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Low-Order Conditional Independence Graphs

for Inferring Genetic Networks∗

Anja Wille and Peter Bühlmann

Abstract

As a powerful tool for analyzing full conditional (in-)dependencies between random
variables, graphical models have become increasingly popular to infer genetic networks
based on gene expression data. However, full (unconstrained) conditional relationships
between random variables can be only estimated accurately if the number of observations
is relatively large in comparison to the number of variables, which is usually not fulfilled
for high-throughput genomic data.

Recently, simplified graphical modeling approaches have been proposed to determine de-
pendencies between gene expression profiles. For sparse graphical models such as genetic
networks, it is assumed that the zero- and first-order conditional independencies still reflect
reasonably well the full conditional independence structure between variables. Moreover,
low-order conditional independencies have the advantage that they can be accurately esti-
mated even when having only a small number of observations. Therefore, using only zero-
and first-order conditional dependencies to infer the complete graphical model can be very
useful.

Here, we analyze the statistical and probabilistic properties of these low-order condi-
tional independence graphs (called 0-1 graphs). We find that for faithful graphical models,
the 0-1 graph contains at least all edges of the full conditional independence graph (concen-
tration graph). For simple structures such as Markov trees, the 0-1 graph even coincides
with the concentration graph. Furthermore, we present some asymptotic results and we
demonstrate in a simulation study that despite their simplicity, 0-1 graphs are gener-
ally good estimators of sparse graphical models. Finally, the biological relevance of some
applications are summarized.
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Introduction

Graphical models (Edwards, 2000; Lauritzen, 1996) form a probabilistic tool
to analyze and visualize conditional dependence between random variables.
Random variables are represented by vertices of a graph and conditional re-
lationships between them are encoded by edges. Based on graph theoretical
concepts and algorithms, the multivariate distribution can be often decom-
posed into simpler distributions which facilitates the detection of direct and
indirect relationships between variables.

Due to this property, graphical models have become increasingly popular
for inferring genetic regulatory networks based on the conditional dependence
structure of gene expression levels (Wang et al., 2003; Friedman et al., 2000;
Hartemink et al., 2001; Toh & Horimoto, 2002). However, when analyzing
genetic regulatory associations from high-throughput biological data such as
gene expression data, the activity of thousands of genes is monitored over
relatively few samples. Since the number of variables (genes) largely exceeds
the number of observations (chip experiments), inference of the dependence
structure is rendered difficult due to computational complexity and inaccurate
estimation of high-order conditional dependencies. With an increasing number
of variables, only a small subset of the super-exponentially growing number
of models can be tested (Wang et al., 2003). More importantly, an inaccurate
estimation of conditional dependencies leads to a high rate of false positive
and false negative edges. An interpretation of the graph within the Markov
property framework (Edwards, 2000; Lauritzen, 1996) is then rather difficult
(Husmeier, 2003; Waddell & Kishino, 2000).

These problems may be circumvented using a simpler approach with bet-
ter estimation properties to characterize the dependence structure between
random variables. The simplest method would be to model the marginal de-
pendence structure in a so called covariance graph (Cox & Wermuth, 1993,
1996). The covariance structure of random variables can be accurately esti-
mated and easily interpreted even with a large number of variables and a small
sample size. However, the covariance graph contains only limited information
since the effect of other variables on the relationship between two variables is
ignored.

As a simple yet powerful approach to balance between the independence
and covariance graph, zero- and first-order conditional independence graphs
have recently gained attention to model genetic networks (Wille et al., 2004;
Magwene & Kim, 2004; de la Fuente et al., 2004). Instead of conditioning
on all variables at a time, only zero- and first-order conditional dependence
relationships are combined for inference on the complete graph. This allows to

1Wille and Bühlmann: Low-Order Conditional Independence Graphs

Produced by The Berkeley Electronic Press, 2005



study dependence patterns in a more complex and exhaustive way than with
only pairwise correlation-based relationships while maintaining high accuracy
even for few observations. We here use the notation 0-1 graphs from de Campos
& Huete (2000).

In the three aforementioned studies, it has been shown that 0-1 graphs can
be quite powerful to discover genetic associations. However, the probability
and estimation properties of 0-1 graphs as an alternative to full conditional
independence graphs (concentration graphs) have not been studied so far.
Here, we demonstrate the usefulness of 0-1 graphs to discover conditional
dependence patterns in settings with many variables and few observations.
Following the recent studies, we focus on concentration graphs with continuous
data, the so called graphical Gaussian models. In the next sections, we first
review graphical Gaussian models, covariance graphs and 0-1 graphs before we
analyze the estimation properties of 0-1 graphs in comparison with graphical
Gaussian models. As our main interest is to apply our approach in gene
expression profiling, we study simulated networks with genetic and metabolic
topologies, and discuss the biological relevance of the examples presented in
Wille et al. (2004) and Magwene & Kim (2004).

Graphical Gaussian models

Consider p random variables X1, . . . , Xp which we sometimes denote by the
random vector X = (X1, . . . , Xp). Full conditional dependence between two
variables Xi and Xj refers to the conditional dependence between Xi and Xj

given all other variables Xk, k ∈ {1, . . . , p} \ {i, j}. Conditional independence
between Xi and Xj denoted by Xi ⊥⊥ Xj | X \ {Xi, Xj} states that there is
no direct relationship between Xi and Xj.

X2 ⊥⊥ X3 | (X1, X4)

X2 ⊥⊥ X4 | (X1, X3)

X3 ⊥⊥ X4 | (X1, X2)

X3

X1

X4

X2

Figure 1: Conditional independence model and associated graph

In graphical modeling, the dependence pattern between variables is associ-
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ated with a graph G in which vertices encode the random variables and edges
encode conditional dependence between variables. In a concentration graph,
two vertices i and j are adjacent if and only if the corresponding variables Xi

and Xj are conditionally dependent given all remaining variables. Figure 1
shows an example of the dependence patterns between variables X1, . . . , X4

and the corresponding concentration graph. All edges in the graph are undi-
rected.

A set of vertices K is said to separate i and j (i, j /∈ K) in G if every path
between i to j passes through a vertex in K. For random variables X that
follow a multivariate normal distribution, we now have the following definitions
(Lauritzen, 1996):

Definition 1 (Markov property)
A multivariate normal distribution on X follows the (global) Markov property
with respect to G if for all vertices i and j and sets of vertices K (i, j /∈ K)
that separate i and j it holds that Xi ⊥⊥ Xj|{Xk; k ∈ K}.

Definition 2 (Faithfulness)
A multivariate normal distribution on X is faithful to G if for all vertices i
and j and sets of vertices K (i, j /∈ K) with Xi ⊥⊥ Xj|{Xk; k ∈ K} it holds
that K separates i and j.

For multivariate normal random variables X with mean IE(X) = µ and
covariance matrix Cov(X) = Σ, i.e.

X ∼ N (µ, Σ),

we now give the probabilistic definitions for graphical modeling based on the
concentration graph and the covariance graph.

