 for all j = 1, . . . , p.

As with the componentwise linear least squares base procedure, we can use
componentwise smoothing splines also in BinomialBoosting, yielding an ad-
ditive logistic regression fit.

The degrees of freedom in the base procedure should be chosen “small”
such as df = 4. This yields low variance but typically large bias of the base
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18 BÜHLMANN & HOTHORN

procedure. The bias can then be reduced by additional boosting iterations.
This choice of low variance but high bias has been analysed in Bühlmann
and Yu [19], see also Section 4.4.

Componentwise smoothing splines can be generalized to pairwise smooth-
ing splines which searches for and fits the best pairs of predictor variables
such that a smooth of U1, . . . , Un against this pair of predictors reduces
residual sum of squares most. With L2Boosting, this yields a nonparamet-
ric model fit with first order interaction terms. This procedure has been
empirically demonstrated to be often much better than fitting with MARS
[20].

Illustration: Prediction of Total Body Fat (cont.). Being more flexible than
the linear model which we fitted to the bodyfat data in Section 4.1, we
estimate an additive model using the gamboost function from mboost (first
with pre-specified mstop = 100 boosting iterations, ν = 0.1 and squared
error loss):

R> bf_gam <- gamboost(bffm, data = cbodyfat)

The degrees of freedom for the smoothing splines, which are utilized as base
learners here, can be defined by the dfbase argument, defaulting to 4.

We can estimate the number of boosting iterations mstop using the cor-
rected AIC criterion described in Section 5.4 (see Figure 3) via

R> mstop(aic <- AIC(bf_gam))

[1] 46

R> bf_gam <- bf_gam[mstop(aic)]

Similar to the linear regression model, the partial contributions of the covari-
ates can be extracted from the boosting fit. For the most important variables,
the partial fits are given in Figure 4 showing some slight non-linearity for
hipcirc and kneebreadth.

[Fig 3 about here.]

[Fig 4 about here.]

4.3. Trees. For boosting, regression trees are the most popular base pro-
cedures in machine learning. They have the advantage to be invariant under
monotone transformations of predictor variables, i.e., we do not need to
search for good data transformations. Unfortunately, the superb interpreta-
tion of a single tree is lost in boosting consisting of a linear combination of
tree estimates. However, some weaker structural properties still hold.
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When using stumps, i.e., a tree with two terminal nodes only, the boost-
ing estimate will be an additive model in the original predictor variables,
because every stump-estimate is a function of a single predictor variable
only. Similarly, boosting trees with (at most) d terminal nodes results in a
nonparametric model having at most interactions of order d− 2. Therefore,
if we want to constrain the degree of interactions, we can easily do this by
constraining the (maximal) number of nodes in the base procedure.

Illustration: Prediction of Total Body Fat (cont.). Both the gbm package
[57] and the mboost package are helpful when decision trees are to be used
as base learners. In mboost, the function blackboost implements gradient
boosting for fitting such classical black box models, e.g. to the bodyfat data,
via

R> bf_black <- blackboost(bffm, data = bodyfat,
control = boost_control(mstop = 500))

Conditional inference trees [39] as available from the party package [38] are
utilized as base learners. Here, the function boost_control defines hyper
parameters, for example the number of boosting iterations mstop.

Alternatively, we can use the function gbm from the gbm package as fol-
lows:

R> bf_gbm <- gbm(bffm, data = bodyfat, distribution = "gaussian",
interaction.depth = 2, n.trees = 500, shrinkage = 0.1,
bag.fraction = 1, train.fraction = 1, verbose = FALSE)

which yields roughly the same fit as can be seen from Figure 5.

[Fig 5 about here.]

4.4. The bias-variance trade-off. We have seen above that the structural
properties of a boosting estimate are determined by the choice of a base pro-
cedure. In our opinion, the structure specification should come first. After
having made a choice, the question becomes how “complex” the base proce-
dure should be. For example, how should we choose the degrees of freedom
for the componentwise smoothing spline in (4.2)? A general answer is: choose
the base procedure (having the desired structure) with low variance at the
price of larger estimation bias. For the componentwise smoothing splines,
this would imply a low number of degrees of freedom, e.g. df = 4.

We give some reasons for the low-variance principle in Section 5.1 (Replica 1).
Moreover, it has been demonstrated in Friedman [29] that a small step-size
factor ν can be often beneficial and almost never yields substantially worse
predictive performance of boosting estimates. Note that a small step-size
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factor can be seen as a shrinkage of the base procedure by the factor ν,
implying low variance but potentially large estimation bias.

5. L2Boosting. L2Boosting is functional gradient descent using the
squared error loss which amounts to repeated fitting of ordinary residuals,
as mentioned already in Section 3.3.1. Here, we aim at increasing the un-
derstanding of the simple L2Boosting algorithm. We first start with a toy
problem of curve estimation, and we will then illustrate concepts and re-
sults which are especially useful for high-dimensional data. These can serve
as heuristics for boosting algorithms with other convex loss functions for
problems in e.g. classification or survival analysis.

5.1. Nonparametric curve estimation: from basics to asymptotic optimal-
ity. Consider the toy problem of estimating a regression function E[Y |X =
x] with one-dimensional predictor X ∈ R and a continuous response Y ∈ R.
We illustrate L2Boosting using a smoothing spline with pre-specified de-
grees of freedom df (cf. formula (4.3)), and we review here some parts of the
arguments and results from Bühlmann and Yu [19].

Consider the case with a linear base procedure having a hat matrix
H : Rn → Rn, mapping the response variables Y = (Y1, . . . , Yn)> to their
fitted values (f̂(X1), . . . , f̂(Xn))>. Examples include nonparametric kernel
smoothers or smoothing splines. It is easy to show that the hat matrix of
the L2Boosting fit (for simplicity, with f̂ [0] ≡ 0 and ν = 1) in iteration m
equals:

Bm = Bm−1 +H(I − Bm−1) = I − (I −H)m.(5.1)

Formula (5.1) allows for several insights. First, if the base procedure satisfies
‖I − H‖ < 1 for a suitable norm, i.e., has a “learning capacity” such that
the residual vector is shorter than the input-response vector, we see that
Bm converges to the identity I as m →∞, and BmY converges to the fully
saturated model Y, interpolating the response variables exactly. Thus, we
see here explicitly that we have to stop early with the boosting iterations in
order to prevent over-fitting.

