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1 Introduction to ESS

The S family (S, Splus and R) and SAS statistical analysis packages provide sophisticated
statistical and graphical routines for manipulating data. Emacs Speaks Statistics (ESS) is
based on the merger of two pre-cursors, S-mode and SAS-mode, which provided support
for the S family and SAS respectively. Later on, Stata-mode was also incorporated.

ESS provides a common, generic, and useful interface, through emacs, to many statistical
packages. It currently supports the S family, SAS, BUGS/JAGS, and Stata with the level
of support roughly in that order.

A bit of notation before we begin. emacs refers to both GNU Emacs by the Free
Software Foundation, as well as XEmacs by the XEmacs Project. The emacs major mode
ESS[language], where language can take values such as S, SAS, or XLS. The inferior
process interface (the connection between emacs and the running process) referred to as
inferior ESS (iESS), is denoted in the modeline by ESS[dialect], where dialect can take
values such as S3, S4, S+3, S+4, S+5, S+6, S+7, R, XLS, VST, SAS.

Currently, the documentation contains many references to ‘S’ where actually any sup-
ported (statistics) language is meant, i.e., ‘S’ could also mean ‘R’ or ‘SAS’.

For exclusively interactive users of S, ESS provides a number of features to make life
easier. There is an easy to use command history mechanism, including a quick prefix-search
history. To reduce typing, command-line completion is provided for all S objects and “hot
keys” are provided for common S function calls. Help files are easily accessible, and a paging
mechanism is provided to view them. Finally, an incidental (but very useful) side-effect of
ESS is that a transcript of your session is kept for later saving or editing.

No special knowledge of Emacs is necessary when using S interactively under ESS.

For those that use S in the typical edit–test–revise cycle when programming S functions,
ESS provides for editing of S functions in Emacs edit buffers. Unlike the typical use of S
where the editor is restarted every time an object is edited, ESS uses the current Emacs
session for editing. In practical terms, this means that you can edit more than one function
at once, and that the ESS process is still available for use while editing. Error checking is
performed on functions loaded back into S, and a mechanism to jump directly to the error
is provided. ESS also provides for maintaining text versions of your S functions in specified
source directories.

1.1 Why should I use ESS?

Statistical packages are powerful software systems for manipulating and analyzing data, but
their user interfaces often leave something something to be desired: they offer weak editor
functionality and they differ among themselves so markedly that you have to re-learn how
to do those things for each package. ESS is a package which is designed to make editing and
interacting with statistical packages more uniform, user-friendly and give you the power of
emacs as well.

1.1.1 Features Overview

• Languages Supported:

• S family (R and S+ AKA S-PLUS)
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• SAS

• OpenBUGS/JAGS

• Stata

• Julia

• Editing source code (S family, SAS, OpenBUGS/JAGS, Stata, Julia)

• Syntactic indentation and highlighting of source code

• Partial evaluation of code

• Loading and error-checking of code

• Source code revision maintenance

• Batch execution (SAS, OpenBUGS/JAGS)

• Use of imenu to provide links to appropriate functions

• Interacting with the process (S family, SAS, Stata, Julia)

• Command-line editing

• Searchable Command history

• Command-line completion of S family object names and file names

• Quick access to object lists and search lists

• Transcript recording

• Interface to the help system

• Transcript manipulation (S family, Stata)

• Recording and saving transcript files

• Manipulating and editing saved transcripts

• Re-evaluating commands from transcript files

• Interaction with Help Pages and other Documentation (R)

• Fast Navigation

• Sending Examples to running ESS process.

• Fast Transfer to Further Help Pages

• Help File Editing (R)

• Syntactic indentation and highlighting of source code.

• Sending Examples to running ESS process.

• Previewing

ESS provides several features which make it easier to interact with the ESS process (a
connection between your buffer and the statistical package which is waiting for you to input
commands). These include:

• Command-line editing for fixing mistakes in commands before they are entered. The
‘-e’ flag for S-plus provides something similar to this, but here you have the full range
of Emacs commands rather than a limited subset. However, other packages do not
necessarily have features like this built-in. See Section 4.1 [Command-line editing],
page 26.

• Searchable command history for recalling previously-submitted commands. This pro-
vides all the features of the ‘Splus -e’ history mechanism, plus added features such as
history searching. See Section 4.3 [Command History], page 29.
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• Command-line completion of both object and file names for quick entry. This is similar
to tcsh’s facility for filenames; here it also applies to object names and list components.
See Chapter 9 [Completion], page 47.

• Hot-keys for quick entry of commonly-used commands in ‘S’ such as objects() and
search(). See Section 4.5 [Hot keys], page 31.

• Transcript recording for a complete record of all the actions in an S session. See
Section 4.2 [Transcript], page 26.

• Interface to the help system, with a specialized mode for viewing S help files. See
Chapter 8 [Help], page 45.

If you commonly create or modify S functions, you will have found the standard facilities
for this (the ‘fix()’ function, for example) severely limiting. Using S’s standard features,
one can only edit one function at a time, and you can’t continue to use S while editing.
ESS corrects these problems by introducing the following features:

• Object editing. ESS allows you to edit more than one function simultaneously in
dedicated Emacs buffers. The ESS process may continue to be used while functions
are being edited. See Section 7.1 [Edit buffer], page 38.

• A specialized editing mode for S code, which provides syntactic indentation and high-
lighting. See Section 7.4 [Indenting], page 39.

• Facilities for loading and error-checking source files, including a keystroke to jump
straight to the position of an error in a source file. See Section 7.3 [Error Checking],
page 39.

• Source code revision maintenance, which allows you to keep historic versions of S source
files. See Section 7.6 [Source Files], page 41.

• Facilities for evaluating S code such as portions of source files, or line-by-line evaluation
of files (useful for debugging). See Chapter 5 [Evaluating code], page 35.

Finally, ESS provides features for re-submitting commands from saved transcript files,
including:

• Evaluation of previously entered commands, stripping away unnecessary prompts. See
Section 4.2.3 [Transcript resubmit], page 27.

1.2 New features in ESS

Changes and New Features in 15.09:

• ESS[R]: The indentation logic has been refactored. It should be faster, more consistent
and more flexible. There are three types of indentation settings, those starting with
ess-offset- give the actual offsets, those starting with ess-indent- are control (com-
monly Boolean) variables, and those starting with ess-align- are vertical alignment
overrides which inhibit default offsets in specific situations. See ess-style-alist for
detailed description of the new indentation system and provided default indentation
styles.

• ESS[R]: Deprecation of old indentation settings. As a consequence of the indentation re-
factoring ess-brace-imaginary-offset, ess-expression-offset and all delimiter-
specific offsets are deprecated. The settings for indentation of continued statements
have been replaced by ess-offset-continuations. It can be set to either cascade
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or straight (the default). ess-arg-function-offset has been replaced by ess-

indent-from-lhs and has been generalised to assignements. This setting now works
with both statement blocks and expressions and only takes effect for offsets set to
prev-call and open-delim in order to produce a consistent indentation.

• ESS: A test framework has been set up.

• ESS[R]: A new RStudio style is provided to mimic as closely as possible R files indented
via RStudio. To reproduce the setup of some of the RStudio users, the RStudio- style
with ess-offset-arguments set to prev-line is also provided. In addition, the new
RRR+ style is equivalent to RRR except it indents blocks in function calls relatively to
the opening delimiter. This style does not try to save horizontal space and produces
more indentation.

• ESS[R]: Roxygen fields will now be indented on paragraph refilling in order to make the
documentation more readable. You can also refill commented lines in the examples

field without squashing the surrounding code in the comments.

• ESS[R]: ESS can now format your code! This is controlled through the settings ess-
fill-calls and ess-fill-continuations. When activated, (fill-paragraph) for-
mats your calls and your formulas/continuations while making sure they don’t go past
fill-column. Repeated refills cycle through different styles (see the docstrings for
more details). By default, the refilled region blinks. Set ess-blink-filling to nil to
prevent this.

• ESS[R]: Fix occasional missing error location fontification in inferior buffers.

• ESS[R]: ess-developer now correctly assigned the environment of new functions to the
package namespace.

• ESS[Julia]: ?[topic] now works in the *julia* buffer. Note that support for editing Julia
code now depends on ‘julia-mode.el’ from the Julia project. If you install ESS from
the official tarball/zip file, ‘julia-mode.el’ is already included. Otherwise, if you
install ESS by running make, then the latest version of ‘julia-mode.el’ is downloaded
(and so you need an active internet connection to install) during the installation process.
Alternatively, if you run ESS without running make, then ensure that you have the
julia-mode.el, which you can get easily from MELPA for example.

• iESS: For naming inferior processes, ESS can use projectile’s project root and it
does so when ess-gen-proc-buffer-name-function is set to ess-gen-proc-buffer-
name:projectile-or-simple as by default, or to another value beginning with ess-

gen-proc-buffer-name:projectile-*.

Changes and New Features in 15.03-1:

• ESS[R]: An indentation bug has been fixed (github issue 163)

• ESS[R]: On windows, if ‘ess-prefer-higher-bit’ is non-nil (the default), then R-newest
will try to run a 64 bit (rather than 32 bit) version of R.

Changes and New Features in 15.03:

• ESS[R]: Full native support for ‘company-mode‘.

• ESS[R]: More efficient caching algorithm for R completion.

• ESS: New offset variable ‘ess-close-paren-offset‘ to control the indentation of the closing
parentheses.
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• ESS[R]: Ask for CRAN mirror only once per emacs session.

• ESS[R]: Detect library and require calls for better completion caching.

• Buffer display is now customizable (ess-show-buffer-action).

• Use y-or-n-p instead of yes-or-no-p throughout.

• More support for ODS in ess-sas-graph-view.

• Makefiles are now both UNIX and GNU friendly.

• ESS[R]: Simplify directory lookup in ess-developer (#137).

• Make closed paren indentation consistent

Bug Fixes in 15.03:

• Fix open brace indentation bug (#27 in ess/R-ESS-bugs.R).

• Fix git version lookup

• Don’t check directory modtime in R dialect.

• Declare all ess macros for edebug.

• Add ess-smart-comma to eldoc message functions.

• Inform users when retrieving RDA aliases.

• Line ending in ’~’ is also a continuation line.

• Filing roxy paragraphs works as expected now.

• In ess-developer-add-package, remove incorrect ‘wait‘ argument from ess-get-

words-from-vector call.