In the concentration graph, an edge between vertex i and j is drawn if
and only if Xi and Xj are conditionally dependent given all other variables
{Xk; k ∈ {1, . . . , p} \ {i, j}}. Due to the Gaussian assumption, this means
that the vertices i and j (i 6= j) are adjacent in G if and only if the partial
correlation coefficients

ωij 6= 0, ωij =
−Σ−1

ij√
Σ−1

ii Σ−1
jj

(1)

where Σ−1
ij are the elements of the inverse covariance matrix (precision or con-

centration matrix). A family of normal distributions represented by a graph
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G is also called a graphical Gaussian model. Graphical Gaussian models fol-
low the Markov property (Lauritzen, 1996) and almost all graphical Gaussian
models represented by a graph G are faithful.

To learn the conditional independence structure of the graph, it is necessary
to determine which elements of the precision matrix Σ−1 are 0. Commonly,
this is carried out jointly for all edges in a likelihood approach, where tests for
all 2p(p−1)/2 possible graphical models are conducted to find the best model for
the data. For a large number of variables, however, this is hardly feasible so
that non-exhaustive search algorithms such as backward and forward selection
procedures are used to learn the model (Edwards, 2000). These two selection
techniques are the standard modeling procedures although more advanced data
adaptive strategies may be applied as well to search through the graph space.

Alternatively, hypothesis testing-based model selection can be pursued in
which each edge is tested separately for inclusion (p(p−1)

2
hypotheses total). For

example, Drton & Perlman (2004) describe an approach where simultaneous

conservative confidence intervals are computed for all p(p−1)
2

partial correlation
coefficients. An edge is included in the model if the corresponding confidence
interval does not comprise 0.

In the likelihood-based search, it is necessary to invert the covariance ma-
trix in order to compute the partial correlation coefficients. For the hypothesis-
based model selection, confidence intervals increase with larger p and smaller
sample size n (Drton & Perlman, 2004) leading to a higher error rate for incor-
rect edge exclusion. Therefore, both model selection strategies require relative
large sample sizes n for a precise estimation of the concentration graph (Lau-
ritzen, 1996, page 128).

For certain applications like genomics, however, such a sample size is typi-
cally not available. Concentration graphs learned from such data will then be
rather unreliable with a high false positive and high false negative rate. We
will show that the much simpler concepts such as the covariance graph and
the 0-1 conditional independence graph can be estimated with higher accu-
racy. However, among the latter two, only the 0-1 graph can capture the more
complex conditional independence structure.

In the covariance graph, an edge between vertex i and j (i 6= j) is drawn
if and only if the correlation coefficient

ρij 6= 0, ρij =
Σij√
ΣiiΣjj

. (2)

The covariance graph as a representation of the marginal dependence struc-
ture between variables is simple to interpret and has the advantage that it can
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be accurately estimated from finite-sample data even if p is very large in com-
parison to sample size n, see Proposition 4. However, this graph is often not
sufficient to capture more complex conditional dependence patterns.

Zero- and first-order conditional independence

graphs

Zero- and first-order conditional independence graphs combine statistical fea-
tures from the covariance and the concentration graph. In this respect, they
can be viewed as striking a balance between the covariance and the concen-
tration graph.

To explore some dependence structure between two variables Xi and Xj,
we do not jointly condition on all remaining variables at a time. Instead, we
consider separately all pairwise partial correlations

ωij|k =
ρij − ρikρjk√

(1− ρ2
ik)(1− ρ2

jk)

of Xi and Xj given one of the remaining variable Xk. These partial correla-
tion coefficients are then combined to draw conclusions on some aspect of the
dependence between Xi and Xj.

Definition 3 (0-1 conditional independence graph)
Draw an edge between vertex i and j (i 6= j) if and only if

ρij 6= 0 and ωij|k 6= 0 for all k ∈ {1, . . . , p} \ {i, j}.

Let Fij = ρij∪{ωij|k; k ∈ {1, . . . , p}\{i, j}} be the set of the correlation and
partial correlation coefficients for Xi and Xj. As parameter φij for an edge
between Xi and Xj, we can use the element of Fij with minimum absolute
value. We assign an edge if and only if

φij 6= 0, φij = arg min
f∈Fij

(|f |) (3)

In general, 0-1 conditional independence graphs are not the same as the
concentration graphs. Still, these graphs reflect some measure of conditional
dependence. In fact, we can show that for sparse concentration graphs, they
can capture the full conditional independence structure well and sometimes
even exactly, see Proposition 1 and 2. On the other hand, they are still reason-
ably simple to interpret. An edge between two variables Xi and Xj represents
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X2 ⊥⊥ X3 | (X1, X4)

X1 ⊥⊥ X4 | (X2, X3)

X1

X4

X2 X3

Figure 2: A conditional independence model for which the cyclic concentration
graph is contained in the 0-1 graph

a dependence that cannot be explained by any of the other variables Xk. From
a statistical perspective, a 0-1 graph can be accurately estimated from data
even if p is large relative to sample size n, see Proposition 5 and 6.

Some examples and rigorous properties

We are describing here with some simple examples and two propositions in
how far the concentration graph and the 0-1 graph relate to each other.

Example 1: Consider 4 random variables X = (X1, X2, X3, X4) ∼ N(0, Σ)
with

Σ =




1 −1 −1 −1
−1 2 1 1
−1 1 2 1
−1 1 1 2


 and Σ−1 =




4 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


 .

Based on the inverted covariance matrix Σ−1, we obtain a conditional in-
dependence model as shown in Figure 1. In such a setting, 0-1 graph and
concentration graph are exactly the same whereas the covariance graph is the
full graph.

Example 2: Consider 4 random variables X = (X1, X2, X3, X4) ∼ N(0, Σ)
with

Σ =




4 −7 −5 6
−7 13 9 −11
−5 9 7 −8
6 −11 −8 10


 and Σ−1 =




5 2 1 0
2 2 0 1
1 0 2 1
0 1 1 2


 .
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The concentration graph includes all edges except those between the pairs
(X1, X4) and (X2, X3) as shown in Figure 2. From Σ we see that the covari-
ance graph includes all edges. The 0-1 graph also includes all edges since for
example, X2 and X3 are not conditionally independent on either X1 or X4

alone.

Example 3: Consider 4 random variables X = (X1, X2, X3, X4) ∼ N(0, Σ)
with

Σ =




4 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2


 and Σ−1 =




0.4 0.2 0.2 0.2
0.2 0.6 0.1 0.1
0.2 0.1 0.6 0.1
0.2 0.1 0.1 0.6


 .

Here, the concentration graph includes all edges whereas the 0-1 graph does
not contain the edges (X2,X3), (X2,X4), and (X3,X4).

In general, it is difficult to determine to what extent a 0-1 conditional
independence graph G0−1 represents the structure of the true underlying con-
centration graph G. However, for faithful concentration graphs, we have the
following proposition that the 0-1 conditional independence graph contains all
edges of the concentration graph and some more. All proofs are given in the
Appendix.