When specifying to the case of a smoothing spline base procedure, it is
useful to invoke some eigen-analysis. The spectral representation is

H = UDU>, U>U = UU> = I, D = diag(λ1, . . . , λn),

where λ1 ≥ λ2 ≥ . . . λn denote the (ordered) eigenvalues ofH. It then follows
with (5.1) that

Bm = UDmU>,

Dm = diag(d1,m, . . . , dn,m), di,m = 1− (1− λi)m.
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It is well known that a smoothing spline satisfies:

λ1 = λ2 = 1, 0 < λi < 1 (i = 3, . . . , n).

Therefore, the eigenvalues of the boosting hat operator (matrix) in iteration
m satisfy:

d1,m ≡ d2,m ≡ 1 for all m,

0 < di,m = 1− (1− λi)m < 1 (i = 3, . . . , n), di,m → 1 (m →∞).

When comparing the spectrum, i.e., the set of eigenvalues, of a smoothing
spline with its boosted version, we see the following. For both cases, the
largest two eigenvalues are equal to 1. Moreover, all other eigenvalues can
be changed by either varying the degrees of freedom df =

∑n
i=1 λi in a single

smoothing spline, or by varying the boosting iteration m with some fixed
(low-variance) smoothing spline base procedure having fixed (low) values
λi. In Figure 6 we demonstrate the difference between the two approaches
for changing “complexity” of the estimated curve fit by means of a toy ex-
ample first shown in [19]. Both methods have about the same minimum
mean squared error but L2Boosting overfits much more slowly than a single
smoothing spline.

[Fig 6 about here.]

By careful inspection of the eigen-analysis for this simple case of boosting
a smoothing spline, Bühlmann and Yu [19] proved an asymptotic minimax
rate result:

Replica 1. [19] When stopping the boosting iterations appropriately,
i.e. m = mn = O(n4/(2ξ+1)), mn → ∞ (n → ∞) with ξ ≥ 2 as be-
low, L2Boosting with cubic smoothing splines having fixed degrees of free-
dom achieves the minimax convergence rate over Sobolev function classes of
smoothness degree ξ ≥ 2, as n →∞.

Two items are interesting. First, minimax rates are achieved by using
a base procedure with fixed degrees of freedom which means low variance
from an asymptotic perspective. Secondly, L2Boosting with cubic smooth-
ing splines has the capability to adapt to higher order smoothness of the
true underlying function: thus, with the stopping iteration as the one and
only tuning parameter, we can nevertheless adapt to any higher-order de-
gree of smoothness (without the need of choosing a higher order spline base
procedure).

Recently, asymptotic convergence and minimax rate results have been
established for early-stopped boosting in more general settings [9, 75].
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5.1.1. L2Boosting using kernel estimators. As we have pointed out in
Replica 1, L2Boosting of smoothing splines can achieve faster mean squared
error convergence rates than the classical O(n−4/5), assuming that the true
underlying function is sufficiently smooth. We illustrate here a related phe-
nomenon with kernel density estimators.

We consider fixed, univariate design points xi = i/n (i = 1, . . . , n) and the
Nadaraya-Watson kernel estimator for the nonparametric regression function
E[Y |X = x]:

ĝ(x;h) = (nh)−1
n∑

i=1

K

(
x− xi

h

)
Yi = n−1

n∑
i=1

Kh(x− xi)Yi,

where h > 0 is the bandwidth, K(·) a kernel in the form of a probability
density which is symmetric around zero and Kh(x) = h−1K(x/h). It is
straightforward to derive the form of L2Boosting using m = 2 iterations
(with f̂ [0] ≡ 0 and ν = 1), i.e. twicing [67], with the Nadaraya-Watson
kernel estimator:

f̂ [2](x) = (nh)−1
n∑

i=1

Ktw
h (x− xi)Yi, Ktw

h (u) = 2Kh(u)−Kh ∗Kh(u),

where Kh ∗Kh(u) = n−1
n∑

r=1

Kh(u− xr)Kh(xr).

For fixed design points xi = i/n, the kernel Ktw
h (·) is asymptotically equiv-

alent to a higher-order kernel (which can take negative values) yielding a
squared bias term of order O(h8), assuming that the true regression func-
tion is four times continuously differentiable. Thus, twicing or L2Boosting
with m = 2 iterations amounts to be a Nadaraya-Watson kernel estimator
with a higher-order kernel. This explains from another angle why boosting is
able to improve the mean squared error rate of the base procedure. More de-
tails including also non-equispaced designs are given in DiMarzio and Taylor
[24].

5.2. L2Boosting for high-dimensional linear models. Consider a poten-
tially high-dimensional linear model

Yi = β0 +
p∑

j=1

β(j)X
(j)
i + εi, i = 1, . . . , n,(5.2)

where ε1, . . . , εn are i.i.d. with E[εi] = 0 and independent from all Xi’s. We
allow for the number of predictors p to be much larger than the sample size n.
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The model encompasses the representation of a noisy signal by an expansion
with an over-complete dictionary of functions {g(j)(·) : j = 1, . . . , p}; e.g. for
surface modeling with design points in Zi ∈ R2,

Yi = f(Zi) + εi, f(z) =
∑
j

β(j)g(j)(z) (z ∈ R2).

Fitting the model (5.2) can be done using L2Boosting with the componen-
twise linear least squares base procedure from Section 4.1 which fits in every
iteration the best predictor variable reducing the residual sum of squares
most. This method has the following basic properties:

1. As the number m of boosting iterations increases, the L2Boosting es-
timate f̂ [m](·) converges to a least squares solution. This solution is
unique if the design matrix has full rank p ≤ n.

2. When stopping early which is usually needed to avoid over-fitting, the
L2Boosting method often does variable selection.

3. The coefficient estimates β̂[m] are (typically) shrunken versions of a
ordinary least squares estimate β̂OLS which are “related” to the Lasso,
see Section 5.2.1.