• Fix #96, #117, #120, #125, #134, #137.

• Fix ess-quit-r. Call base::q() even if it is masked.

• Fix ‘ess-show-buffer‘ to always display the buffer in another window.

• Makefile: Fix cd bug for directories with spaces in them

• ess-kill-buffer-and-go modified to not restart R

Changes / Selected Bug Fixes in 14.09:

• ESS[Julia]: Executable is changed to julia.

• ESS[Julia]: Completion and help system was adjusted to Julia v.0.3.0. Julia v.0.2.x is
no more supported.

• ESS[R]: Running R with gdb debugger now works as expected

• iESS: Inferior ESS buffers are now derived from comint-mode

• ESS[R]: ess-execute-screen-options uses correct screen width in terminal sessions

• ESS: ess-build-tags-for-directory works when no TAGS file name was provided

• ESS: ess-offset-statement-continued is now respected everywhere except inside of
the if test condition.

• ESS: New variable ess-offset-statement-first-continued for indentation of the
first line in multiline statements.

• ESSR: Starting , in multiline statements indentation is now ignored to achieve a more
pleasant alignment.

• ESSR: Improved behavior of RET in roxygen blocks.
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• ESS[R]: command cleaning with C-u C-u C-y was broken with lines containing " + "

• ESS[R]: fixed "empty watch window bug"

• ESS[R]: don’t ask for help location on ac-quick-help (request of github #81)

• ESS[R]: "importClassesFrom" and "importMethodsFrom" were added to the list of
two-parameter roxygen commands

• ESS[R]: fix vignetes display and hyperlinks (were broken in 13.09-1)

• ESS[Julia]: recognize function names ending with !

• ESS[Julia]: fix indentation of "for" comprehension syntax within brackets.

Changes / Selected Bug Fixes in 13.09-1:

• ess-remote and TRAMP: R support code is now downloaded in binary form instead of
being injected from local machine. The R code is stored in ~/.config/ESSR/ directory
on the remote machine

• TRAMP: PAGER environment variable is now correctly set to inferior-ess-pager

• retrieval of help topics on remote machines is fixed

• org-babel: source references of R code executed from org files correctly point to source
references in original org files (version 8.2.1 or higher of org-mode is required for this
feature)

• ess-execute is now bound to C-c C-e C-e in ess-extra-map.

• completion works again in ess-execute

• ESS[R]: head and tail methods were replaced by htsummary in ess-R-describe-

object-at-point-commands

• ESS[roxygen]: evaluation commands now work in roxygen blocks. Leading comments
are automatically removed before the evaluation

• ESS[transcript]: ’Clean Region’ now works with multiline statements; ess-transcript-
clean-region etc. correctly treat multiline statements, i.e., no longer forgets the lines
typically preceded by ’+’

• ESS[SAS]: Three features/fixes with special thanks to Matthew Fidler
https://github.com/emacs-ess/ESS/pulls/mlf176f2. Turn on SAS log mode when
appropriate. Indent comments and CARDS statement more appropriately.

• ESS[SAS]: ess-sas-edit-keys-toggle default returns to nil

• ESS[R]: support for prettify-symbols-mode: contribution from Rudiger Sonderfeld
https://github.com/emacs-ess/ESS/pull/65

• ESS[SWV]: knitr now evaluates in the current frame

• ESS[developer]: ess-developer doesn’t kill open DESCRIPTION files anymore

• ESS[roxygen]: ess-roxy-preview-HTML is now on C-c C-o C-w and ess-roxy-

preview-text is now on C-c C-o C-t

• ESS: installation with make install was simplified and should work out of the box on
most *nix systems

• ESS installation instructions simplified

• fixed font-lock bug introduced in 13.09 that was causing very slow process output

Changes/New Features in 13.09:

https://github.com/emacs-ess/ESS/pulls/mlf176f2
https://github.com/emacs-ess/ESS/pull/65
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• font-lock in process buffers doesn’t "spill" over prompts. Missing closing string delim-
iters should not cause wrong fontification of the following command input.

• ESS[julia]: full features M-TAB completion and auto-complete support, which now
works for modules, structures and data types.

• ESS[julia]: a much better eldoc showing arguments of methods and data type construc-
tors

• ESS-developer:

− ESS-developer work-flow pattern has been streamlined: ESS-developer is now au-
tomatically activated on per-file basis if the file is part of a developed package
ess-developer-packages. The old behavior (activation on per-process basis) is
still available on M-x ess-developer in a process buffer.

− integration with devtools package. New command ess-developer-

load-package calls load_all on the package containing current file.
ess-developer-add-package now offers IDO menu completions with available
loading methods, currently library, and load_all. Loading command can be
customized with ess-developer-load-on-add-commands.

• TAB now indents region if region is active (a contribution of Matthew Fidler in pull
#41)

• M-x ess-version now reports full loading path and recognizes git and ELPA versions.

• warning and error keyword are now highlighted with font-lock-warning-face as they
should be, (for quite some time these keywords have been hijacked by compilation mode
fontification).

• eldoc: Eldoc now recognizes multiple processes. If current process is busy, or cur-
rent buffer is not associated with a process, eldoc picks its completions from the first
available free process.

• org-babel: evaluation is now org-friendly

• help: new help buffers now try to reuse ess-help buffers. This behavior is controlled by
ess-help-reuse-window custom variable.

• help: ?foo pops IDO menu on multiple help files (so far it worked only for C-c C-v)

• remote evaluation is considerably faster now on slow connections

• ESS[R] tracebug R source references regular expressions are (mostly) language agnostic.

• ess-function-call-face inherits from font-lock-function-name-face rather than
font-lock-builtin-face.

• ess-inject-source now accepts function-and-buffer option.

• Documentation: The “New Features” section (and ‘NEWS’) now represent recent
changes: within the last year or so. All changes can be found in the new news.html
(or ‘NEWS’ and ‘ONEWS’).

• ESS[R] ess-rep-regexp should no longer inf.loop (rarely!), and hence M-x ess-fix-

miscellaneous should neither.

Changes/New Features in 13.05:

• ESS[gretl]: Support for gretl (both editing and sub-process interaction). A contribu-
tion of Ahmadou Dicko.

news.html
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• ESS: process output display is 4-10 times faster due to new caching and only occa-
sional emacs re-display (for the moment this functionality is available only when ess-

tracebug is active).

• ESS: C-c ‘ is now bound to ess-show-traceback and C-c ~ is bound to ess-show-

call-stack.

• ESS[R]: ESS stores function in ’ESSR’ environment to avoid kludging users’ global
environment and accidental deletion.

• ESS[R]: new variable ess-swv-processing-command to control weaving and tangling.

• ESS[R]: ess-default-style has been changed (from DEFAULT) to RRR. Use some-
thing like (setq ess-default-style ’DEFAULT) or (setq ess-indent-level 2) in
your ‘~/.emacs’ equivalent before loading ESS, if you do not like this new “incompat-
ible” default style.

• ESS[julia]: ESS stores its functions in ’ESS’ module.

• ESS[julia]: Eldoc is now supported in julia modes

• ESS[julia]: Adjusted error reference detection and interactive help to julia internal
changes

• ESS[R]: ess-use-tracebug’s default has been changed to t. Set it to nil if you want
to keep the previous behavior.

• ESS[tracebug]: Electric debug keys have been removed [breaking change] The function-
ality was replaced with ess-debug-minor-mode and ess-debug-minor-mode-map.

• ESS[tracebug]: ess-tracebug-map is an alias to ess-dev-map C-c C-t.

• ESS[tracebug]: ess-bp-toggle-state (C-c C-t o) can now be used during the debug
session to toggle breakpoints on the fly (suggestion by Ross Boylan).

• ESS[tracebug]: ess-debug-flag-for-debugging and ess-debug-unflag-for-

debugging work correctly from the debugging contexts. These commands also
recognize non-exported functions for the packages listed in ess-developer-packages

(C-c C-t C-a).

• ESS[R]: Eldoc (activated by ess-use-eldoc) has become more sophisticated, and hence
also more intruding in the interface between the Statistics softare, e.g., R, and the user.

Note that you can turn off ElDoc, by placing (setq ess-use-eldoc nil) in your
‘~/.emacs’ file, prior to loading ESS,

• ESS[SAS]: long over-looked SAS-mode-hook appears!

• ESS[SAS]: ess-sas-edit-keys-toggle now defaults to t since sas-indent-line is
still broken, i.e. TAB is now bound to ess-sas-tab-to-tab-stop by default

Changes/Bug Fixes in 12.09-2:

• ESS: new ess-switch-to-end-of-proc-buffer variable that controls whether C-c C-

z switches to the end of process buffer. The default is t. You can use prefix argument
to C-c C-z to toggle this variable.

• ESS: fix in ess-eval-linewise that was causing emacs to hang during R debugging
with ess-eval-visibly equal to t.

• ESS: fix in ess-eval-linewise that was causing emacs to recenter the prompt in
visible window
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• ESS[tracebug]: A better handling of “Selection” prompts and debug related singlekey
commands.

• ESS: fix a bug in ess-switch-process that was causing *new* selection to fail.

• ESS[R]: Solve missing ess-local-process-name bug in R-dired.

• ESS[SWV]: ess-swv-PDF doesn’t ask for a command to run if there is only one command
in ess-swv-pdflatex-commands.

• ESS[SWV]: ess-swv-weave gained an universal argument to allow for an interactive
choice between available weavers (sweave, knitr).

• ESS: ess-eval-*-and-step functions go to next empty line at eob, instead of staying
at the last line.

Changes/New Features in 12.09-1:

• ESS Breaking Changes in Keys:

− New keymaps: ess-doc-map bound to C-c C-d; ess-extra-map bound to C-c

C-e; ess-dump-object-into-edit-buffer was moved on C-c C-e C-d

− roxygen map was moved on C-c C-o and ess-roxy-update-entry now resides on
C-c C-o C-o

− ess-handy-commands is not bound anymore

− ess-dev-map (including ess-tracebug and ess-developer) moved on C-c C-t

− C-c C-y is deprecated in favor of C-c C-z C-z

• ESS[R] new command ess-describe-object-at-point bound to C-c C-d C-e (repeat
C-e or e to cycle). It was inspired by Erik Iverson’s ess-R-object-tooltip. Customize
ess-describe-at-point-method to use tooltip instead of an electric buffer.