Proposition 1 If the distribution on X is Gaussian and faithful to the con-
centration graph G, then every edge in G is also an edge of the 0-1 graph
G0−1.

Furthermore, if Xi ⊥⊥ Xj and all paths between between i and j lead
through a vertex k, we also have Xi ⊥⊥ Xj|Xk and therefore φij = 0. In other
words, we have the following proposition:

Proposition 2 Assume that the distribution on X is Gaussian and let G be
the corresponding concentration graph. Moreover, assume that if i and j are
not adjacent in G then i and j are either in two different connected components
of G or there exists a vertex k that separates i and j in G. Then, every edge
in G0−1 is also an edge in G.

Due to Proposition 1 and 2, the 0-1 graph and the concentration graph
may coincide. In particular, all Gaussian distributions corresponding to a tree
are faithful (Becker et al., 2000) so that one obtains:
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Corollary 1 If the concentration graph of a Gaussian distribution is a forest
of trees (the graph does not contain any cycles) then the 0-1 graph and the
concentration graph coincide.

0-1 and concentration graphs do also coincide in more complicated sce-
narios, for example, if the distribution is Gaussian and faithful and if the
corresponding concentration graph consists of sets of cliques that (pairwise)
share at most one common vertex (Figure 3).

Figure 3: A conditional independence model for which concentration graph and 0-1
graph coincide.

Biological networks such as genetic regulatory networks are sparse. From
Propositions 1 and 2, we expect that sparse concentration graphs have fewer
edges than the 0-1 conditional independence graph. The number of chordless
cycles will be an indicator for the difference between the number of edges in
the 0-1 graph and the number of edges in the concentration graph. The larger
the number of cycles, the larger the difference in the number of edges.

As distributions are not always faithful (see Example 3), some concentra-
tion graphs may also contain more edges than the corresponding 0-1 graph.
However, in our simulations for biological networks, this case has only rarely
occurred.

Estimation from data

In this section we devise an estimation algorithm for the 0-1 graph and show
that it can be accurately estimated even if the number of variables p is large
compared to the number of observations n.

In a 0-1 graph, to test whether φij 6= 0 (see (3)) for a pair of edges i, j, we
first focus on ωij|k for all k /∈ {i, j} and on ρij. We can test all null-hypotheses

H0(i, j|k) : ωij|k = 0 versus H1(i, j|k) : ωij|k 6= 0.

with the likelihood ratio test under the Gaussian assumption Xi, Xj, Xk ∼
N3(µ, Σ). The null hypotheses are (Σ−1)12 = 0 (which is equivalent to ωij|k =
0) and the alternatives are Σ unconstrained. Under the null-hypotheses and
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the assumption that the data are i.i.d. realizations from a p-dimensional nor-
mal distribution, the log-likelihood ratios are asymptotically χ2-distributed
(Lauritzen, 1996) and every likelihood ratio test of H0(i, j|k) versus H1(i, j|k)
yields a P-value P (i, j|k). Furthermore, the likelihood ratio test of the null
hypothesis for the marginal correlation

H0(i, j| ∅) : ρij = 0 versus H1(i, j| ∅) : ρij 6= 0

yields a P-value P (i, j| ∅).
Recall that an edge in a 0-1 graph between vertex i and j exists if H0(i, j| ∅)

is rejected and H0(i, j| k) is rejected for all vertices k /∈ {i, j}. Thus, there is
evidence for an edge between vertex i and j if

max
k∈{∅,1,2,...,p}\{i,j}

P (i, j| k) < α,

where α is the significance level. For deciding about a single edge between
vertices i, j, it is not necessary to correct for the p− 1 multiple testing over all
conditioning vertices k.

Proposition 3 For some fixed pair (i, j), consider the single hypothesis,

H0(i, j): at least one H0(i, j| k∗) is true for some k∗ ∈ {∅, 1, 2, . . . , p} \ {i, j}.

Assume that for all k ∈ {∅, 1, 2, . . . , p} \ {i, j} the individual test satisfies

IPH̃0(i,j|k) [H0(i, j| k) rejected ] ≤ α,

where H̃0(i, j|k) = {H0(i, j|k) true }∩{H0(i, j|k′) true or false and compatible
with H0(i, j|k) true for all k′ 6= k}. Then, the type-I error

IPH0(i,j) [H0(i, j| k) are rejected for all k ∈ {∅, 1, 2, . . . , p} \ {i, j}] ≤ α.

Note that the log-likelihood ratio test described above satisfies asymptoti-
cally the assumption of Proposition 3. It will be necessary though to correct
over the p(p−1)/2 multiple tests over all pairs of vertices (i, j). The estimation
algorithm is as follows.
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Estimation algorithm

1. For all i, j ∈ {1, . . . , p}, i 6= j and k ∈ {1, 2, . . . , p} \ {i, j}, compute
P-values P (i, j|k) from the log-likelihood ratio test with respect to the
model Xi, Xj, Xk ∼ N (0, Σ) with null hypothesis H0(i, j|k): Σ−1

ij = 0

and alternative H1(i, j|k): Σ−1
ij 6= 0. Also, compute P (i, j|∅) from the

log-likelihood ratio test with null hypothesis H0(i, j|∅): Σij = 0 and
alternative H1(i, j|∅): Σij 6= 0. Note the symmetry P (i, j|k) = P (j, i|k).

2. For all pairs (i, j) = (j, i) compute the maximum P-values (note the
correspondence to Proposition 3)

Pmax(i, j) = max
k∈{∅,1,2,...,p}\{i,j}

P (i, j|k).

3. Correct the maximum P-values Pmax(i, j) over the p(p − 1)/2 multiple
tests for all pairs of vertices. For example, use the Benjamini-Hochberg
correction (Benjamini & Hochberg, 1995) for controlling the false discov-
ery rate. Alternatively, the family-wise error rate could be controlled.
Denote the corrected maximal P-values by

Pmax,corr(i, j).

4. Draw an edge between vertex i and j if and only if

Pmax,corr(i, j) < α,

for some pre-specified significance level such as α = 0.05.

The corrected maximum P-values Pmax,corr(i, j) can be used as a measure
of significance for an edge between nodes i and j. The maximum P-value
Pmax(i, j) may often be an over-conservative estimate of the type I error for
edge i, j. It should be noted, however, that we test the null hypothesis that at
least one H0(i, j|k) is true versus the alternative that none H0(i, j|k) is true.
Therefore, less conservative approaches (Holm, 1979; Simes, 1986) are not
applicable. For a fixed pair of nodes, Proposition 2 and 3 imply the following.