Illustration: Breast Cancer Subtypes. Variable selection is especially im-
portant in high-dimensional situations. As an example, we study a binary
classification problem involving p = 7129 gene expression levels in n = 49
breast cancer tumor samples [data taken from 74]. For each sample, a binary
response variable describing the lymph node status of the patient is to be
explained by the expression profiles.

The data are stored in form of an exprSet object [see 32] and we first
extract the matrix of expression levels and the response variable, and center
the expression levels for each gene around zero

R> x <- exprs(westbc)
R> x <- t(x - rowMeans(x))
R> y <- pData(westbc)$nodal.y
R> dim(x)

[1] 49 7129

R> table(y)

y
0 1

25 24

We aim at using L2Boosting for classification, see Section 3.2.1, with classical
AIC based on the binomial log-likelihood. Thus, we first transform the factor
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y to a numeric variable with 0/1 coding (different from the −1/+1-encoding
in Section 3.1):

R> yfit <- as.numeric(y) - 1

The general framework implemented in mboost allows us to specify the neg-
ative gradient corresponding to the implementing loss function (the ngra-
dient argument), here the squared error loss, and a different evaluating
loss function (the loss argument), here the negative log-likelihood, with the
Family function as follows:

R> L2fm <- Family(ngradient = function(y, f) y - f,
loss = function(y, f, w = 1) {

p <- pmax(pmin(1 - 1e-05, f), 1e-05)
-y * log(p) - (1 - y) * log(1 - p)

},
offset = function(y, w)

weighted.mean(y, w))

The resulting object can now be passed to the glmboost function for boost-
ing with componentwise linear least squares (here initial mstop = 200 itera-
tions are used):

R> west_glm <- glmboost(x, yfit, family = L2fm,
control = boost_control(mstop = 200))

Fitting such a linear model to p = 7129 covariates for n = 49 observations
takes about 2 seconds on a medium scale desktop computer (Intel Pentium
4, 2.8GHz). Thus, this form of estimation and variable selection is computa-
tionally very efficient. As a comparison, computing all Lasso solutions, using
the lars in R (with use.gram=FALSE) [25], is about a factor three slower.

The question how to choose mstop remains open and can be addressed by
the classical AIC criterion (see Section 5.4) as follows

R> aic <- AIC(west_glm, method = "classical")
R> mstop(aic)

[1] 100

where the AIC is computed as -2(log-likelihood) + 2(degrees of freedom) = 2
(evaluating loss) + 2(degrees of freedom). The notion of degrees of freedom
is discussed in Section 5.3.

Figure 7 shows the AIC curve depending on the number of boosting it-
erations. When we stop after mstop = 100 boosting iterations, we obtain
33 genes with non-zero regression coefficients whose standardized values

β̂(j)
√

V̂ar(X(j)) are depicted in the left panel of Figure 7.
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[Fig 7 about here.]

5.2.1. Connections to the Lasso. There is an intriguing connection be-
tween L2Boosting with componentwise linear least squares and the Lasso
[66] which is the following `1-penalty method:

β̂(λ) = argmin
β

n−1
n∑

i=1

Yi − β0 −
p∑

j=1

β(j)X
(j)
i

2

+ λ
p∑

j=1

|β(j)|.(5.3)

Efron et al. [25] consider a version of L2Boosting, called forward stage-
wise linear regression (FSLR), and they show that FSLR with infinitesimally
small step-sizes (i.e., the value ν in step 4 of the L2Boosting algorithm in
Section 3.3.1) produces a set of solutions which is approximately equivalent
to the set of Lasso solutions when varying the regularization parameter λ in
Lasso (see (5.3) above). The approximate equivalence is derived by represent-
ing FSLR and Lasso as two different modifications of the computationally
efficient least angle regression (LARS) algorithm from Efron et al. [25]. The
latter is very similar to the algorithm proposed earlier by Osborne et al. [52].
In special cases where the design matrix satisfies a “positive cone condition”,
FSLR, Lasso and LARS all coincide [25, p.425]. For more general situations,
when adding some backward steps to boosting, such modified L2Boosting
coincides with the Lasso (Zhao and Yu [77]).

Despite the fact that L2Boosting and Lasso are not equivalent methods
in general, it may be useful to interpret boosting as being “related” to `1-
penalty based methods.

5.2.2. Asymptotic consistency in high dimensions. We review here a re-
sult establishing asymptotic consistency for very high-dimensional but sparse
linear models as in (5.2). To capture the notion of high-dimensionality, we
equip the model with a dimensionality p = pn which is allowed to grow
with sample size n; moreover, the coefficients β(j) = β

(j)
n are now potentially

depending on n and the regression function is denoted by fn(·).

Replica 2. [17] Consider the linear model in (5.2). Assume that pn =

O(exp(n1−ξ)) for some 0 < ξ ≤ 1 (high-dimensionality) and sup
n∈N

pn∑
j=1

|β(j)
n | <

∞ (sparseness of the true regression function w.r.t. the `1-norm); moreover,
the variables X

(j)
i are bounded and E[|εi|4/ξ] < ∞. Then: when stopping the

boosting iterations appropriately, i.e. m = mn → ∞ (n → ∞) sufficiently
slowly, L2Boosting with componentwise linear least squares satisfies

EXnew [(f̂ [mn]
n (Xnew)− fn(Xnew))2] → 0 in probability (n →∞),
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where Xnew denotes new predictor variables, independent of and with the
same distribution as the X-component of the data (Xi, Yi) (i = 1, . . . , n).

The result holds for almost arbitrary designs and no assumptions about
collinearity or correlations are required. Replica 2 identifies boosting as a
method which is able to consistently estimate a very high-dimensional but
sparse linear model; for the Lasso in (5.3), a similar result holds as well [34].
In terms of empirical performance, there seems to be no overall superiority
of L2Boosting over Lasso or vice-versa.

5.2.3. Transforming predictor variables. In view of Replica 2, we may
enrich the design matrix in model (5.2) with many transformed predictors:
if the true regression function can be represented as a sparse linear combi-
nation of original or transformed predictors, consistency is still guaranteed.
It should be noted though that the inclusion of non-effective variables in the
design matrix does degrade the finite-sample performance.