• ESS: New command ess-build-tags-for-directory bound to C-c C-e C-t for build-
ing dialect specific tag tables. After building tags use M-. to navigate to function and
objects definitions. By default C-c C-e C-t builds tags based on imenu regular ex-
pressions and also include other common languages .c, .o, .cpp etc. But it relies on
external find and etags commands. If ess-build-tags-command is defined (for R),
the inferior process is asked to build tags instead.

• ESS: ess-switch-process offers *new* alternative to start a new process instead of
switching to one of the currently running processes.

• ESS: Switching between processes (C-c C-s) uses buffer names instead of the internal
process names. Use M-x rename-buffer command to conveniently rename your process
buffers.

• ESS: Process buffers can be automatically named on process creation according to
user specified scheme. Default schemes are *proc*, *proc:dir* and *proc:abbr-long-
dir* where proc stands for the internal process name and dir stands for the directory
where the process was started in. The default is *proc*. For customization see ess-

gen-proc-buffer-name-function.

• ESS: ess-eval-visibly-p is deprecated in favor of ess-eval-visibly.

• ESS: New evaluation pattern nowait. In addition to old nil and t values, ess-eval-
visibly accepts nowait for a visible evaluation with no waiting for the process. See
ess-eval-visibly for details on evaluation patterns.
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• ESS: New “Process” menu entry with process related commands and configuration

• iESS: Process buffer is now automatically shown on errors

• ESS: New ess-switch-to-inferior-or-script-buffer command bound to C-c C-z

in both script and process buffers. If invoked form process buffer it switches to the
most recent buffer of the same dialect. It is a single key command.

• ESSR-help: On multiple help pages with the same name, C-c C-v now asks for user
resolution directly in emacs.

• ESS[R] ess-roxy: new variable ess-roxy-re for fontification of cases where the number
of leading # differs from ess-roxy-str.

• ESS[R] Eldoc was considerably enhanced. It now finds hidden default S3 methods and
displays non-default methods’ arguments after trailing ||.

• ESS[R]: New ess-display-demos command bound to C-c C-d o and C-c C-d C-o

• ESS: New ess-help-web-search command bound to C-c C-d w and C-c C-d C-w to
facilitate interactive search of web resources. Implemented for R, Stata and Julia.
See also ess-help-web-search-command.

• ESS: ess-pdf-viewer-pref accepts now command line arguments

• ESS[Rnw]: Add knitr support. Customize ess-swv-processor for the default proces-
sor.

• ESS[Rnw]: More thorough renaming of remaining noweb-* to ess-noweb-*.

• ESS[Rnw] new commands ess-eval-chunk-and-step and ess-eval-chunk bound to
M-n C-c and M-n C-M-x to mirror standard ess commands in C-c map.

• ESS[R] Auto-completion: new variable ess-ac-R-argument-suffix to customize the
insertion of trailing "=". Defaults to “ = “.

• ESS[Julia]: Added index, apropos and web-search to julia.

• ESS help: More evaluation commands were added to ess-help mode (C-c C-c, C-M-x
etc)

Bug Fixes in 12.09-1:

• iESShelp: Multiple help pages with the same name are properly handled on C-c C-v

• iESSremote: Evaluation with ESS remote no longer freezes emacs.

• iESS: comint-previous-prompt C-c C-p no longer stops on secondary prompt “+”.

• iESS[R], iESS(Sqpe) [S] on Windows: The options("editor") is now initialized to
emacsclient instead of the previous gnuclient. The user may need to add the line
(server-start) to the emacs initialization file. emacsclient has been included with
emacs since GNU Emacs 22.1.

• ESS[Rnw] Fixed “connection to R” bug (in 12.09 only).

• ESS[Rnw] Explicit ess-swv-stangle and ess-swv-sweave functions.

• ESS[Rnw] Fixed completion and smart underscore problems cause by unmatched “\”’

• ESS[R] is more careful with the R code injection. It now happens only once at the start
of the session.

• ESS[R]: Fixed auto-scrolling the comint buffer on evaluation.

• ESS[Julia]: Solve several indentation and word navigation problems.
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• ESS[Julia]: Help system works again.

Changes/New Features in 12.09:

• Due to XEmacs lacking some features that ESS requires, ESS support of XEmacs ends
with ESS 12.04-4. This decision will be re-visited in the future as XEmacs continues
to sync with GNU Emacs.

• ESS[R]: On Windows, there is now a new customizable variable (currently called ess-

directory-containing-R) to tell ESS where to look for the ‘Rterm.exe’ executables.
The name of the variable and the values it can take are both in beta and subject to
change. Prior to this variable, ESS searched only in the default installation directory.
Setting this variable now tells ESS how to find ‘Rterm.exe’ executables when they are
installed somewhere else.

• ESS[julia]: new mode for editing julia code (‘*.jl’). Start with M-x julia.

Full interaction interface, imenu and basic error referencing are available.

• ESS[R] noweb: noweb-mode and noweb-font-lock-mode have been renamed to ess-

noweb-mode and ess-noweb-font-lock-mode to avoid conflicts with the “real” noweb-
mode.

• ESS[R] noweb: The long standing font-lock bug has been solved in ess-noweb interface.

• ESS: Basic evaluation keys are now bound to ess-eval-region-*- functions:

− C-M-x is bound to ess-eval-region-or-function-or-paragraph

− C-c C-c is bound to ess-eval-region-or-function-or-paragraph-and-step

− C-RET is bound to ess-eval-region-or-line-and-step

Each of these functions first evaluates the region whenever the region is active.

• ESS: C-M-a/C-M-e now step to beginning/end of paragraph if no function has been
detected.

• ESS: ess-eval-*-and-step family of functions are now smarter, and don’t step to end
of buffer or end of chunk code (@) when at the end of the code.

• ESS: ess-handy-commands function is bound to C-c h

• ESS: ESS is now blinking the evaluated region. Set ess-blink-region to nil to deacti-
vate; ess-blink-delay gives the duration of the blink. Evaluated region is “blinked”
in highlight face.

• ESS[R-help] New key a for “apropos()” in help buffers. Also available through C-c h.

• ESS[R-help] All R commands of type foo?bar and foo??bar are recognized and redirected
into appropriate *ESS-help* buffers.

• ESS[R]: New customization interface for font-lock.

ESS font-lock operates with predefined keywords. Default keywords are listed in ess-

R-font-lock-keywords and inferior-R-font-lock-keywords, which see. The user
can easily customize those by adding new keywords. These variables can also be inter-
actively accessed and saved through ESS/Font-lock submenu.

Several new fontification keywords have been added. Most notably the keywords for
highlighting of function calls, numbers and operators.

• ESS[R]: auto-complete is now activated by default whenever auto-complete package is
detected. Set ess-use-auto-complete to nil to deactivate.
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• ESS[R]: R AC sources are no longer auto-starting at 0 characters but at the default
ac-auto-start characters.

• ESS no longer redefines default ac-sources, but only appends ac-source-filename to
it.

• ESS: ac-source-R now concatenates “ = “ to function arguments.

• ESS: Menus for ESS and iESS have been reorganized and enriched with Tracebug and
Developer submenus.

• ESS[R]: ess-developer and ess-tracebug commands are available by default in ess-

dev-map which is bound to C-c d in ESS and iESS maps.

• ESS[R]: eldoc truncates long lines whenever eldoc-echo-area-use-multiline-p is
non-nil (the default). Set this variable to t if you insist on multiline eldoc. See also
ess-eldoc-abbreviation-style.

• ESS[R]: completion code pre-caches arguments of heavy generics such as plot and print

to eliminated the undesirable delay on first request.

• iESS: Prompts in inferior buffers are now highlighted uniformly with comint-

highlight-prompt face.

• ESS[R]: R process no longer wait for the completion of input in inferior buffer. Thus,
long running commands like Sys.sleep(5) no longer stall emacs.

• ESS: [R, S, Stata, Julia] have specialized ess-X-post-run-hooks, which are run at the
end of subprocess initialization.

• ESS[Stata]: All interactive evaluation commands work as expected. On-line comments
are removed before the evaluation and multiline comments are skipped on C-c C-c and
other interactive commands.

• ESS no longer auto-connects to a subprocess with a different dialect than the current
buffer’s one.

• ESS: ess-arg-function-offset-new-line is now a list for all the ESS indentation
styles, which results in the following indentation after an open “(”:

a <- some.function(other.function(

arg1,

arg2)

• ESS[SAS]: Improved MS RTF support for GNU Emacs; try ess-sas-rtf-portrait

and ess-sas-rtf-landscape.

Changes/Bug Fixes in 12.04-3:

• ESS: basic support for package.el compatibility

• ESS[R]: correct indentation of & and | continuation lines

• M-x ess-version shows the svn revision even after make install

• ESS[SAS]: improved XEmacs support

• iESS[R]: better finding of previous prompt

• ESS[Stata]: adjusted prompt for mata mode

• ESS[R]: resolved name clashes with cl.el

• ESS[R]: removed dependence on obsolete package assoc
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• New make target lisp, to build the lisp-only part, i.e., not building the docs.

Changes/New Features in 12.04-1:

• iESS[Stata]: New interactive help invocation.

• iESS[Stata]: New custom variable inferior-STA-start-file.

• iESS[Stata]: inferior-STA-program-name is now “stata” and can be customized.

• ESS[Stata] New sections in stata help files Syntax(s-S), Remarks(r), Title(t).

Bug Fixes in 12.04-1:

• ESS[R]: Better ess-tracebug error handling.

• ESS[R]: Corrected ess-eldoc help string filtering and improved argument caching.

• ESS[R]: Indentation of non-block if/else/for/while lines fixed.

• M-x ess-version should work better.

• ESS: Filename completion now again works inside strings.

• iESS[Stata]: Fixed prompt detection issue.

• ESS[Rd]: R is autostarted also from here, when needed.

Changes/New Features in 12.04:

• ESS: Reverting new behavior of 12.03, TAB in ess-mode no longer completes by default.
If you want smart TAB completion in R and S scripts, similarly to iESS behavior, set
the variable ess-tab-complete-in-script to t. Also see ess-first-tab-never-

complete for how to customize where first TAB is allowed to complete.

• ESS: completion is consistently bound to M-TAB (aka M-C-i) in both Emacs23 and
Emacs24.