Corollary 2 Let G be the concentration graph representing a Gaussian dis-
tribution X. For some fixed pair of nodes (i, j), assume that the conditions
of Propositions 2 (about the separateness of i and j) and Proposition 3 hold.
Then,

IP[an edge between nodes i and j is estimated in the 0-1 graph

but there is no edge between i and j in G] ≤ α.
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It is worth pointing out that our estimation for a 0-1 graph is done in an
exhaustive manner where each edge is tested separately for inclusion in the
graph. The number of p(p−1)

2
tests that have to be conducted is feasible even

for a large number of vertices p. Our approach is in line with the hypothe-
sis testing-based model selection for concentration graphs (Drton & Perlman,
2004) and is in contrast to searching the huge graph space of 2p(p−1)/2 models
with non-exhaustive computational methods such as random search methods,
greedy stepwise algorithms, or stochastic simulation in the Bayesian framework
(Madigan & Raftery, 1994; Giudici & Green, 1999; Dobra et al., 2004).

Asymptotic consistency for large number of variables

We present here some theory which reflects at least from an asymptotic point
of view that 0-1 graphs can be accurately estimated even if the number p of
vertices is large relative to sample size.

Denote the data by X1, . . . ,Xn (Xi ∈ Rp) which are assumed to be i.i.d.
random vectors. The estimators for the mean µ = IE[X], the covariance ma-
trix Σ = Cov(X), the correlation coefficients ρij and the partial correlation
coefficients ωij|k are as follows:

µ̂(n) = n−1

n∑
i=1

Xi,

Σ̂(n) = n−1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T

ρ̂(n)ij =
Σ̂(n)ij√

Σ̂(n)iiΣ̂(n)jj

ω̂(n)ij|k =
ρ̂ij − ρ̂ikρ̂jk√

(1− ρ̂2
ik)(1− ρ̂2

jk)
, 1 ≤ i < j ≤ p, k 6= i, j. (4)

We are giving below some uniform consistency results for these estimators
when the dimensionality p is large relative to sample size. The set-up is as
follows. We assume that the data are realizations from a triangular array of
random vectors of dimension p = pn where pn is allowed to grow as sample
size n →∞:

X(n),1, . . . ,X(n),n i.i.d. ∼ P(n), (5)

where P(n) denotes some probability distribution in Rpn . We denote by µ(n) =
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IE[X(n)] and by Σ(n) = Cov(X(n)); these moments exist by the following as-
sumption.

(A1) sup
n∈N,1≤j≤pn

IE|(X(n))j|4s < ∞ for some s ≥ 1/2.

Proposition 4 The data are as in (5), satisfying assumption (A1) for some
s ≥ 1/2. Assume that pn = o(ns/2) (n →∞). Then,

max
1≤j≤pn

|µ̂(n)j − µ(n)j| = oP (n−3s/2) (n →∞),

max
1≤i<j≤pn

|Σ̂(n)ij − Σ(n)ij| = oP (1) (n →∞).

In case where X ∼ Npn(µ(n), Σ(n)), we could allow of a faster growth rate
pn satisfying log(pn)/n → 0.

For uniform consistency of partial correlations, we make an additional as-
sumption:

(A2) inf
n∈N,1≤j≤pn

Σ(n)jj > 0, and sup
n∈N,1≤i<j≤pn

|ρ(n)ij| < 1.

The first assumption in (A2) means that none of the variables becomes degen-
erate as n →∞, i.e. having a variance tending to zero. The second assumption
says that all the variables are linearly identifiable, i.e. none of the variables is
an exact linear function of another one.

Proposition 5 The data are as in (5), satisfying assumption (A1) for some
s ≥ 1/2 and (A2). Assume that pn = o(ns/2) (n →∞). Then,

max
1≤i<j≤pn

|ρ̂(n)ij − ρ(n)ij| = oP (1) (n →∞),

max
1≤i<j≤pn;1≤k≤pn,k 6=i,j

|ω̂(n)ij|k − ω(n)ij|k| = oP (1) (n →∞).

Also here, in case where X ∼ Npn(µ(n), Σ(n)), we could allow of a pn

satisfying log(pn)/n → 0. Proposition 5 describes a uniform convergence
result for the φij parameters in (3): for a small number δ > 0 and with
high probability, all estimated marginal and partial correlations are within
δ-distance from the true partial correlations if the sample size is sufficiently
large. This is much stronger than a pointwise result. Since a 0-1 graph involves
all marginal and partial correlations, see Definition 3, our uniform consistency
result, saying that we can simultaneously estimate all of them reasonably well,
implies that we can estimate a 0-1 graph reasonably well even if the number of
vertices p is much larger than sample size n. In fact, consistent estimation of
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high-dimensional 0-1 graphs is possible if true non-zero partial and marginal
correlations are bounded away from zero.

The 0-1 graph can be consistently estimated under the following additional
assumption:

(A3) inf
1≤i<j≤pn,n∈N{|ρ(n)ij|; ρ(n)ij 6= 0} > C1 > 0, and

inf
1≤i<j≤pn,1≤k≤pn,k 6=i,j,n∈N{|ω(n)ij|k|; ω(n)ij|k 6= 0} > C2 > 0.

Proposition 6 Consider the following 0-1 graph estimate Ĝ0−1(n,K) which
is a theoretical simplified version of our algorithm described above:

draw an edge between nodes i and j if and only if φ̂(n)ij > K,

where φ̂(n)ij is the estimate of φij in (3). Assume the conditions from Proposi-
tion 5 and assumption (A3). Then, the 0-1 graph can be estimated consistently,
i.e. for some suitable K,

IP[Ĝ0−1(n,K) = true 0-1 graph] → 1 (n →∞).

The estimation method in the proof of Proposition 6 is non-constructive
since we do not know the constants C1 and C2 in (A3). Nevertheless, Propo-
sition 6 indicates the potential of estimating the correct underlying 0-1 graph
with probability tending to one as sample size increases.

It should be stated clearly that the bound in Proposition 5 is generally
worse, although still oP (1), than in Proposition 4 for the covariances. Clearly,
the result from Proposition 5 could be generalized to partial correlations
ω(Xi, Xj|{Xk1 , . . . , Xkm}) (k1, . . . km 6= i, j) for a fixed m with respect to sam-
ple size n (although a uniform bound for such partial correlations is expected
to become worse as the the value of m increases). If m = mn would grow with
sample size, we would have to further restrict the growth of the dimensionality
pn.

The extreme case is the estimate of Σ(n)−1 when inverting the estimate
Σ̂(n) from (4). This can only be done if pn < n and pointwise consistency
|(Σ̂(n))−1

ij −Σ(n)−1
ij | = oP (1) (1 ≤ i < j ≤ pn) only holds if pn = o(n) (n →∞)

(Lauritzen, 1996). Thus, the unconstrained graphical Gaussian model can only
be estimated if the dimensionality is “small” relative to the sample size. This
is in sharp contrast to 0-1 graphs, where pn is allowed to grow much faster than
n, as described in Proposition 5. For example, by neglecting the constants in
Proposition 5, the following dimensionalities are allowed for n = 100 and 4s
existing moments for the components of X:
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n = 100 4s = 8 4s = 12 4s = 16 4s = 20

p = o(ns/2) o(100) o(1′000) o(10′000) o(100′000)
.