As a standard option, we propose the use of fractional polynomials [59] for
transforming each predictor variable and its log-transform. First, any of the
p predictor variables, denoted for simplicity just by X, is transformed into
some appropriate interval (for example [1, 2]), denoted by X̃. We then con-
sider the following transformed values as new additional predictor variables
in the model:

log(X̃), log(X̃)2

X̃r, X̃r log(X), r ∈ {−2,−1,−0.5, 0.5, 1, 2, 3}.

Thus, each covariate is associated with 16 transformations which addition-
ally enter into the design matrix of the corresponding linear model.

Illustration: Prediction of Total Body Fat (cont.). Such transformation de-
fined in terms of fractional polynomials for estimating a linear model can
be used with the glmboost function [an implementation of the original frac-
tional polynomials approach is available in package mfp, see 1, 58], where the
model formula performs the computations of all transformations by means
of the FP (fractional polynomials) function. First, we scale each covariate
to the interval [1, 2] and then fit the complex linear model by using the
glmboost function with initial mstop = 3000 boosting iterations:

R> tbodyfat <- bodyfat
R> tbodyfat[indep] <- lapply(bodyfat[indep], function(x) {

x <- x - min(x)
x/max(x) + 1
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})
R> fpfm <- as.formula(paste("DEXfat ~ ", paste("FP(",

indep, ")", collapse = "+")))
R> fpfm

DEXfat ~ FP(age) + FP(waistcirc) + FP(hipcirc) +
FP(elbowbreadth) + FP(kneebreadth) + FP(anthro3a) +
FP(anthro3b) + FP(anthro3c) + FP(anthro4)

R> bf_fp <- glmboost(fpfm, data = tbodyfat,
control = boost_control(mstop = 3000))

R> mstop(aic <- AIC(bf_fp))

[1] 2480

The corrected AIC criterion (see Section 5.4) suggests to stop after mstop =
2480 boosting iterations and the final model selects 21 (transformed) pre-
dictor variables. Again, the partial contributions of each of the 9 original
covariates can be computed easily and are shown (for the same variables
as in Figure 4) in Figure 8. Note that the depicted functional relationship
derived from the multivariate fractional polynomial model (Figure 8) is qual-
itatively the same as the one derived from the additive model (Figure 3).

[Fig 8 about here.]

5.3. Degrees of freedom for L2Boosting. A notion of degrees of freedom
will be useful for estimating the stopping iteration of boosting (Section 5.4)
or for a sparse version of boosting (Section 6.2).

5.3.1. Componentwise linear least squares. We consider L2Boosting with
componentwise linear least squares. Denote by

H(j) = X(j)(X(j))>/‖X(j)‖2, j = 1, . . . , p,

the n×n hat matrix for the linear least squares fitting operator using the jth
predictor variable X(j) = (X(j)

1 , . . . , X
(j)
n )> only; ‖x‖2 = x>x denotes the

Euclidean norm for a vector x ∈ Rn. The hat matrix of the componentwise
linear least squares base procedure (see (4.1)) is then

H(Ŝ) : (U1, . . . , Un) 7→ Û1, . . . , Ûn,

where Ŝ is as in (4.1). Similarly to (5.1), we then obtain the hat matrix of
L2Boosting in iteration m:

Bm = Bm−1 + ν · H(Ŝm)(I − Bm−1)

= I − (I − νH(Ŝm))(I − νH(Ŝm−1)) · · · (I − νH(Ŝ1)),(5.4)
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where Ŝr ∈ {1, . . . , p} denotes the component which is selected in the com-
ponentwise least squares base procedure in the rth boosting iteration. We
then define the degrees of freedom of the boosting fit in iteration m as

df(m) = trace(Bm).

Even with ν = 1, df(m) is very different from counting the number of vari-
ables which have been selected until iteration m. Moreover, the sequential
order of the variables entering the model in the process of boosting matters
as well.

Having some notion of degrees of freedom at hand, we can estimate the
error variance σ2

ε = E[ε2
i ] in the linear model (5.2) by

σ̂2
ε =

1
n− df(mstop)

n∑
i=1

(Yi − f̂ [mstop](Xi))2.

We can represent

Bm =
p∑

j=1

B(j)
m ,(5.5)

where B(j)
m is the hat matrix which yields the fitted values for the jth pre-

dictor, i.e. B(j)
m Y = X(j)β̂

[m]
j . Note that the B(j)

m ’s can be easily computed
in an iterative way by up-dating as follows:

B(Ŝm)
m = B(Ŝm)

m−1 + ν · H(Ŝm)(I − Bm−1),

B(j)
m = B(j)

m−1 for all j 6= Ŝm.

Thus, we have a decomposition of the total degrees of freedom into p terms:

df(m) =
p∑

j=1

df(j)(m),

df(j)(m) = trace(B(j)
m ).

The individual degrees of freedom df(j)(m) are a useful measure to quantify
the “complexity” of the coefficient estimate β̂

[m]
j .

5.3.2. Other base procedures. Most of the reasonable base procedure do
some variable selection. We denote the selected predictor variable index (or
indices) by Ŝ ⊂ {1, . . . , p}, where Ŝ has been estimated from a specified set Γ
of subsets of variables. For example, for componentwise linear least squares
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(Section 4.1), componentwise splines (Section 4.2) or stumps (Section 4.3),
Ŝ ∈ Γ = {1, . . . , p} (one variable is selected); for pairwise splines (end of
Section 4.2), Ŝ ∈ Γ = {1, . . . , p}2 (a pair of variables is selected).

Assuming that the base procedure is linear for a selected set of variables,
denote by H(S) its hat matrices (S ∈ Γ). Denoting by Ŝr the set of variables
which has been selected in the rth round of boosting, all the concepts and
formulae from Section 5.3.1 hold (the sum in the decomposition of df(m) is
now over the indices j ∈ Γ).