• ESS: The variable ess-arg-function-offset-new-line introduced in ESS(12.03) now
accepts a list with the first element a number to indicate that the offset should be
computed from the indent of the previous line. For example setting it to ’(2) results
in:

a <- some.function(

arg1,

arg2)

Changes/New Features in 12.03:

• ESS indentation: new offset variable ess-arg-function-offset-new-line controlling
for the indentation of lines immediately following open ’(’. This is useful to shift
backwards function arguments after a long function call expression:

a <- some.function(

arg1,

arg2)

instead of the old

a <- some.function(

arg1,

arg2)

If ’(’ is not followed by new line the behavior is unchanged:
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a <- some.function(arg1,

arg2)

This variable should be set as part of indentation style lists, or in ess-mode hook.

• ESS[R]: C-c . sets (indentation) style.

• ESS: In ESS buffers yank(C-y) command accepts double argument C-u C-u to paste
commands only. It deletes any lines not beginning with a prompt, and then removes the
prompt from those lines that remain. Useful to paste code from emails, documentation,
inferior ESS buffers or transcript files.

• Documentation: ESS user manual has been rearranged and completed with several
new chapters and sections to reflect newly added features (“Completion”, “Developing
with ESS”, “ESS tracebug”, “ESS developer”, “ESS ElDoc”, “IDO Completion” and
“Evaluating Code”)

• RefCard: Reference card was updated to include new features.

• Eldoc: Eldoc was rewritten and is activated by default. See ess-use-eldoc, ess-
eldoc-show-on-symbol, ess-eldoc-abbreviation-style variables for how to change
the default behavior. Note: skeleton-pair-insert-maybe prohibits eldoc display, on
( insertion.

• ESS[R]: Eldoc shows arguments of a generic function whenever found.

• ESS: TAB in ess-mode now indents and completes, if there is nothing to indent. Set ess-
first-tab-never-completes-p to t to make TAB never complete on first invocation.
Completion mechanism is similar to the completion in the inferior-ess-mode – a
filename expansion is tried, if not found ESS completes the symbol by querying the
process.

• ESS for emacs version 24 or higher: ESS is fully compatible with the emacs 24 com-
pletion scheme, i.e. all the completion is done by completion-at-point. Also in
accordance with emacs conventions, ESS doesn’t bind M-TAB for emacs 24 or higher.
M-TAB calls the default complete-symbol.

• ESS[R]: Out of the box integration with Auto Completionmode http://cx4a.org/software/auto-complete
. Three AC sources ac-source-R-args, ac-source-R-objects and ac-source-R

are provided. The last one combines the previous two and makes them play nicely
together. Set ess-use-auto-complete to t to start using it. Refer to documentation
string of ac-use-auto-complete for further information.

• ESS[R]: New unified and fast argument completion system, comprised of ess-

funname.start, ess-function-arguments, ess-get-object-at-point. Eldoc and
auto-completion integration are using this system.

• ESS: ess-switch-to-end-of-ESS(C-c C-z), and ess-switch-to-ESS(C-c C-y): Au-
tomatically start the process whenever needed.

• ESS[R]: roxy knows about previewing text version of the documentation. Bound to C-c
C-e t.

• ESS[R]: Solved the “nil filename” bug in roxygen support.

• ESS[R]: ess-tracebug is now part of ESS:

New Features:

− Source injection: Tracebug now can inject source references on the fly during code
evaluation, i.e. you don’t have to source your file, but just evaluate your code in

http://cx4a.org/software/auto-complete
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normal fashion. Variable ess-tracebug-inject-source-p controls this behavior
- if t, always inject source reference, if ’function, inject only for functions (this
is the default), if nil, never inject.

During the source injection the value of ess-eval-visibly is ignored.

− Org-mode support: Visual debugger is now aware of the temporary org source
editing buffer (C-c ’) and jumps through this buffers if still alive, or in original
org buffer otherwise.

− New keys in watch mode: ? and d

− Two new hooks: ess-tracebug-enter-hook and ess-tracebug-exit-hook

• ESS[R]: New package ess-developer to evaluate R code directly in the package environ-
ment and namespace. It can be toggled on and off with C-c d t. When ess-developer

is on all ESS evaluation commands are redefined to evaluate code in appropriate en-
vironments. Add package names to the list of your development packages with C-d a,
and remove with C-d r. Source the current file with C-d s.Evaluation function which
depend on ‘ess-eval-region’ ask for the package to source the code into, ess-eval-
function and alternatives search for the function name in the development packages’
environment and namespace and insert the definition accordingly. See the documenta-
tion section “Developing with ESS/ESS developer” for more details.

• ESS[R] help system:

New Features:

− q quits window instead of calling ess-switch-to-end-of-ESS. This is consistent
with emacs behavior help and other special buffers (breaking change).

− k kills window without asking for the name (pointed by Sam Steingold)

− Help map inherits from special-mode-map as sugested by Sam Steingold.

− Package index: new function ess-display-index bound to i in help mode map.

− Package vignettes: new function ess-display-vignettes bound to v in help mode
map.

− Display help in HTML browser: new function ess-display-help-in-browser

bound to w in help mode map. It depends on R’s browser option.

− New custom variable ess-help-pop-to-buffer: if non-nil ESS help buffers are
given focus on display. The default is t (breaking change).

− New menu entries for the above functions.

− Bogus help buffers are no longer generated by default, i.e. buffers of the form
“No documentation for ’foo’ in specified packages and libraries: you could try
’??foo’ ”. ess-help-kill-bogus-buffers now defaults to t. Beware, there may
be instances where the default is unsatisfactory such as debugging and/or during
R development. Thanks to Ross Boylan for making the suggestion, Sam Steingold
for reminding us of this variable and Martin Maechler for the warning.

• ESS now uses IDO completing read functionality for all the interactive requests. It uses
ido completion mechanism whenever available, and falls back on classical completing-
read otherwise. You can set ess-use-ido to nil if you don’t want the IDO completion.
See the documentation string of ess-use-ido for more information about IDO and ESS

configuration.
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• ESS[S]: “,“ is bound to ess-smart-comma: If comma is invoked at the process marker of
an ESS inferior buffer, request and execute a command from ‘ess-handy-commands’

list. If ess-R-smart-operators is t ‘ess-smart-comma also inserts “ “ after comma.

• ESS[S], notably R: Variable ‘ess-handy-commands’ stores an alist of useful commands
which are called by ess-smart-comma in the inferior buffer.

Currently containing:

change-directory
ess-change-directory

help-index ess-display-index

help-object
ess-display-help-on-object

vignettes ess-display-vignettes

objects[ls] ess-execute-objects

search ess-execute-search

set-width ess-execute-screen-options

install.packages
ess-install.packages

library ess-library

setRepos ess-setRepositories

sos ess-sos

Handy commands: ess-library, ess-install.packages, etc - ask for item with com-
pletion and execute the correspond command. ess-sos is a interface to findFn function
in package sos. If package sos is not found, ask user for interactive install.

• ESS: New dynamic mode line indicator: Process status is automatically reflected in
all mode-lines of associated with the process buffers. Particularly useful for displaying
debug status of ess-tracebug and developer status of ess-developer in all associated
buffers.

• ESS: New ess-completing-read mechanism: ESS uses ido completions whenever pos-
sible. Variable ess-use-ido controls whether to use ido completion or not. Active by
default.

• ESS now supports comint fields for output and input detection. This feature is not
used by default, but might be useful in the future.

• ESS[S]: New custom variable inferior-ess-S-prompt to customize prompt detection
regular expression in the inferior ESS buffers. You can customize this variable to
enhance comint navigation (comint-previous-prompt and comint-next-prompt) the
inferior buffers.

• ESS[R]: Internal R completion retrieval (ess-R-complete-object-name) was rewritten
and is faster now.

• ESS is using process plist to store process specific variables, as opposed to buffer local
variables as it was using before. The use of buffer local variables to store process
variables is discouraged.
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• ESS: new functions to manipulate process plists: ess-process-get and ess-process-

set.

• ESS: Internal process waiting mechanism was completely rewritten. ESS no more relies
on prompt regular expressions for the prompt detection. The only requirement on
the primary process prompt is to end in > . This could be overwritten by setting
inferor-ess-primary-prompt.

• ESS[S], notably R: Saved command history: ess-history-file now accepts t (default),
nil, or a file name. By setting it to nil no command line history is saved anymore.
ess-history-directory now allows to have the history all saved in one “central” file.

• ESS[R]: more Roxygen improvements.

• ESS[R]: C-c . to set (indentation) style.

• ESS[R]: Functions with non-standard names (for example ’aaa-bbb:cc’) are properly
handled by font-lock and evaluation routines.

• ESS[R]:Several regexp bugs (described in etc/R-ESS-bugs.el) were fixed in ess-get-

words-from-vector and ess-command.

1.3 Authors of and contributors to ESS

The ESS environment is built on the open-source projects of many contributors, dating
back to 1989 where Doug Bates and Ed Kademan wrote S-mode to edit S and Splus files in
GNU Emacs. Frank Ritter and Mike Meyer added features, creating version 2. Meyer and
David Smith made further contributions, creating version 3. For version 4, David Smith
provided significant enhancements to allow for powerful process interaction.

John Sall wrote GNU Emacs macros for SAS source code around 1990. Tom Cook added
functions to submit jobs, review listing and log files, and produce basic views of a dataset,
thus creating a SAS-mode which was distributed in 1994.

In 1994, A.J. Rossini extended S-mode to support XEmacs. Together with extensions
written by Martin Maechler, this became version 4.7 and supported S, Splus, and R. In
1995, Rossini extended SAS-mode to work with XEmacs.

In 1997, Rossini merged S-mode and SAS-mode into a single Emacs package for statistical
programming; the product of this marriage was called ESS version 5. Richard M. Heiberger
designed the inferior mode for interactive SAS and SAS-mode was further integrated into
ESS. Thomas Lumley’s Stata mode, written around 1996, was also folded into ESS. More
changes were made to support additional statistical languages, particularly XLispStat.

ESS initially worked only with Unix statistics packages that used standard-input and
standard-output for both the command-line interface and batch processing. ESS could
not communicate with statistical packages that did not use this protocol. This changed in
1998 when Brian Ripley demonstrated use of the Windows Dynamic Data Exchange (DDE)
protocol with ESS. Heiberger then used DDE to provide interactive interfaces for Windows
versions of Splus. In 1999, Rodney A. Sparapani and Heiberger implemented SAS batch for
ESS relying on files, rather than standard-input/standard-output, for Unix, Windows and
Mac. In 2001, Sparapani added BUGS batch file processing to ESS for Unix and Windows.