In a graph with p vertices, the maximum number of edges is p(p−1)
2

. If

the number of actually present edges is much smaller than p(p−1)
2

, a graph is
generally referred to as being sparse. For example, it can be assumed that the
number of edges grows only linearly (or even less) in the number of vertices p.
Alternatively, the number of neighbors per vertex could be restricted (Dobra
et al., 2004; Meinshausen & Bühlmann, 2004).

Under such sparsity assumptions for the true concentration graph, regu-
larization methods could be used to cope with large p in the estimation of the
concentration graph (Dobra et al., 2004; Meinshausen & Bühlmann, 2004). In
comparison, consistent 0-1 graph estimation is not subject to such sparsity
assumptions.

Numerical results for simulated data

In the previous section, we have shown that the 0-1 graph can be consistently
estimated. Furthermore, we have shown that for sparse concentration graphs
that are trees or fulfill the conditions of Proposition 2, the 0-1 and the con-
centration graph coincide. For faithful concentration graphs, the edges form a
subset of the edges of the corresponding 0-1 graph.

In this section we show in simulations that a focus on simpler aspects of con-
ditional independence in combination with good estimation properties make
0-1 graphs a good estimator for full conditional independence relationships in
sparse graphs.

For metabolic, genetic regulatory or protein interaction networks, it has
been repeatedly suggested that the connectivity of the vertices follows a power
law with exponents γ between 2 and 3 (Jeong et al., 2000; Maslov & Sneppen,
2002). In our simulations of Gaussian graphs with many nodes, we adopt this
network structure by sampling the number of edges for each node indepen-
dently from a power-law distribution p(k) = k−γ

ζ(γ)
with exponent γ = 2.5. The

normalization constant ζ(γ) is the Riemann zeta function. The graphs that we
obtain by this method are very sparse and usually contain fewer edges than
the number of nodes (see Table 1). In order to simulate graphs with more
edges, we also generate graphs with exponent γ = 1.5 and 0.5.

Edges are then randomly assigned to other nodes (with equal probabilities).
This random graph structure is used to define the zeros in the precision matrix:
Σ−1

ij = 0 if there is no edge between i and j. In order to model the non-

14



Xi ⊥⊥ Xj | T
XjXi

T

Figure 4: Conditional independence model and associated graph for Xi, Xj and the
selection variable T .

zero elements of Σ−1 (and the partial correlation coefficients), we introduce a
selection variable Tij for each pair of adjacent vertices i and j. Xi and Xj are
assumed to be marginally independent and to have an effect on the variable Tij

(Figure 4). The corresponding graph, also called the canonical directed acyclic
graph (Richardson & Spirtes, 2002), only comprises directed edges i → Tij and
j → Tij. Selection for specific values for Tij corresponds to conditioning on
the selection variables Tij yielding a graph with the desired graph structure.

If we only consider the three variables Xi, Xj and Tij, we could model the
effect of Xi and Xj on Tij with a covariance matrix

ΣXi,Xj ,Tij
=




1 0 βij

0 1 βji

βij βji 1 + β2
ij + β2

ji


 .

Magnitude and sign of the coefficients βij and βji determine how strong the
effect of Xi and Xj is on Tij respectively. After conditioning on Tij, we obtain
(considering Tij unobserved now)

Σ−1
Xi,Xj

=

(
1 + β2

ij βijβji

βijβji 1 + β2
ji

)
.

We can therefore write

Σ−1
Xi,Xj

= Id + BBt (6)

with

B =

(
βij

βji

)
.

If we model partial correlation coefficients for all variables X1, . . . , Xp, we use
the complete canonical directed acyclic graph (DAG) and extend the scheme
described in (6). Let {ekl} be the edges in the graph where the indices k < l

15Wille and Bühlmann: Low-Order Conditional Independence Graphs

Produced by The Berkeley Electronic Press, 2005



refer to the indices of the variables Xk and Xl that are connected by ekl. Let
further e be the total number of edges and B a p× e matrix with elements

biekl
=





βil if i = k

βik if i = l

0 otherwise.

Then we find

(BBt)ij =
∑
ekl

biekl
bjekl

=





∑
eik

β2
ik if i = j

βijβji if i 6= j and there is an edge between i and j

0 if i 6= j and there is no edge between i and j

and the partial correlation coefficient for two conditionally dependent variables
Xi and Xj can be modeled as (Equations (1) and (6))

ωij =
−βijβji√

1 +
∑

eik
β2

ik

√
1 +

∑
ejk

β2
jk

.

The random graph structure and B define a normal distribution N(0, Σ). The
magnitude and sign of the coefficients βij determine the magnitude and sign
of the partial correlation coefficients. In our simulations, we sampled the
coefficients βij from three different uniform distributions U(−βmax, βmax) with
βmax = 1, 5, 100.

The use of canonical DAGs to generate partial correlation coefficient for
a pre-specified concentration graph has the advantage that it is very flexible
while keeping the sampled precision matrix always positive definite. The as-
sumption that a dependence is due to a unobserved random variable generates
a particular parametrization. Not all multivariate normal distributions repre-
sented by a graph, can be parameterized by a canonical DAG (Richardson &
Spirtes, 2002). Still, this parametrization can display various scenarios that
seem relevant in biological studies. From the various factors that play a role in
genetic regulation, many will be unknown. Our parametrization scheme suits
particularly well to account for these factors as well as the sparse structure of
the graphs.

Our parametrization can also nearly represent direct relationships between
nodes (directed edges). If for example the latent random variable has a strong

16



number number of edges in the
of γ independence 0-1 covariance

variables graph graph graph

2.5 3.53(0.70) 3.56(0.81) 6.52(2.98)
p=5 1.5 4.14(1.04) 4.38(1.57) 7.84(2.89)

0.5 5.59(1.19) 6.47(2.07) 9.82(1.03)

2.5 7.46(1.51) 7.76(2.31) 20.68(14.38)
p=10 1.5 10.87(2.67) 15.02(7.70) 38.46(11.42)

0.5 18.86(3.82) 33.02(7.45) 45.00(0.00)

2.5 15.48(2.91) 16.87(8.08) 56.68(46.09)
p=20 1.5 24.42(4.32) 51.27(23.96) 166.45(43.82)

0.5 44.97(6.70) 130.00(26.17) 190.00(0.00)

2.5 30.45(3.80) 31.08(7.40) 115.66(91.62)
p=40 1.5 49.70(6.79) 173.03(85.08) 680.35(162.73)

0.5 88.34(8.74) 498.33(82.76) 780.00(0.00)

Table 1: Mean number of edges (and standard deviation) for the three different
graphical models in Section as a function of γ and p.

effect on Xi, i.e. βij is large, the latent random variable can be merged with
Xi and βji measures the direct effect of Xi on Xj. The edge then represents a
directed edge.