For example, with componentwise smoothing splines: the hat matrices
H(j) (j = 1, . . . p) are known explicitly [33], and df(j)(m) denotes then the
degrees of freedom for the boosting function estimate of the jth additive
term.

5.4. Internal stopping criteria for L2Boosting. Having some degrees of
freedom at hand, we can now use internal information criteria for estimating
a good stopping iteration, without pursuing some sort of cross-validation.

We can use the corrected AIC [40]:

AICc(m) = log(σ̂2) +
1 + df(m)/n

1− df(m) + 2)/n
,

σ̂2 = n−1
n∑

i=1

(Yi − (BmY)i)2.

In mboost, the corrected AIC criterion can be computed via AIC(x, method
= "corrected") (with x being an object returned by glmboost or gam-
boost called with family = GaussReg()). Alternatively, we may employ
the gMDL criterion Hansen and Yu [35]:

gMDL(m) = log(S) +
df(m)

n
log(F ),

S =
nσ̂2

n− df(m)
, F =

∑n
i=1 Y 2

i − nσ̂2

df(m)S
.

The gMDL criterion bridges the AIC and BIC in a data-driven way: it is an
attempt to adaptively select the better among the two.

When using L2Boosting for binary classification (see also the end of Sec-
tion 3.2 and end of Section 5.2), we prefer to work with the binomial log-
likelihood in AIC,

AIC(m) = −2
n∑

i=1

Yi log((BmY)i) + (1− Yi) log(1− (BmY)i) + 2df(m),

or for BIC(m) with the penalty term log(n)df(m). (If (BmY)i /∈ [0, 1], we
truncate by max(min((BmY)i, 1−δ), δ) for some small δ > 0. e.g. δ = 10−5).
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6. Boosting for variable selection. We address here the question
whether boosting is a good variable selection scheme. For problems with
many predictor variables, boosting is computationally much more efficient
than classical all subset selection schemes. The mathematical properties of
boosting for variable selection are still open questions, e.g. whether it leads
to a consistent model selection method.

6.1. L2Boosting. When borrowing from the analogy of L2Boosting with
the Lasso (see Section 5.2.1), the following holds. Consider a linear model
as in (5.2), assuming Gaussian errors and predictor variables and allowing
for p � n but being sparse. Then, there is a necessary and almost suffi-
cient condition such that for some suitable penalty parameter λ in (5.3),
the Lasso finds the true underlying sub-model (the predictor variables with
corresponding regression coefficients 6= 0) with probability tending quickly
to 1 as n → ∞ [50]. It is important to note the role of the sufficient and
necessary condition of the Lasso for model selection: Zhao and Yu [78] call
it the “irrepresentable condition”which has (mainly) implications on the de-
sign (predictor variables), and they give examples where it holds and where
it fails to be true. A further complication is the fact that when tuning the
Lasso for prediction optimality, i.e., choosing the penalty parameter λ in
(5.3) such that the MSE is minimal, the probability for estimating the true
sub-model converges to a number which is less than one or even zero if the
problem is high-dimensional [50]. In fact, the prediction optimal tuned Lasso
selects asymptotically too large models. However, the Lasso seems to be a
very useful method for variable filtering: for many cases, the prediction op-
timal tuned Lasso selects a sub-model which contains the true model with
high probability.

We do not expect that boosting is free from the difficulties which oc-
cur when using the Lasso for variable selection. The hope is though, that
also boosting would produce an interesting set of sub-models when vary-
ing the number of iterations. As indicated above, we often would like to
construct estimators which are less biased than the Lasso. It is instructive
to look at regression with orthonormal design, i.e., the model (5.2) with∑n

i=1 X
(j)
i X

(k)
i = δjk. Then, the Lasso and also L2Boosting with componen-

twise linear least squares and using very small ν (in step 4 of L2Boosting, see
Section 3.3.1) yield the soft-threshold estimator [20, 25], see Figure 9. Often,
we would like to have an estimator which exhibits small bias if the observa-
tion is very large. The hard-threshold estimator but also the non-negative
garrote estimator [12] have this property, see also Figure 9.

[Fig 9 about here.]
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For linear models with non-orthogonal design, the former corresponds to
all subset selection which is often computationally infeasible and in addi-
tion, it may exhibit a too large variance (“unstable”). The latter, i.e., the
non-negative garrote estimator, is a nice proposal between hard- and soft-
thresholding, with almost no bias for large observed values, being compu-
tationally tractable also for non-orthogonal design matrices with p ≤ n (in
practice, p should be substantially smaller than n) and having reasonable
variance (i.e. fairly “stable”).

6.2. SparseL2Boosting. A simple modification of L2Boosting yields so-
lutions in the spirit of Breiman’s non-negative garrote estimator. In every
iteration of L2Boosting, we select the variable or component S ∈ Γ (e.g.
Γ = {1, . . . , p} for componentwise linear least squares or componentwise
smoothing splines) such that the residual sum of squares is minimized. For
SparseL2Boosting, the proposal is to use a final prediction error criterion
[20]:

Ŝ = argmin
S∈Γ

n−1
n∑

i=1

(Ui − (H(S)U)i)2

+ γ · trace(Bm−1 +H(S)(I − Bm−1)),(6.1)

where U = (U1, . . . , Un)> = (I − Bm−1)Y denotes the vector of current
residuals (in iteration m− 1). Having the estimate Ŝ, we proceed exactly as
for L2Boosting in Section 3.3.1. We stop the iterations with

mstop = argmin
m

n−1
n∑

i=1

(Ui − (BmY)i)2 + γ · trace(Bm).

The procedure is called SparseL2Boosting: more explanation why it yields
sparser solutions is given below.

Replica 3. [20] In a linear model with orthonormal predictor variables,
SparseL2Boosting with componentwise linear least squares and using very
small ν yields Breiman’s non-negative garrote estimator: the parameter γ in
(6.1) corresponds to a threshold in the non-negative garrote estimator .