• The multiple process code, and the idea for ess-eval-line-and-next-line are by
Rod Ball.

• Thanks to Doug Bates for many useful suggestions.
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• Thanks to Martin Maechler for reporting and fixing bugs, providing many useful com-
ments and suggestions, and for maintaining the ESS mailing lists.

• Thanks to Frank Ritter for updates, particularly the menu code, and invaluable com-
ments on the manual.

• Thanks to Ken’ichi Shibayama for his excellent indenting code, and many comments
and suggestions.

• Thanks to Aki Vehtari for adding interactive BUGS support.

• Thanks to Brendan Halpin for bug-fixes and updates to Stata-mode.

• Last, but definitely not least, thanks to the many ESS users and contributors to the
ESS mailing lists.

ESS is being developed and currently maintained by

• A.J. Rossini

• Richard M. Heiberger

• Kurt Hornik

• Martin Maechler

• Rodney A. Sparapani

• Stephen Eglen

• Sebastian P. Luque

• Henning Redestig

• Vitalie Spinu

1.4 Getting the latest version of ESS

The latest released version of ESS is always available on the web at: ESS web page or
StatLib

1.4.1 Git for ESS development

For development and experimentation on new ESS features, there is now a GitHub branch
for ESS, available at https://github.com/emacs-ess/ESS.

1.5 How to read this manual

If you need to install ESS, read Chapter 2 [Installation], page 20 for details on what needs
to be done before proceeding to the next chapter.

In this manual we use the standard notation for describing the keystrokes used to invoke
certain commands. C-<chr> means hold the CONTROL key while typing the character
<chr>. M-<chr> means hold the META or EDIT or ALT key down while typing <chr>. If
there is no META, EDIT or ALT key, instead press and release the ESC key and then type
<chr>.

All ESS commands can be invoked by typing M-x command. Most of the useful commands
are bound to keystrokes for ease of use. Also, the most popular commands are also available
through the emacs menubar, and finally, if available, a small subset are provided on the
toolbar. Where possible, keybindings are similar to other modes in emacs to strive for

mailto:blindglobe@gmail.com
mailto:rmh@temple.edu
mailto:Kurt.Hornik@R-project.org
mailto:maechler@stat.math.ethz.ch
mailto:rsparapa@mcw.edu
mailto:stephen@gnu.org
mailto:spluque@gmail.com
mailto:henning.red@googlemail.com
mailto:spinuvit@gmail.com
http://ess.r-project.org
http://lib.stat.cmu.edu/general/ESS/
https://github.com/emacs-ess/ESS
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a consistent user interface within emacs, regardless of the details of which programming
language is being edited, or process being run.

Some commands, such as M-x R can accept an optional ‘prefix’ argument. To specify the
prefix argument, you would type C-u before giving the command. e.g. If you type C-u M-x

R, you will be asked for command line options that you wish to invoke the R process with.

Emacs is often referred to as a ‘self-documenting’ text editor. This applies to ESS in two
ways. First, limited documentation about each ESS command can be obtained by typing
C-h f. For example, if you type C-h f ess-eval-region, documentation for that command
will appear in a separate *Help* buffer. Second, a complete list of keybindings that are
available in each ESS mode and brief description of that mode is available by typing C-h m

within an ESS buffer.

Emacs is a versatile editor written in both C and lisp; ESS is written in the Emacs
lisp dialect (termed ‘elisp’) and thus benefits from the flexible nature of lisp. In particular,
many aspects of ESS behaviour can be changed by suitable customization of lisp variables.
This manual mentions some of the most frequent variables. A full list of them however is
available by using the Custom facility within emacs. (Type M-x customize-group RET ess

RET to get started.) Appendix A [Customization], page 83 provides details of common user
variables you can change to customize ESS to your taste, but it is recommended that you
defer this section until you are more familiar with ESS.
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2 Installing ESS on your system

The following section details those steps necessary to get ESS running on your system.

2.1 Step by step instructions

1. Download the latest zip or tgz archive from ESS downloads area and unpack it into
a directory where you would like ESS to reside. We will denote this directory as
‘/path/to/ESS/’ hereafter.

Alternatively you can use git to fetch the most recent development version to your
local machine with:

git clone https://github.com/emacs-ess/ESS.git /path/to/ESS

2. Optionally, compile elisp files and build the documentation with:

cd /path/to/ESS/

make

Without this step, info, pdf and html documentation and reference card will not be
available.

3. Optionally, install into your local machine with make install. You might need ad-
ministrative privileges:

make install

The files are installed into /usr/share/emacs directory. For this step to run correctly
on Mac OS X, you will need to adjust the ‘PREFIX’ path in ‘Makeconf’. The necessary
code and instructions are commented in that file.

4. If you have performed the make install step from above, just add

(require ’ess-site)

to your ‘~/.emacs’ file. Otherwise, you should add ‘/path/to/ESS/lisp/’ to your
emacs load path and then load ESS with the following lines in your ‘~/.emacs’:

(add-to-list ’load-path "/path/to/ESS/lisp/")

(load "ess-site")

5. Restart your Emacs and check that ESS was loaded from a correct location with M-x

ess-version.

Note for Windows and Mac OS X users: The most straightforward way to install Emacs
on your machine is by downloading all-in-one Emacs binary by Vincent Goulet.

Note for XEmacs users: Due to XEmacs lacking some features that ESS requires, ESS
support of XEmacs ends with ESS 12.04-4. This decision will be re-visited in the future as
XEmacs continues to sync with GNU Emacs.

2.2 License

The source and documentation of ESS is free software. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later version.

http://ess.r-project.org/index.php?Section=download
http://vgoulet.act.ulaval.ca/en/emacs/
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ESS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License in the file COPYING in the
same directory as this file for more details.

2.3 Stability

All recent released versions are meant to be release-quality versions. While some new fea-
tures are being introduced, we are cleaning up and improving the interface. We know that
there are many remaining opportunities for documentation improvements, but all contrib-
utors are volunteers and time is precious. Patches or suggested fixes with bug reports are
much appreciated!

2.4 Requirements

ESS is most likely to work with current/recent versions of the following statistical packages:
R/S-PLUS, SAS, Stata, OpenBUGS and JAGS.

ESS supports current, and recent, stable versions of GNU Emacs (currently, specifically,
the 23.x and 24.x series; alpha/beta/pre-release versions are NOT SUPPORTED). Non-
Windows users beware: GNU Emacs 24.3 is preferable to 24.1 or 24.2: these broken builds
suffer from bug 12463 http://debbugs.gnu.org/cgi/bugreport.cgi?bug=12463 which
will cause emacs and ESS to get progressively slower over time.

Due to XEmacs lacking some features that ESS requires, ESS support of XEmacs ends
with ESS 12.04-4. This decision will be re-visited in the future as XEmacs continues to
sync with GNU Emacs.

To build the PDF documentation, you will need a version of TeX Live or texinfo that
includes texi2dvi (BEWARE: recent TeX Live, and some texinfo RPMs, do NOT include
texi2dvi).

http://debbugs.gnu.org/cgi/bugreport.cgi?bug=12463
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3 Interacting with statistical programs

As well as using ESS to edit your source files for statistical programs, you can use ESS to
run these statistical programs. In this chapter, we mostly will refer by example to running
S from within emacs. The emacs convention is to name such processes running under its
control as ‘inferior processes’. This term can be slightly misleading, in which case these
processes can be thought of ‘interactive processes’. Either way, we use the term ‘iESS’ to
refer to the Emacs mode used to interact with statistical programs.

3.1 Starting an ESS process

To start an S session on Unix or on Windows when you use the Cygwin bash shell, simply
type M-x S RET.

To start an S session on Windows when you use the MSDOS prompt shell, simply type
M-x S+6-msdos RET.

S will then (by default) ask the question

S starting data directory?

Enter the name of the directory you wish to start S from (that is, the directory you would
have cd’d to before starting S from the shell). This directory should have a ‘.Data’ subdi-
rectory.

You will then be popped into a buffer with name ‘*S*’ which will be used for interacting
with the ESS process, and you can start entering commands.

3.2 Running more than one ESS process

ESS allows you to run more than one ESS process simultaneously in the same session. Each
process has a name and a number; the initial process (process 1) is simply named (using S-
PLUS as an example) ‘S+3:1’. The name of the process is shown in the mode line in square
brackets (for example, ‘[S+3:2]’); this is useful if the process buffer is renamed. Without a
prefix argument, M-x S starts a new ESS process, using the first available process number.
With a prefix argument (for R), C-u M-x R allows for the specification of command line
options.

You can switch to any active ESS process with the command ‘M-x
ess-request-a-process’. Just enter the name of the process you require; com-
pletion is provided over the names of all running S processes. This is a good command to
consider binding to a global key.

3.3 ESS processes on Remote Computers

ESS works with processes on remote computers as easily as with processes on the local
machine. The recommended way to access a statistical program on remote computer is to
start it with tramp. Require tramp in your .emacs file:

(require ’tramp)

Now start an ssh session with ‘C-x f /ssh:user@host: RET’. Tramp should open a dired
buffer in your remote home directory. Now call your favorite ESS process (R, Julia, stata
etc) as you would usually do on local machine: M-x R.
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Alternatively you can start your process normally (M-x R). After you are asked for
starting directory, simply type ‘/ssh:user@host: RET’. R process will be started on the
remote machine.

To simplify the process even further create a "config" file in your .ssh/ folder and add
an account. For example if you use amazon EC2, it might look like following:

Host amazon

Hostname ec2-54-215-203-181.us-west-1.compute.amazonaws.com

User ubuntu

IdentityFile ~/.ssh/my_amazon_key.pem

ForwardX11 yes

With this configuration /ssh:amazon: is enough to start a connection. The ForwardX11
is needed if you want to see R graphic device showing on the current machine

Other ways to setup a remote ESS connection are through ess-remote.

1. Start a new shell, telnet or ssh buffer and connect to the remote computer
(e.g. use, ‘M-x shell’, ‘M-x telnet’ or ‘M-x ssh’; ssh.el is available at
http://www.splode.com/~friedman/software/emacs-lisp/src/ssh.el).