As an alternative, a parametrization using hyper inverse Wishart distrib-
ution could have been applied to simulate concentration matrices. However,
this approach is most useful in the context of conjugate Bayesian inference,
since a prior concentration matrix would have to be specified. Also, it is rather
tedious to sample large sparse non-decomposable models (Roverato, 2002).

With our parametrization scheme, we generated 100 graphs and covariance
matrices each for graphs with p =5, 10, 20, and 40 vertices and connectivity
parameter γ =2.5, 1.5 and 0.5. For each p and each γ, we compared the
structure of the concentration graph, the covariance graph and the 0-1 graph.
In Table 1, the mean and standard deviations for the number of edges per graph
is shown. For decreasing γ, the number of edges increases in the concentration
graphs. The edges of the concentration graph almost always formed a subset
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number RMSE
of γ covariance graph 0-1 graph

variables ωij = 0 ωij 6= 0 ωij = 0 ωij 6= 0

2.5 0.221 0.144 0.002 0.029
p=5 1.5 0.268 0.189 0.009 0.04

0.5 0.251 0.178 0.02 0.056

2.5 0.161 0.16 0.004 0.046
p=10 1.5 0.168 0.151 0.01 0.046

0.5 0.118 0.1 0.018 0.042

2.5 0.105 0.155 0.001 0.044
p=20 1.5 0.111 0.136 0.007 0.05

0.5 0.065 0.066 0.011 0.031

2.5 0.075 0.162 0.001 0.045
p=40 1.5 0.076 0.127 0.005 0.051

0.5 0.046 0.058 0.006 0.028

Table 2: RMSE averaged over all i < j with ωij = 0 and averaged over all i < j
with ωij 6= 0 between correlation coefficients ρij and partial correlation coefficient ωij

(right columns) and RMSE between 0-1 graph coefficients φij and partial correlation
coefficients ωij (left columns). βmax = 5.

of the 0-1 graph. For graphs with low connectivity (γ = 2.5), the 0-1 graph
contained only few additional edges indicating that mostly trees were sampled.
However, for γ = 1.5 and γ = 0.5, the 0-1 graphs were considerably larger
than the corresponding concentration graphs. Although being sparse, the
concentration graphs must therefore contain a considerable number of cycles,
see Proposition 2.

We also monitored the difference between the correlation and partial corre-
lation coefficients (ρij − ωij) and the difference between 0-1 graph and partial
correlation coefficients (φij − ωij) for unconnected (ωij = 0) and connected
(ωij 6= 0) vertices i and j (see Table 2 for the root mean squared errors (RMSE)
averaged over all i < j). Most edges in the 0-1 graph that are not part of the
concentration graph have coefficients in the vicinity of 0. In fact, for ωij = 0
the 5%- and 95%-quantile of the distribution of 0-1 graph coefficients were
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number of number of
variables p observations n

5 10,20,30,50,100,500,1000,5000
10 20,30,50,100,500,1000,5000
20 30,50,100,500,1000,5000
40 50,100,500,1000,5000

Table 3: Number of observations n used to sample data from the original graphs
with p vertices

located within the interval [-0.05, 0.05] for all simulation settings. For ωij 6= 0,
the 5%-95%-quantile ranges were always larger. This indicates that the 0-
1 graph can capture the conditional independence structure quite well, and
much better than the covariance graph.

Estimation results with sampled data

From each of the simulated models, we sampled i.i.d. data from N (0, Σ) where
Σ is the covariance matrix of the corresponding model parameters as described
by equation (6). Depending on the size of the graph, we sampled data with
few and many observations (see Table 3). The effect of the sample sizes on
the estimates of the partial correlation coefficients ω̂ij, 0-1 graph coefficients

φ̂ij and correlation coefficients ρ̂ij can be seen in Figures 5-8.
Figure 5 shows the root mean squared error (RMSE) between true coef-

ficients and the corresponding estimates of the different graphical modeling
approaches. Results are shown for γ = 1.5 and βmax = 5. It can be seen that
for small n, the RMSE of the coefficients ωij|k does not differ much from the
RMSE of the correlation coefficients ρij and that both coefficients can be more
accurately estimated than the full partial correlation coefficients ωij. As the
number of observations n increases, the RMSEs for all coefficients decrease to
0. In all simulation settings, we found the same underlying pattern as in Figure
5. For βmax = 1, however, the RMSE of the coefficients differed only slightly,
even when n was small. Interestingly, estimates of the 0-1 graph coefficients
φij (see (3)) are even better than the estimates of the coefficients ρij and ωij|k.
This indicates that the minimum of ρij and ωij|k for k ∈ {1, 2, . . . , p} \ {i, j}
can be much more reliably estimated than each of the coefficients ρij and ωij|k
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Figure 5: Root mean squared error (RMSE) averaged over all i < j between the
sampled and true partial correlation coefficients ω̂ij and ωij (◦), sampled and true
correlation coefficients ρ̂ij and ρij (4), ω̂ij|k and ωij|k (¦) and sampled and true 0-1
graph coefficients φ̂ij and φij (+) for different network sizes p and different number
of observations n.

for k ∈ {1, 2, . . . , p} \ {i, j} separately. Proposition 5 can therefore be viewed
as providing a conservative upper bound for the estimation accuracy of the
0-1 graph coefficients.

We also monitored how well the estimates of the full partial correlation
coefficients ω̂ij, the 0-1 graph coefficients φ̂ij and the correlation coefficients
ρ̂ij represent the true full partial correlation coefficients ωij of the original
concentration graph. In Figure 6, the RSME between the sampled partial
correlation coefficients, the sampled 0-1 graph coefficients, the sampled corre-
lation coefficients and the true partial correlation coefficients are shown. For
small to moderate n, the concentration graph is better represented by the esti-
mated 0-1 graph coefficients than the estimated partial correlation coefficients.
Therefore, although being a rather simple estimator of complex dependence
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Figure 6: Root mean squared error (RMSE) averaged over all i < j between sampled
partial correlation coefficients ω̂ij and true partial correlation coefficients ωij (◦),
sampled correlation coefficients ρ̂ij and ωij (4) and 0-1 graph coefficients φ̂ij and
ωij (+) for different network sizes p and different number of observations n.

patterns, 0-1 graph coefficients can outperform partial correlation coefficients
in detecting conditional dependence/independence.