Replica 3 gives an explanation why SparseL2Boosting yields sparse models
in terms of the number of selected variables. Suppose that the true model is
very sparse with say one effective predictor variable having a large regression
coefficient and many p−1 non-effective predictors. Ideally, we would use the
effective predictor variable only and employ very little shrinkage (because of
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the large corresponding regression coefficient). This can be approximately
achieved with the non-negative garrote, choosing a relatively large threshold
such that only the effective variable is chosen; the shrinkage effect is still
small because the regression coefficient is large. On the other hand, with soft-
thresholding, we can also choose a large threshold, resulting in a fit which
uses the effective predictor only but employs strong shrinkage; or we choose a
smaller threshold which employs less shrinkage but allows for more variables
in the model. Typically, the latter has lower mean squared error and hence,
the soft-threshold estimator is less sparse than the non-negative garrote (in
terms of the number of selected variables). This examples generalizes to the
case, where we have a few effective predictors, all of them having substantial
regression coefficients, and many non-effective variables.

The final prediction error criterion function in (6.1) requires the choice
of a parameter γ. In principle, we could tune this parameter using some
cross-validation scheme. As an alternative, we propose the AICc or gMDL
criterion from Section 5.4. For gMDL, we replace (6.1) by

Ŝ = argmin
S∈Γ

(
log(T (S)) +

k(S)
n

log(F (S))
)

,

T (S) =
RSS(S)
n− k(S)

, F (S) =

n∑
i=1

Y 2
i − RSS(S)

k(S)T (S)
,

RSS(S) =
n∑

i=1

(Ui − (H(S)U)i)2, k(S) = trace(Bm−1 +H(S)(I − Bm−1)).

Moreover, stooping can be done by using AICc or gMDL as in Section 5.4.

7. Boosting for exponential family models.

7.1. BinomialBoosting. For binary classification with Y ∈ {0, 1}, Bino-
mialBoosting uses the negative binomial log-likelihood from (3.1) as loss
function. The algorithm is described in Section 3.3.2. Since the population
minimizer is f∗(x) = log[p(x)/(1− p(x))]/2, estimates from BinomialBoost-
ing are on half of the logit-scale: the componentwise linear least squares
base procedure yields a logistic linear model fit while using componentwise
smoothing splines fits a logistic additive model. Many of the concepts and
facts from Section 5 about L2Boosting become useful heuristics for Binomi-
alBoosting.

One principal difference is the derivation of the boosting hat matrix. In-
stead of (5.4), a linearization argument leads to the following recursion (as-
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suming f̂ [0] ≡ 0) for an approximate hat matrix Bm:

B1 = ν4W [0]HŜ1 ,

Bm = Bm−1 + 4νW [m−1]HŜm(I − Bm−1) (m ≥ 2),
W [m] = diag(p̂[m](Xi)(1− p̂[m](Xi); 1 ≤ i ≤ n).(7.1)

A derivation is given in the appendix. Degrees of freedom are then defined
as in Section 5.3,

df(m) = trace(Bm),

and they can be used for information criteria, e.g.

AIC(m) = −2
n∑

i=1

[Yi log(p̂[m](Xi)) + (1− Yi) log(1− p̂[m](Xi))] + 2df(m),

or for BIC(m) with the penalty term log(n)df(m). In mboost, this AIC cri-
terion can be computed via AIC(x, method = "classical") (with x being
an object returned by glmboost or gamboost called with family = Bino-
mial()).

Illustration: Wisconsin Prognostic Breast Cancer. Prediction models for
recurrence events in breast cancer patients based on covariates which have
been computed from a digitized image of a fine needle aspirate of breast
tissue (those measurements describe characteristics of the cell nuclei present
in the image) have been studied by Street et al. [64] [the data is part of the
UCI repository 10].

We first analyse this data as a binary prediction problem (recurrence vs.
non-recurrence) and later in Section 8 by means of survival models. Again,
we are faced with lots of potential covariates (p = 32) for a limited number
of observations without missing values (n = 194) and variable selection is
an issue. We can choose a classical logistic regression model via AIC in a
stepwise algorithm as follows (after centering the covariates)

R> wpbc2 <- wpbc[complete.cases(wpbc), colnames(wpbc) != "time"]
R> indep <- names(wpbc2)[names(wpbc2) != "status"]
R> wpbc2[indep] <- lapply(wpbc2[indep],

function(x) x - mean(x))
R> wpbc_step <- step(glm(status ~ ., data = wpbc2,

family = binomial()), trace = 0)

The final model consists of 16 parameters with

R> logLik(wpbc_step)
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'log Lik.' -80.13 (df=16)

R> AIC(wpbc_step)

[1] 192.26

and we want to compare this model to a logistic regression model fitted via
gradient boosting. We simply select the Binomial family (with default offset
of 1/2 log(p/(1−p)), where p is the proportion of recurrences) and start with
initial mstop = 500 boosting iterations

R> wpbc_glm <- glmboost(status ~ ., data = wpbc2,
family = Binomial(),
control = boost_control(mstop = 500))

The negative binomial log-likelihood is

R> logLik(wpbc_glm)

[1] -89.964

and the classical AIC criterion suggests to stop after

R> aic <- AIC(wpbc_glm, "classical")
R> aic

[1] 198.44
Optimal number of boosting iterations: 260
Degrees of freedom (for mstop = 260): 7.032

boosting iterations. We now restrict the number of boosting iterations to
mstop = 260 via

R> wpbc_glm <- wpbc_glm[mstop(aic)]
R> logLik(wpbc_glm)

[1] -92.189

R> coef(wpbc_glm)[abs(coef(wpbc_glm)) > 0]

(Intercept) mean_texture mean_symmetry
-3.0110e-02 -2.4215e-02 -3.3878e+00

mean_fractaldim SE_texture SE_perimeter
-2.0321e+01 -2.6603e-02 4.0908e-02

SE_compactness SE_concavity SE_concavepoints
7.0280e+00 -4.6303e+00 -1.5737e+01

SE_symmetry worst_radius worst_perimeter
2.8601e+00 1.7777e-02 1.2639e-03
worst_area worst_smoothness tsize
1.5854e-04 8.8372e+00 3.1014e-02

pnodes
2.5981e-02
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(because of using the offset-value f̂ [0], we have to add the value f̂ [0] to the
reported intercept estimate above for the logistic regression model) and we
then can extract the fitted conditional probabilities

R> f <- fitted(wpbc_glm)
R> p <- exp(f)/(exp(f) + exp(-f))

which are depicted by a conditional density plot in Figure 10.