2. Start the ESS process on the remote machine, for example with one of the commands
‘Splus’, or ‘R’, or ‘sas -stdio’.

3. Start ‘M-x ess-remote’. You will be prompted for a program name with completion.
Choose one. Your process is now known to ESS. All the usual ESS commands (‘C-c
C-n’ and its relatives) now work with the S language processes. For SAS you need
to use a different command ‘C-c i’ (that is a regular ‘i’, not a ‘C-i’) to send lines
from your ‘myfile.sas’ to the remote SAS process. ‘C-c i’ sends lines over invisibly.
With ess-remote you get teletype behavior—the data input, the log, and the listing
all appear in the same buffer. To make this work, you need to end every PROC and
DATA step with a "RUN;" statement. The "RUN;" statement is what tells SAS that
it should process the preceding input statements.

4. Graphics (interactive) on the remote machine. If you run X11 (See Section 11.5.2 [X11],
page 59, X Windows) on both the local and remote machines then you should be able to
display the graphs locally by setting the ‘DISPLAY’ environment variable appropriately.
Windows users can download ‘xfree86’ from cygwin.

5. Graphics (static) on the remote machine. If you don’t run the X window system on the
local machine, then you can write graphics to a file on the remote machine, and display
the file in a graphics viewer on the local machine. Most statistical software can write
one or more of postscript, GIF, or JPEG files. Depending on the versions of emacs and
the operating system that you are running, emacs itself may display ‘.gif’ and ‘.jpg’
files. Otherwise, a graphics file viewer will be needed. Ghostscript/ghostview may be
downloaded to display ‘.ps’ and ‘.eps’ files. Viewers for GIF and JPEG are usually
included with operating systems. See Section 13.5 [ESS(SAS)–Function keys for batch
processing], page 72, for more information on using the F12 key for displaying graphics
files with SAS.

Should you or a colleague inadvertently start a statistical process in an ordinary
‘*shell*’ buffer, the ‘ess-remote’ command can be used to convert it to an ESS buffer
and allow you to use the ESS commands with it.

http://www.splode.com/~friedman/software/emacs-lisp/src/ssh.el
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We have two older commands, now deprecated, for accessing ESS processes on remote
computers. See Section 3.4 [S+elsewhere and ESS-elsewhere], page 24.

3.4 S+elsewhere and ESS-elsewhere

These commands are now deprecated. We recommend ‘ess-remote’. We have two versions
of the elsewhere function. ‘S+elsewhere’ is specific for the S-Plus program. The more
general function ‘ESS-elsewhere’ is not as stable.

1. Enter ‘M-x S+elsewhere’. You will be prompted for a starting directory. I usually give
it my project directory on the local machine, say ‘~myname/myproject/’

Or enter ‘M-x ESS-elsewhere’. You will be prompted for an ESS program and for
a starting directory. I usually give it my project directory on the local machine, say
‘~myname/myproject/’

2. The ‘*S+3*’ buffer will appear with a prompt from the local operating system (the
unix prompt on a unix workstation or with cygwin bash on a PC, or the msdos prompt
on a PC without bash). emacs may freeze because the cursor is at the wrong place.
Unfreeze it with ‘C-g’ then move the cursor to the end with ‘M->’. With ‘S+elsewhere’
the buffer name is based on the name of the ESS program.

3. Enter ‘telnet myname@other.machine’ (or ‘ssh myname@other.machine’). You will
be prompted for your password on the remote machine. Use ‘M-x send-invisible’
before typing the password itself.

4. Before starting the ESS process, type ‘stty -echo nl’ at the unix prompt. The ‘-echo’
turns off the echo, the ‘nl’ turns off the newline that you see as ‘^M’.

5. You are now talking to the unix prompt on the other machine in the ‘*S+3*’ buffer. cd
into the directory for the current project and start the ESS process by entering ‘Splus’
or ‘R’ or ‘sas -stdio’ as appropriate. If you can login remotely to your Windows 2000,
then you should be able to run ‘Sqpe’ on the Windows machine. I haven’t tested this
and no-one has reported their tests to me. You will not be able to run the GUI through
this text-only connection.

6. Once you get the S or R or SAS prompt, then you are completely connected. All the
‘C-c C-n’ and related commands work correctly in sending commands from ‘myfile.s’
or ‘myfile.r’ on the PC to the ‘*S+3*’ buffer running the S or R or SAS program on
the remote machine.

7. Graphics on the remote machine works fine. If you run the X window system on the
remote unix machine you should be able to display them in ‘xfree86’ on your PC. If
you don’t run X Windows, or X11, then you can write graphics to the postscript device
and copy it to your PC with dired and display it with ghostscript.

3.5 Changing the startup actions

If you do not wish ESS to prompt for a starting directory when starting a new process, set
the variable ess-ask-for-ess-directory to nil. In this case, the starting directory will
be set using one of the following methods:

1. If the variable ess-directory-function stores the name of a function, the value re-
turned by this function is used. The default for this variable is nil.
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2. Otherwise, if the variable ess-directory stores the name of a directory (ending in a
slash), this value is used. The default for this variable is nil.

3. Otherwise, the working directory of the current buffer is used.

If ess-ask-for-ess-directory has a non-nil value (as it does by default) then the
value determined by the above rules provides the default when prompting for the starting
directory. Incidentally, ess-directory is an ideal variable to set in ess-pre-run-hook.

If you like to keep a record of your S sessions, set the variable ess-ask-about-transfile
to t, and you will be asked for a filename for the transcript before the ESS process starts.

[User Option]ess-ask-about-transfile
If non-nil, as for a file name in which to save the session transcript.

Enter the name of a file in which to save the transcript at the prompt. If the file doesn’t
exist it will be created (and you should give it a file name ending in ‘.St’); if the file already
exists the transcript will be appended to the file. (Note: if you don’t set this variable but
you still want to save the transcript, you can still do it later — see Section 4.2.4 [Saving
transcripts], page 28.)

Once these questions are answered (if they are asked at all) the S process itself is started
by calling the program name specified in the variable inferior-ess-program. If you need
to pass any arguments to this program, they may be specified in the variable inferior-

S_program_name-args (e.g. if inferior-ess-program is "S+" then the variable to set is
inferior-S+-args. It is not normally necessary to pass arguments to the S program; in
particular do not pass the ‘-e’ option to Splus, since ESS provides its own command history
mechanism.

By default, the new process will be displayed in the same window in the current frame. If
you wish your S process to appear in a separate variable, customize the variable inferior-
ess-own-frame. Alternatively, change inferior-ess-same-window if you wish the process
to appear within another window of the current frame.
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4 Interacting with the ESS process

The primary function of the ESS package is to provide an easy-to-use front end to the S
interpreter. This is achieved by running the S process from within an Emacs buffer, called
hereafter inferior buffer, which has an active inferior-ess-mode. The features of Inferior
S mode are similar to those provided by the standard Emacs shell mode (see Section “Shell
Mode” in The Gnu Emacs Reference Manual). Command-line completion of S objects and
a number of ‘hot keys’ for commonly-used S commands are also provided for ease of typing.

4.1 Entering commands and fixing mistakes

Sending a command to the ESS process is as simple as typing it in and pressing the RETURN
key:

[Command]inferior-ess-send-input
RET Send the command on the current line to the ESS process.

If you make a typing error before pressing RET all the usual Emacs editing commands are
available to correct it (see Section “Basic editing commands” in The GNU Emacs Reference
Manual). Once the command has been corrected you can press RETURN (even if the cursor
is not at the end of the line) to send the corrected command to the ESS process.

Emacs provides some other commands which are useful for fixing mistakes:

C-c C-w backward-kill-word Deletes the previous word (such as an object name) on
the command line.

C-c C-u comint-kill-input Deletes everything from the prompt to point. Use this to
abandon a command you have not yet sent to the ESS process.

C-c C-a comint-bol Move to the beginning of the line, and then skip forwards past the
prompt, if any.

See Section “Shell Mode” in The Gnu Emacs Reference Manual, for other commands
relevant to entering input.

4.2 Manipulating the transcript

Most of the time, the cursor spends most of its time at the bottom of the ESS process buffer,
entering commands. However all the input and output from the current (and previous) ESS
sessions is stored in the process buffer (we call this the transcript) and often we want to move
back up through the buffer, to look at the output from previous commands for example.

Within the process buffer, a paragraph is defined as the prompt, the command after the
prompt, and the output from the command. Thus M-{ and M-} move you backwards and
forwards, respectively, through commands in the transcript. A particularly useful command
is M-h (mark-paragraph) which will allow you to mark a command and its entire output
(for deletion, perhaps). For more information about paragraph commands, see Section
“Paragraphs” in The GNU Emacs Reference Manual.

If an ESS process finishes and you restart it in the same process buffer, the output from
the new ESS process appears after the output from the first ESS process separated by a
form-feed (‘^L’) character. Thus pages in the ESS process buffer correspond to ESS sessions.



Chapter 4: Interacting with the ESS process 27

Thus, for example, you may use C-x [ and C-x ] to move backward and forwards through
ESS sessions in a single ESS process buffer. For more information about page commands,
see Section “Pages” in The GNU Emacs Reference Manual.

4.2.1 Manipulating the output from the last command

Viewing the output of the command you have just entered is a common occurrence and
ESS provides a number of facilities for doing this. Whenever a command produces a longish
output, it is possible that the window will scroll, leaving the next prompt near the middle
of the window. The first part of the command output may have scrolled off the top of the
window, even though the entire output would fit in the window if the prompt were near the
bottom of the window. If this happens, you can use the following comint commands:

comint-show-maximum-output to move to the end of the buffer, and place cursor on
bottom line of window to make more of the last output visible. To make this happen
automatically for all inputs, set the variable comint-scroll-to-bottom-on-input to t or
’this. If the first part of the output is still not visible, use C-c C-r (comint-show-output),
which moves cursor to the previous command line and places it at the top of the window.

Finally, if you want to discard the last command output altogether, use C-c C-o (comint-
kill-output), which deletes everything from the last command to the current prompt. Use
this command judiciously to keep your transcript to a more manageable size.

4.2.2 Viewing older commands

If you want to view the output from more historic commands than the previous command,
commands are also provided to move backwards and forwards through previously entered
commands in the process buffer:

C-c C-p comint-previous-inputMoves point to the preceding command in the process
buffer.

C-c C-n comint-next-input Moves point to the next command in the process buffer.

Note that these two commands are analogous to C-p and C-n but apply to command lines
rather than text lines. And just like C-p and C-n, passing a prefix argument to these com-
mands means to move to the ARG’th next (or previous) command. (These commands are
also discussed in Section “Shell History Copying” in The GNU Emacs Reference Manual.)