Figure 7 shows the cumulative distribution functions (CDF) of the different
coefficients for pairs of vertices with and without edges. Again, one can clearly
see that a small to moderate sample size (n = 50) leads to rather unreliable
estimates ω̂ij for the concentration graph (reflected by a gradual slope of the

CDF of ω̂ij − ωij at 0) whereas estimates of the 0-1 graph coefficients φ̂ij are

much more stable (steeper slope of the CDF of φ̂ij − ωij).
In graphs with many nodes, the main purpose of a study may not be to

find all connections between nodes but to find some true connections, hope-
fully the most important ones. In such a procedure, one would only consider
gene pairs whose absolute partial correlation coefficient or 0-1 graph coefficient
would be above a certain threshold t. By counting the number of true and false
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Figure 7: Cumulative distribution function (CDF) of the difference between sampled
partial correlation coefficient ω̂ij and true partial correlation coefficients ωij (black
line), between sampled correlation coefficients ρ̂ij and ωij (dashed pale grey line)
and sampled 0-1 graph coefficients φ̂ij and ωij (dotted grey line) for p = 40 and
n = 50 (upper panel) or n = 5000 (lower panel) observations.

positives, true and false negatives for all values t ∈ [0, 1], one obtains the so
called ROC curves by plotting the sensitivity (true positive rate) against the
complementary specificity (false positive rate) for each t. The upper panel of
Figure 8 displays the average ROC curves for the concentration graph, the co-
variance graph and the 0-1 graph for p=40 and βmax = 100. We also included
the ROC curves for learning the concentration graph based on backward selec-
tion within the maximum likelihood framework, as implemented in the MIM
package (2003). For small complementary specificities, the ROC curve of the
0-1 graph has a steeper slope than the other ROC curves suggesting the best
performance in detecting true positive edges of the concentration graph.

The 0-1 graph outperforms all the other methods (including the back-
ward selection approach) for a small (n=100) and a large (n=1000) number
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Figure 8: ROC curves (upper panel) and the False Discovery Rate (FDR) as a
function of the number of selected edges (lower panel) for the covariance graph
(dashed pale grey line), the 0-1 graph (dash-dotted grey line), the concentration
graph (black line) and the concentration graph learned under backward selection
(dotted dark grey line). Here, p = 40.

of observation. For n=1000 observations, however, the ROC curves of the 0-
1 graph, the concentration graph and the backward selection approach differ
only marginally. Our findings are further substantiated when we look at the
false discovery rate (FDR) as a function of the selected edges. Again, the FDR
of the 0-1 graph is smaller than the ones of the other methods.

All the simulations were based on 100 graphs. For p = 40 genes, a single
computation of the 0-1 graph could be completed in the order of seconds
whereas the computation of the concentration graph with backward selection
(with MIM) took approximately 15 minutes (on a 2.6GHz Pentium 4 machine).
Simulations that included forward selection was computationally not feasible.
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Application to gene expression microarray data

In this section, we will further discuss and motivate the usefulness of 0-1
graphs for the inference of genetic regulatory networks. We will here focus on
the applications presented in Magwene & Kim (2004) and Wille et al. (2004).

Magwene & Kim (2004) estimated the coexpression network of 5007 yeast
open reading frames (ORFs) based on 87 microarrays. Their inferred network
contained 11450 edges most of which (11416) were included in one single giant
connected component. To further analyze their network, the authors compared
their network with 38 metabolic pathways and also studied the biological rel-
evance of locally distinct subgraphs.

They found that 99% of vertex pairs in the 0-1 network were separated by
a shortest path with more than 2 edges. In order to evaluate the coherence
between metabolic pathways and the estimated 0-1 network, starting from the
set P of genes assigned to one pathway, they searched for connected compo-
nents in which no vertex was more than 2 edges away from at least one other
node in that component. If O denotes the maximum overlap between the genes
of each single component and the pathway genes P , the ratio |O|

|P | was taken
as measure for the coherence between 0-1 network and metabolic network. 19
of the 38 metabolic pathways had coherence values that were significant when
compared to random pathways of the same size.

Another way to validate the biological relevance of a genetic network is to
search for functional enrichment based on Gene Ontology annotation (Gene
Ontology Consortium, 2001) in dense subgraphs of the network. The authors
used an unsupervised graph algorithm to determine subgraphs whose network
topology differs from the neighboring nodes with respect to density. They
could find 32 locally distinct subgraphs 24 of which were enriched for biological
function (Gene Ontology annotation).

Whereas Magwene & Kim (2004) focused on the properties of the 0-1 net-
work comprising the majority of yeast genes, our group (Wille et al., 2004) ap-
plied 0-1 graphs to a smaller group of 40 isoprenoid genes to study in more de-
tail the regulatory network of isoprenoid biosynthesis in Arabidopsis thaliana.
Isoprenoids comprehend the most diverse class of natural products and have
been identified in many different organisms including viruses, bacteria, fungi,
yeasts, plants, and mammals. In plants, isoprenoids play important roles in a
variety of processes such as photosynthesis, respiration, regulation of growth
and development, and in protecting plants against herbivores and pathogens.

In higher plants such as Arabidopsis thaliana, two distinct pathways for the
formation of isoprenoids exist, one in the cytosol (MVA pathway) and the other
in the chloroplast (MEP pathway). Although both pathways operate fairly
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Figure 9: 0-1 graph of the isoprenoid pathways. Left panel: subgraph of the gene
module in the MEP pathway, right panel: subgraph of the gene module in the MVA
pathway.

independently under normal conditions, interaction between them has been
repeatedly reported (Laule et al., 2003; Rodriguez-Concepcion et al., 2004).
In order to gain better insight into the crosstalk between both pathways on the
transcriptional level, gene expression patterns were monitored under various
experimental conditions using 118 microarrays.

Figure 9 shows the network model obtained from the 0-1 graph. Since we
find a module with strongly interconnected genes in each of the two pathways,
we split up the graph into two subgraphs each displaying the subnetwork of
one module and its neighbors.

In the MEP pathway, the genes DXR, MCT, CMK, and MECPS are nearly
fully connected (left panel of Figure 9). From this group of genes, there are
a few edges to genes in the MVA pathway. Similarly, the genes AACT2,
HMGS, HMGR2, MK, MPDC1, FPPS1 and FPPS2 share many edges in the
MVA pathway (right panel of Figure 9). The subgroup AACT2, MK, MPDC1,
FPPS2 is completely interconnected. From these genes, we find edges to IPPI1
and GGPPS12 in the MEP pathway.

In the conventional graphical modeling with backward selection, we could
only identify the gene module in the MEP pathway. The genes in the MVA
pathway did not form a separate regulatory structure, even when more edges
were included in the model. In the 0-1 graph, the detection of the additional
gene module in the MVA pathway is in good agreement with earlier find-
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ings that within a pathway, potentially many consecutive or closely positioned
genes are jointly regulated (Ihmels et al., 2004). Also, a high level of coex-
pression between the genes AACT2, MK, MPDC1, FPPS2 suggests a separate
regulatory module in the MVA pathway.

In addition to that we attached 795 genes from 56 other metabolic pathways
to the inferred network. We found that genes from downstream pathways that
use isoprenoids as substrates attach significantly better to the 0-1 network than
genes from other (unrelated) pathways. This provides an additional biological
validation for the network.

Conclusions

Graphical Gaussian modeling suffers from unreliable estimates of the full par-
tial correlation coefficients if the number of observations is relatively small in
comparison with the number of random variables in the model. In order to
still be able to analyze the conditional dependence structure between variables,
one can focus on zero- and first-order conditional dependencies as a simplified
measure of dependence.