[Fig 10 about here.]

A generalized additive model adds more flexibility to the regression func-
tion but is still interpretable. We fit a logistic additive model to the wpbc
data as follows:

R> wpbc_gam <- gamboost(status ~ ., data = wpbc2,
family = Binomial())

R> mopt <- mstop(aic <- AIC(wpbc_gam, "classical"))
R> aic

[1] 196.33
Optimal number of boosting iterations: 84
Degrees of freedom (for mstop = 84): 13.754

This model selected 16 out of 32 covariates. The partial contributions of
the four most important variables are depicted in Figure 11 indicating a
remarkable degree of non-linearity.

[Fig 11 about here.]

7.2. PoissonBoosting. For count data with Y ∈ {0, 1, 2, . . .}, we can use
Poisson regression: we assume that Y |X = x has a Poisson(λ(x)) distribution
and the goal is to estimate the function f(x) = log(λ(x)). Then, the negative
log-likelihood yields the loss function

ρ(y, f) = −yf + exp(f), f = log(λ),

which can be used in the functional gradient descent algorithm in Section 2.1
and is implemented as

R> Poisson()

Poisson

Loss function: -y * f + exp(f)
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Similarly to (7.1), the approximate boosting hat matrix is computed by
the following recursion

B1 = νW [0]HŜ1 ,

Bm = Bm−1 + νW [m−1]HŜm(I − Bm−1) (m ≥ 2),
W [m] = diag(λ̂[m](Xi); 1 ≤ i ≤ n).(7.2)

8. Survival analysis. For survival analysis with censored data it is pos-
sible, under some circumstances, to construct a boosting algorithm based on
weighted least squares fitting of a base procedure. The approach is described
in detail in Hothorn et al. [37].

We assume complete data of the following form: survival times Ti ∈ R+

(some of them right-censored) and predictors Xi ∈ Rp, i = 1, . . . , n. We
transform the survival times to the log-scale, but this step is not crucial for
what follows: Yi = log(Ti). What we observe is

Oi = (Ỹi, Xi,∆i), Ỹi = log(T̃i), T̃i = min(Ti, Ci),

where ∆i = I(Ti ≤ Ci) is a censoring indicator and Ci the censoring time.
Here, we make a restrictive assumption that Ci is conditionally independent
of Ti given Xi (and we assume independence among different indices i): this
implies that the coarsening at random assumption holds [73].

We consider the squared error loss for the complete data, ρ(y, f) = (y−f)2

(without the irrelevant factor 1/2). For the observed data, the following
weighted version turns out to be useful:

ρobs(o, f) = (ỹ − f)2∆
1

G(t̃|x)
,

G(c|x) = P[C > c|X = x].

Thus, the observed data loss function is weighted by the inverse probability
for censoring ∆G(t̃|x)−1 (the inverse probability of censoring weights, IPC).
Under the coarsening at random assumption, it then holds that

EY,X [(Y − f(X))2] = EO[ρobs(O, f(X))],

see van der Laan and Robins [73].
The strategy is then to estimate G(·|x), e.g. by the Kaplan-Meier estima-

tor, and do weighted L2Boosting using the weighted squared error loss:

n∑
i=1

∆i
1

Ĝ(T̃i|Xi)
(Ỹi − f(Xi))2,
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where the weights are of the form ∆iĜ(T̃i|Xi)−1. As demonstrated in the
previous sections, we can use various base procedures as long as they al-
low for weighted least squares fitting. Furthermore, the concepts of degrees
of freedom and information criteria are analogous to Sections 5.3 and 5.4.
Details are given in [37].

Illustration: Wisconsin Prognostic Breast Cancer (cont.). Instead of the
binary response variable describing the recurrence status we make use of the
additionally available time information for modeling the time to recurrence,
i.e., all observations with non-recurrence are censored. First, we calculate
IPC weights and center the covariates

R> iw <- IPCweights(Surv(wpbc$time, wpbc$status == "R"))
R> wpbc3 <- wpbc[, colnames(wpbc) != "status"]
R> indep <- names(wpbc3)[names(wpbc3) != "time"]
R> wpbc3[indep] <- lapply(wpbc3[indep],

function(x) x - mean(x, na.rm = TRUE))

and fit a weighted linear model by boosting with componentwise linear
weighted least squares as base procedure:

R> wpbc_surv <- glmboost(log(time) ~ ., data = wpbc3,
control = boost_control(mstop = 500), weights = iw)

R> mstop(aic <- AIC(wpbc_surv))

[1] 122

R> wpbc_surv <- wpbc_surv[mstop(aic)]

The following variables have been selected for fitting

R> names(coef(wpbc_surv)[abs(coef(wpbc_surv)) > 0])

[1] "mean_radius" "mean_texture"
[3] "mean_perimeter" "mean_smoothness"
[5] "mean_symmetry" "SE_texture"
[7] "SE_smoothness" "SE_concavepoints"
[9] "SE_symmetry" "worst_concavepoints"

and the fitted values are depicted in Figure 12, showing a reasonable model
fit.

[Fig 12 about here.]

9. Other works. We briefly summarize here some other works which
have not been mentioned in the earlier sections. A very different exposition
than ours is the overview of boosting by Meir and Rätsch [51].
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9.1. Methodology and applications . Boosting methodology has been used
for various other statistical models than what we have discussed in the previ-
ous sections. Models for multivariate responses are studied in [18, 46]; some
multi-class boosting methods are discussed in [30],[79]. Other works deal
with boosting approaches for generalized linear and nonparametric models
[69],[71],[68], for flexible semiparametric mixed models [72] or for nonpara-
metric models with quality constraints [70],[44].

There are numerous applications of boosting methods to real data prob-
lems. We mention here classification of tumor types from gene expressions
([23],[22]), multivariate financial time series ([5], [3],[4]), text classification
[62], document routing [41] or survival analysis [8] (different from the ap-
proach in Section 8).