There are also two similar commands (not bound to any keys by default) which move
to preceding or succeeding commands, but which first prompt for a regular expression (see
Section “Syntax of Regular Expression” in The GNU Emacs Reference Manual), and then
moves to the next (previous) command matching the pattern.

comint-backward-matching-input regexp arg

comint-forward-matching-input regexp arg

Search backward (forward) through the transcript buffer for the arg ’th previ-
ous (next) command matching regexp. arg is the prefix argument; regexp is
prompted for in the minibuffer.

4.2.3 Re-submitting commands from the transcript

When moving through the transcript, you may wish to re-execute some of the commands
you find there. ESS provides three commands to do this; these commands may be used
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whenever the cursor is within a command line in the transcript (if the cursor is within some
command output, an error is signalled). Note all three commands involve the RETURN
key.

RET inferior-ess-send-input See Section 4.1 [Command-line editing], page 26.

C-c RET comint-copy-old-input Copy the command under the cursor to the current
command line, but don’t execute it. Leaves the cursor on the command line so
that the copied command may be edited.

When the cursor is not after the current prompt, the RETURN key has a slightly different
behavior than usual. Pressing RET on any line containing a command that you entered (i.e.
a line beginning with a prompt) sends that command to the ESS process once again. If you
wish to edit the command before executing it, use C-c RET instead; it copies the command
to the current prompt but does not execute it, allowing you to edit it before submitting it.

These commands work even if the current line is a continuation line (i.e. the prompt
is ‘+’ instead of ‘>’) — in this case all the lines that form the multi-line command are
concatenated together and the resulting command is sent to the ESS process (currently this
is the only way to resubmit a multi-line command to the ESS process in one go). If the
current line does not begin with a prompt, an error is signalled. This feature, coupled with
the command-based motion commands described above, could be used as a primitive history
mechanism. ESS provides a more sophisticated mechanism, however, which is described in
Section 4.3 [Command History], page 29.

4.2.4 Keeping a record of your S session

To keep a record of your S session in a disk file, use the Emacs command C-x C-w (write-
file) to attach a file to the ESS process buffer. The name of the process buffer will
(probably) change to the name of the file, but this is not a problem. You can still use S as
usual; just remember to save the file before you quit Emacs with C-x C-s. You can make
ESS prompt you for a filename in which to save the transcript every time you start S by
setting the variable ess-ask-about-transfile to t; See Section 3.5 [Customizing startup],
page 24. We recommend you save your transcripts with filenames that end in ‘.St’. There
is a special mode (ESS transcript mode — see Chapter 6 [Transcript Mode], page 37) for
editing transcript files which is automatically selected for files with this suffix.

S transcripts can get very large, so some judicious editing is appropriate if you are saving
it in a file. Use C-c C-o whenever a command produces excessively long output (printing
large arrays, for example). Delete erroneous commands (and the resulting error messages
or other output) by moving to the command (or its output) and typing M-h C-w. Also,
remember that C-c C-x (and other hot keys) may be used for commands whose output you
do not wish to appear in the transcript. These suggestions are appropriate even if you are
not saving your transcript to disk, since the larger the transcript, the more memory your
Emacs process will use on the host machine.

Finally, if you intend to produce S source code (suitable for using with source() or
inclusion in an S function) from a transcript, then the command ess-transcript-clean-

region may be of use. see Section 6.2 [Clean], page 37
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4.3 Command History

ESS provides easy-to-use facilities for re-executing or editing previous commands. An input
history of the last few commands is maintained (by default the last 500 commands are
stored, although this can be changed by setting the variable comint-input-ring-size in
inferior-ess-mode-hook.) The simplest history commands simply select the next and
previous commands in the input history:

M-p comint-previous-input Select the previous command in the input history.

M-n comint-next-input Select the next command in the input history.

For example, pressing M-p once will re-enter the last command into the process buffer after
the prompt but does not send it to the ESS process, thus allowing editing or correction of
the command before the ESS process sees it. Once corrections have been made, press RET
to send the edited command to the ESS process.

If you want to select a particular command from the history by matching it against a
regular expression (see Section “Syntax of Regular Expression” in The GNU Emacs Refer-
ence Manual), to search for a particular variable name for example, these commands are
also available:

M-r comint-history-isearch-backward-regexp Prompt for a regular expression,
and search backwards through the input history for a command matching the
expression.

A common type of search is to find the last command that began with a particular sequence
of characters; the following two commands provide an easy way to do this:

C-c M-r comint-previous-matching-input-from-input Select the previous command
in the history which matches the string typed so far.

C-c M-s comint-next-matching-input-from-input Select the next command in the
history which matches the string typed so far.

Instead of prompting for a regular expression to match against, as they instead select
commands starting with those characters already entered. For instance, if you wanted to
re-execute the last attach() command, you may only need to type att and then C-c M-r

and RET.

See Section “Shell History Ring” in The GNU Emacs Reference Manual, for a more
detailed discussion of the history mechanism, and do experiment with the In/Out menu to
explore the possibilities.

Many ESS users like to have even easier access to these, and recommend to add something
like

(eval-after-load "comint"

’(progn

(define-key comint-mode-map [up]

’comint-previous-matching-input-from-input)

(define-key comint-mode-map [down]

’comint-next-matching-input-from-input)

;; also recommended for ESS use --
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(setq comint-scroll-to-bottom-on-output ’others)

(setq comint-scroll-show-maximum-output t)

;; somewhat extreme, almost disabling writing in *R*, *shell* buffers above prompt:

(setq comint-scroll-to-bottom-on-input ’this)

))

to your ‘.emacs’ file, where the last two settings are typically desirable for the situation
where you work with a script (e.g., ‘code.R’) and send code chunks to the process buffer
(e.g. *R*). Note however that these settings influence all comint-using emacs modes, not
just the ESS ones, and for that reason, these customization cannot be part of ESS itself.

4.3.1 Saving the command history

The ess-history-file variable, which is t by default, together with ess-history-

directory, governs if and where the command history is saved and restored between
sessions. By default, ess-history-directory is nil, and the command history will be
stored (as text file) in the ess-directory, e.g., as ‘.Rhistory’.

Experienced ESS users often work exclusively with script files rather than in a (e.g., *R)
console session, and may not want to save any history files, and hence have:

(setq ess-history-file nil)

or will only want one global command history file and have:

(setq ess-history-directory "~/.R/")

in your ‘.emacs’ file.

4.4 References to historical commands

Instead of searching through the command history using the command described in the pre-
vious section, you can alternatively refer to a historical command directly using a notation
very similar to that used in csh. History references are introduced by a ‘!’ or ‘^’ character
and have meanings as follows:

‘!!’ The immediately previous command

‘!-N ’ The Nth previous command

‘!text’ The last command beginning with the string ‘text’

‘!?text’ The last command containing the string ‘text’

In addition, you may follow the reference with a word designator to select particular
words of the input. A word is defined as a sequence of characters separated by whitespace.
(You can modify this definition by setting the value of comint-delimiter-argument-list
to a list of characters that are allowed to separate words and themselves form words.) Words
are numbered beginning with zero. The word designator usually begins with a ‘:’ (colon)
character; however it may be omitted if the word reference begins with a ‘^’, ‘$’, ‘*’ or
‘-’. If the word is to be selected from the previous command, the second ‘!’ character can
be omitted from the event specification. For instance, ‘!!:1’ and ‘!:1’ both refer to the
first word of the previous command, while ‘!!$’ and ‘!$’ both refer to the last word in the
previous command. The format of word designators is as follows:

‘0’ The zeroth word (i.e. the first one on the command line)
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‘n ’ The nth word, where n is a number

‘^’ The first word (i.e. the second one on the command line)

‘$’ The last word

‘x-y ’ A range of words; ‘-y ’ abbreviates ‘0-y ’

‘*’ All the words except the zeroth word, or nothing if the command had just one
word (the zeroth)

‘x*’ Abbreviates x-$

‘x-’ Like ‘x*’, but omitting the last word

In addition, you may surround the entire reference except for the first ‘!’ by braces to
allow it to be followed by other (non-whitespace) characters (which will be appended to the
expanded reference).

Finally, ESS also provides quick substitution; a reference like ‘^old^new^’ means “the
last command, but with the first occurrence of the string ‘old’ replaced with the string
‘new’” (the last ‘^’ is optional). Similarly, ‘^old^’ means “the last command, with the first
occurrence of the string ‘old’ deleted” (again, the last ‘^’ is optional).

To convert a history reference as described above to an input suitable for S, you need
to expand the history reference, using the TAB key. For this to work, the cursor must be
preceded by a space (otherwise it would try to complete an object name) and not be within
a string (otherwise it would try to complete a filename). So to expand the history reference,
type SPC TAB. This will convert the history reference into an S command from the history,
which you can then edit or press RET to execute.

For example, to execute the last command that referenced the variable data, type !?data
SPC TAB RET.

4.5 Hot keys for common commands

ESS provides a number of commands for executing the commonly used functions. These
commands below are basically information-gaining commands (such as objects() or
search()) which tend to clutter up your transcript and for this reason some of the hot
keys display their output in a temporary buffer instead of the process buffer by default.
This behavior is controlled by the following option:

[User Option]ess-execute-in-process-buffer
If non-nil, means that these commands will produce their output in the process
buffer instead.

In any case, passing a prefix argument to the commands (with C-u) will reverse the
meaning of ess-execute-in-process-buffer for that command, i.e. the output will be
displayed in the process buffer if it usually goes to a temporary buffer, and vice-versa. These
are the hot keys that behave in this way:

[Command]ess-execute-objects posn
C-c C-x Sends the objects() command to the ESS process. A prefix argument
specifies the position on the search list (use a negative argument to toggle ess-

execute-in-process-buffer as well). A quick way to see what objects are in your
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working directory. A prefix argument of 2 or more means get objects for that position.
A negative prefix argument posn gets the objects for that position, as well as toggling
ess-execute-in-process-buffer.

[Command]ess-execute-search invert
C-c C-s Sends the inferior-ess-search-list-command command to the
ess-language process; search() in S. Prefix invert toggles ess-execute-in-

process-buffer.

ess-execute may seem pointless when you could just type the command in anyway, but
it proves useful for ‘spot’ calculations which would otherwise clutter your transcript, or for
evaluating an expression while partway through entering a command. You can also use this
command to generate new hot keys using the Emacs keyboard macro facilities; see Section
“Keyboard Macros” in The GNU Emacs Reference Manual.