The 0-1 graph coefficients proved to be powerful in two ways. First, we
showed theoretically that the 0-1 graph coefficients have nearly the same good
estimation properties as the more simple correlation coefficients. Second, for
small sample sizes in our simulation framework, the estimated 0-1 graph co-
efficients were on average better estimators of the full partial correlation co-
efficients than the estimated full partial correlation coefficients themselves.
This finding indicates that although full partial correlation coefficients take
the effect of many other variables into account, only few of these variables
have a large effect on the dependence structure. For sparse graphs, model-
ing approaches based on low-order conditional dependencies can therefore be
generally preferable to methods based on full conditional dependencies. Propo-
sition 1 and 2 give some additional theoretical underpinning why the 0-1 graph
works so well.

The 0-1 graph approach carries resemblance to the first two steps in the
SGS and PC algorithm (Spirtes et al., 2000) and the algorithm presented
by de Campos & Huete (2000). These algorithms use low-order conditional
independencies as a first step to infer the concentration graph. In the 0-1
graph, modeling is limited to zero- and first-order independencies only. By this
simplification, we completely avoid to carry out the statistically unreliable and
computationally costly search for conditional independence in large subsets.
We have shown that this can be a good strategy to model sparse graphical
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models with many nodes and only few observations.
By generating the number of edges in a graph according to a power law, we

aimed at simulating network topologies found in biological networks. Other ex-
amples include computer and social interaction networks (Barabasi & Albert,
1999). With this restriction, only a subclass of sparse conditional indepen-
dence models is considered. However, the restriction enabled us to consistently
study the effect of the sample size, the number of vertices, the level of sparsity
and the level of conditional dependencies on the various graphical modeling
approaches.

Appendix

Proof of Proposition 1:
Assume that the edge i, j is not in the 0-1 conditional independence graph
G0−1. Then we either have ρij = 0 or ωij|k = 0 for some k ∈ {1, . . . , p} \ {i, j}.
In the first case, Xi and Xj are marginally independent, i.e. i and j are in
different connectivity components of G, since G is faithful. In the latter case,
Xi ⊥⊥ Xj|Xk, i.e. k separates i and j in G since G is faithful. Therefore, there
is no direct edge between i and j. ¤

Proof of Proposition 2:
Assume that i and j are not adjacent in G. Then we either have
1) i and j are in different connectivity components. Xi and Xj are there-
fore marginally independent, which implies ρij = 0 and that there is no edge
between i and j in G0−1, or
2) There exists some k ∈ {1, . . . , p} \ {i, j} that separates i and j. Due to the
Markov property, we have Xi ⊥⊥ Xj|Xk and therefore ωi,j|k = 0, which further
implies that i and j are not adjacent in G0−1. ¤

Proof of Proposition 3: Consider the hypothesis

H0 = H0(i, j) : at least one H0(i, j|k∗) is true for some k∗.

The probability for a type I error is

IPH0 [H0(i, j|k) rejected for all k] = IPH0 [∩k{H0(i, j|k) rejected}]
≤ min

k
IPH0 [H0(i, j|k) rejected] ≤ IPH0 [H0(i, j|k∗) rejected] ≤ α,

where the last inequality follows from the assumption in Proposition 3. ¤
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Proof of Proposition 4: We follow the notation from Section . Consider

µ̂(n)j = n−1

n∑
i=1

X(n),ij, X(n),ij = (X(n),i)j.

By Markov’s inequality, for γ > 0,

IP[|µ̂(n)j − µ(n)j| > γ] ≤ γ−4sIE|n−1

n∑
i=1

X(n),ij − µ(n)j|4s,

and then by Rosenthal’s inequality (cf Petrov, 1975) and our assumption (A1),

IE|n−1

n∑
i=1

X(n),ij − µ(n)j|4s ≤ Cn−2s,

where C > 0 is a constant independent from j and n. Therefore, for γ > 0,

IP[ max
1≤j≤pn

|µ̂(n)j − µ(n)j| > γ] ≤ pnγ−4sCn−2s = o(n−3s/2),

due to our assumption about pn, which proves the first claim.
For the second assertion, note that

Σ̂(n)ij = n−1

n∑
r=1

(X(n),ri − µ̂(n)i)(X(n),rj − µ̂(n)j)

can be asymptotically replaced by

Σ̃(n)ij = n−1

n∑
r=1

(X(n),ri − µ(n)i)(X(n),rj − µ(n)j),

since by the first assertion of Proposition 4, it can be easily shown that

max
1≤i<j≤pn

|Σ̂(n)ij − Σ̃(n)ij| = oP (1). (7)

Similarly as for the mean, we get for γ > 0,

IP[|Σ̃(n)ij − Σ(n)ij| > γ] ≤ γ−2sIE|n−1

n∑
r=1

Yr(i, j)|2s,

Yr(i, j) = (X(n),ri − µ(n)i)(X(n),rj − µ(n)j)− Σ(n)ij,
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and by Rosenthal’s inequality (cf Petrov, 1975) and assumption (A1),

IE|n−1

n∑
r=1

Yr(i, j)|2s ≤ Cn−s,

where C > 0 is a constant, independent of j. Note that our assumption (A1)
implies that the moments of order 2s of the Yr(i, j) variables are uniformly
bounded. Therefore

IP[ max
1≤i<j≤pn

|Σ̃(n)ij − Σ(n)ij| > γ] ≤ p2
nγ

−2sCn−s = o(1),

by our assumption about pn. This, together with (7) completes the proof for
the second assertion of the Proposition. ¤

Proof of Proposition 5: The first assumption in (A2) and the uniform
convergence from Proposition 4 imply that

max
1≤i<j≤pn

|ρ̂(n)ij − ρ(n)ij| = oP (1) (n →∞). (8)

Furthermore, we can use a Taylor expansion for the partial correlations:

ω̂(n)ij|k − ω(n)ij|k =
x− yz

uv
− x0 − y0z0

u0v0

=
x− x0

u0v0

− yz − y0z0

u0v0

− 1

ũ2ṽ2
(uv − u0v0)(x− yz),

where |ũṽ − u0v0| ≤ |uv − u0v0|, and x = ρ̂(n)ij, y = ρ̂(n)ik, z = ρ̂(n)jk,

u =
√

1− ρ̂(n)2
ik, v =

√
1− ρ̂(n)2

jk and x0, y0, z0, u0, v0 the corresponding true

population quantities. We now get the assertion of Proposition 5 by the uni-
form convergence of the correlations in (8) and by using the second assumption
in (A2) which guarantees that the denominator in 1/(u0v0) is bounded and
that 1

ũ2ṽ2 = oP (1) uniformly with respect to i, j, k. ¤

Proof of Proposition 6: Choose K = 1
2
min(C1, C2). Then, by Proposition

5 and assumption (A3), the assertion follows. ¤
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