9.2. Asymptotic theory. The asymptotic analysis of boosting algorithms
include consistency and minimax rate results. The first consistency result
for AdaBoost has been given by Jiang [42]. Later, Zhang and Yu [76] refined
the results for a functional gradient descent with an additional relaxation
scheme, and their theory covers also more general loss functions than the
exponential loss in AdaBoost. For L2Boosting, the first minimax rate result
has been established by Bühlmann and Yu [19]. This has then be generalized
to much more general settings by Yao et al. [75] and Bissantz et al. [9].

In the machine learning community, there has been a substantial focus
on estimation in the convex hull of function classes (cf. [6], [45],[7]). For
example, one may want to estimate a regression or probability function by
using

∞∑
k=1

ŵkĝ
[k](·), ŵk ≥ 0,

∞∑
k=1

ŵk = 1,

where the ĝ[k](·)’s belong to a function class such as stumps or trees with
a fixed number of terminal nodes. The estimator above is a convex com-
bination of individual functions, in contrast to boosting which pursues a
linear combination of individual functions. By scaling, which is necessary
in practice and theory (cf. [45]), one can actually look at this as a linear
combination of functions whose coefficients satisfy

∑
k wk = λ. This then

represents an `1-constraint as in Lasso, a relation which we have already
seen from another perspective in section 5.2.1. Consistency of such convex
combination or `1-regularized“boosting”methods have been given by Lugosi
and Vayatis [45]. Mannor et al. [48] and Blanchard et al. [11] derived results
for rates of convergence of (versions of) convex combination schemes.
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APPENDIX A: APPENDIX SECTION

Derivation of formula (7.1). The negative gradient is

− ∂

∂f
ρ(y, f) = 2(y − p), p =

exp(f)
exp(f) + exp(−f)

.

Next, we linearize p̂[m]: we denote by p̂[m] = (p̂[m](X1), . . . , p̂[m](Xn))> and
analogously for f̂ [m]. Then,

p̂[m] ≈ p̂[m−1] +
∂p

∂f
|f=f̂m−1(f̂ [m] − f̂ [m−1]

= p̂[m−1] + 2W [m−1]νHŜm2(Y − p̂[m−1]),(A.1)

where W [m] = diag(p̂(Xi)(1 − p̂(Xi)); 1 ≤ i ≤ n). Since for the hat matrix,
BmY = p̂[m], we obtain from (A.1)

B1 ≈ ν4W [0]HŜ1 ,

Bm ≈ Bm−1 + ν4W [m−1]HŜm(I − Bm−1) (m ≥ 2),

which shows that (7.1) is approximately true. �

Derivation of formula (7.2). The arguments are analogous as above for the
binomial case. Here, the negative gradient is

− ∂

∂f
ρ(y, f) = y − λ, λ = exp(f).

When linearinzing λ̂[m] = (λ̂[m](X1), . . . , λ̂[m](Xn))> we get, analogously to
(A.1),

λ̂[m] ≈ λ̂[m−1] +
∂λ

∂f
|f=f̂m−1(f̂ [m] − f̂ [m−1]

= λ̂[m−1] + W [m−1]νHŜm2(Y − λ̂[m−1]),

where W [m] = diag(λ̂(Xi)(1 − p̂(Xi)); 1 ≤ i ≤ n). We then complete the
derivation of (7.2) as in the binomial case above. �
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[46] Lutz, R. and Bühlmann, P. (2006). Boosting for high-multivariate responses in
high-dimensional linear regression. Statistica Sinica 16 471–494.

[47] Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictio-
naries. IEEE Transactions on Signal Processing 41 3397–3415.

[48] Mannor, S., Meir, R. and Zhang, T. (2003). Greedy algorithms for classification–
consistency, convergence rates, and adaptivity. Journal of Machine Learning Research
4 713–741.

[49] Mason, L., Baxter, J., Bartlett, P. and Frean, M. (2000). Functional gradi-
ent techniques for combining hypotheses. In Advances in Large Margin Classifiers
(A. A. Smola, P. Bartlett, B. B. Schölkopf and D. Schuurmans, eds.). MIT Press,
Cambridge.

[50] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable
selection with the lasso. The Annals of Statistics 34. In press.
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Fig 1. Losses, as a function of the margin ỹf = (2y− 1)f , for binary classification.
Left panel with monotone loss functions: 0-1 loss, exponential loss, negative log-
likelihood, hinge loss (SVM); right panel with non-monotone loss functions: squared
error (L2) and absolute error (L1) as in (3.5).
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Fig 2. bodyfat data: Out-of-bootstrap squared error for varying number of boosting it-
erations mstop (top). The dashed horizontal line depicts the out-of-bootstrap error of the
linear model for the pre-selected variables hipcirc, kneebreadth and anthro3a fitted via
ordinary least squares. The lower part show the corrected AIC criterion.
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Fig 3. bodyfat data: Corrected AIC as a function of the number of boosting iterations
mstop for fitting an additive model via gamboost.
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Fig 4. bodyfat data: Partial contributions of four covariates in an additive model.
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L2Boosting with different regression trees as base learners.
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Fig 8. bodyfat data: Partial fits for a linear model including fractional polynomials.
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Fig 11. wpbc data: Partial contributions of four selected covariates in an additive logistic
model.
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Fig 12. wpbc data: Fitted values of a weighted linear model taking both time to recurrence
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IPC weight of the corresponding observation, censored observations with IPC weight zero
are not plotted.
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range spaces ρ(y, f) f∗(x) algorithm

y ∈ {0, 1}, f ∈ R exp(−(2y − 1)f) 1
2

log
(

p(x)
1−p(x)

)
AdaBoost

y ∈ {0, 1}, f ∈ R log2(1 + e−2(2y−1)f ) 1
2

log
(

p(x)
1−p(x)

)
LogitBoost / BinomialBoosting

y ∈ R, f ∈ R 1
2
|y − f |2 E[Y |X = x] L2Boosting

Table 1
Various loss functions ρ(y, f), population minimizers f∗(x) and names of corresponding

boosting algorithms; p(x) = P[Y = 1|X = x].
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