The following hot keys do not use ess-execute-in-process-buffer to decide where
to display the output — they either always display in the process buffer or in a separate
buffer, as indicated:

[Command]ess-load-file filename
C-c C-l Prompts for a file (filename) to load into the ESS process using source().
If there is an error during loading, you can jump to the error in the file with the
following function.

[Command]ess-parse-errors arg reset
C-c ‘ or C-x ‘ Visits next next-error message and corresponding source code. If
all the error messages parsed so far have been processed already, the message buffer
is checked for new ones. A prefix arg specifies how many error messages to move;
negative means move back to previous error messages. Just C-u as a prefix means
reparse the error message buffer and start at the first error. The reset argument
specifies restarting from the beginning.

See Section 7.3 [Error Checking], page 39, for more details.

[Command]ess-display-help-on-object object command
C-c C-v Pops up a help buffer for an S object or function. If command is supplied,
it is used instead of inferior-ess-help-command. See Chapter 8 [Help], page 45 for
more details.

[Command]ess-quit
C-c C-q Issue an exiting command to the inferior process, additionally also running
ess-cleanup for disposing of any temporary buffers (such as help buffers and edit
buffers) that may have been created. Use this command when you have finished your
S session instead of simply quitting at the inferior process prompt, otherwise you will
need to issue the command ess-cleanup explicitly to make sure that all the files that
need to be saved have been saved, and that all the temporary buffers have been killed.
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4.6 Is the Statistical Process running under ESS?

For the S languages (S, S-Plus, R) ESS sets an option in the current process that programs
in the language can check to determine the environment in which they are currently running.

ESS sets options(STERM="iESS") for S language processes running in an inferior
iESS[S] or iESS[R] buffer.

ESS sets options(STERM="ddeESS") for independent S-Plus for Windows processes run-
ning in the GUI and communicating with ESS via the DDE (Microsoft Dynamic Data
Exchange) protocol through a ddeESS[S] buffer.

Other values of options()$STERM that we recommend are:

• length: Fixed length xterm or telnet window.

• scrollable: Unlimited length xterm or telnet window.

• server: S-Plus Stat Server.

• BATCH: BATCH.

• Rgui: R GUI.

• Commands: S-Plus GUI without DDE interface to ESS.

Additional values may be recommended in the future as new interaction protocols are
created. Unlike the values iESS and ddeESS, ESS can’t set these other values since the S
language program is not under the control of ESS.

4.7 Using emacsclient

When starting R or S under Unix, ESS sets options(editor="emacsclient"). (Under
Microsoft Windows, it will use gnuclient.exe rather than emacsclient, but the same principle
applies.) Within your R session, for example, if you have a function called iterator, typing
fix(iterator), will show that function in a temporary Emacs buffer. You can then correct
the function. When you kill the buffer, the definition of the function is updated. Using
edit() rather than fix() means that the function is not updated. Finally, the S function
page(x) will also show a text representation of the object x in a temporary Emacs buffer.

4.8 Other commands provided by inferior-ESS

The following commands are also available in the process buffer:

[Command]comint-interrupt-subjob
C-c C-c Sends a Control-C signal to the ESS process. This has the effect of aborting
the current command.

[Command]ess-switch-to-inferior-or-script-buffer toggle-eob
C-c C-z When in process buffer, return to the most recent script buffer. When in a
script buffer pop to the associated process buffer. This is a single key command, that
is C-c C-z C-z from a script buffer returns to the original buffer.

If toggle-eob is given, the value of ess-switch-to-end-of-proc-buffer is toggled.

[User Option]ess-switch-to-end-of-proc-buffer
If non-nil, ess-switch-to-inferior-or-script-buffer goes to end of process
buffer.
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Other commands available in Inferior S mode are discussed in Section “Shell Mode” in
The Gnu Emacs Reference Manual.
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5 Sending code to the ESS process

Other commands are also available for evaluating portions of code in the S process. These
commands cause the selected code to be evaluated directly by the ESS process as if you had
typed them in at the command line; the source() function is not used. You may choose
whether both the commands and their output appear in the process buffer (as if you had
typed in the commands yourself) or if the output alone is echoed. The behavior is controlled
by the variable:

[User Option]ess-eval-visibly
Non-nil means ess-eval-* commands display commands and output in the process
buffer. Default is t.

Passing a prefix (C-u) vis to any of the following commands, however, reverses the mean-
ing of ess-eval-visibly for that command only — for example C-u C-c C-j suppresses
the current line of S (or other) code in the ESS process buffer. This method of evaluation
is an alternative to S’s source() function when you want the input as well as the output
to be displayed. (You can sort of do this with source() when the option echo=T is set,
except that prompts do not get displayed. ESS puts prompts in the right places.)

Primary commands for evaluating code are:

[Command]ess-eval-region-or-line-and-step vis
Send the highlighted region or current line and step to next line of code.

[Command]ess-eval-region-or-function-or-paragraph vis
C-M-x Sends the current selected region or function or paragraph.

[Command]ess-eval-region-or-function-or-paragraph-and-step vis
C-c C-c Like ess-eval-region-or-function-or-paragraph but steps to next line
of code.

Other, not so often used, evaluation commands are:

[Command]ess-eval-line vis
C-c C-j Sends the current line to the ESS process.

[Command]ess-eval-line-and-go vis
C-c M-j Like ess-eval-line but additionally switches point to the ESS process.

[Command]ess-eval-function vis no-error
C-c C-f Sends the S function containing point to the ESS process.

[Command]ess-eval-function-and-go vis
C-c M-f Like ess-eval-function but additionally switches point to the ESS process.

[Command]ess-eval-region start end toggle message
C-c C-r Sends the current region to the ESS process.

[Command]ess-eval-region-and-go start end vis
C-c M-r Like ess-eval-region but additionally switches point to the ESS process.
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[Command]ess-eval-buffer vis
C-c C-b Sends the current buffer to the ESS process.

[Command]ess-eval-buffer-and-go vis
C-c M-b Like ess-eval-buffer but additionally switches point to the ESS process.

All the above ess-eval-* commands are useful for evaluating small amounts of code
and observing the results in the process buffer for debugging purposes, or for generating
transcripts from source files. When editing S functions, it is generally preferable to use C-c
C-l to update the function’s value. In particular, ess-eval-buffer is now largely obsolete.

A useful way to work is to divide the frame into two windows; one containing the source
code and the other containing the process buffer. If you wish to make the process buffer
scroll automatically when the output reaches the bottom of the window, you will need to
set the variable comint-scroll-to-bottom-on-output to ’others or t.
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6 Manipulating saved transcript files

Inferior S mode records the transcript (the list of all commands executed, and their output)
in the process buffer, which can be saved as a transcript file, which should normally have the
suffix ‘.St’. The most obvious use for a transcript file is as a static record of the actions you
have performed in a particular S session. Sometimes, however, you may wish to re-execute
commands recorded in the transcript file by submitting them to a running ESS process.
This is what Transcript Mode is for.

If you load file a with the suffix ‘.St’ into Emacs, it is placed in S Transcript Mode.
Transcript Mode is similar to Inferior S mode (see Chapter 4 [Entering commands], page 26):
paragraphs are defined as a command and its output, and you can move though commands
either with the paragraph commands or with C-c C-p and C-c C-n.

6.1 Resubmitting commands from the transcript file

Three commands are provided to re-submit command lines from the transcript file to a
running ESS process. They are:

[Command]ess-transcript-send-command
M-RET Sends the current command line to the ESS process, and execute it.

[Command]ess-transcript-copy-command
C-c RET Copy the current command to the ESS process, and switch to it (ready to
edit the copied command).

[Command]ess-transcript-send-command-and-move
RET Sends the current command to the ESS process, and move to the next command
line. This command is useful for submitting a series of commands.

Note that the first two commands are similar to those on the same keys in inferior S Mode.
In all three cases, the commands should be executed when the cursor is on a command line
in the transcript; the prompt is automatically removed before the command is submitted.

6.2 Cleaning transcript files

Yet another use for transcript files is to extract the command lines for inclusion in an S
source file or function. Transcript mode provides one command which does just this:

[Command]ess-transcript-clean-region beg end even-if-read-only
C-c C-w Strip the transcript in the region (given by beg and end), leaving only com-
mands. Deletes any lines not beginning with a prompt, and then removes the prompt
from those lines that remain. Prefix argument even-if-read-only means to clean even
if the buffer is read-only. Don’t forget to remove any erroneous commands first!

The remaining command lines may then be copied to a source file or edit buffer for inclusion
in a function definition, or may be evaluated directly (see Chapter 5 [Evaluating code],
page 35) using the code evaluation commands from S mode, also available in S Transcript
Mode.
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7 Editing objects and functions

ESS provides facilities for editing S objects within your Emacs session. Most editing is
performed on S functions, although in theory you may edit datasets as well. Edit buffers
are always associated with files, although you may choose to make these files temporary
if you wish. Alternatively, you may make use of a simple yet powerful mechanism for
maintaining backups of text representations of S functions. Error-checking is performed
when S code is loaded into the ESS process.

7.1 Creating or modifying S objects

To edit an S object, type

[Command]ess-dump-object-into-edit-buffer object
C-c C-e C-d Edit an S object in its own edit buffer.

from within the ESS process buffer (*S*). You will then be prompted for an object
to edit: you may either type in the name of an existing object (for which completion is
available using the TAB key), or you may enter the name of a new object. A buffer will
be created containing the text representation of the requested object or, if you entered the
name of a non-existent object at the prompt and the variable ess-function-template is
non-nil, you will be presented with a template defined by that variable, which defaults to
a skeleton function construct.

You may then edit the function as required. The edit buffer generated by ess-dump-

object-into-edit-buffer is placed in the ESS major mode which provides a number of
commands to facilitate editing S source code. Commands are provided to intelligently
indent S code, evaluate portions of S code and to move around S code constructs.

Note: when you dump a file with C-c C-e C-d, ESS first checks to see whether there
already exists an edit buffer containing that object and, if so, pops you directly to that
buffer. If not, ESS next checks whether there is a file in the appropriate place with the
appropriate name (see Section 7.6 [Source Files], page 41) and if so, reads in that file. You
can use this facility to return to an object you were editing in a previous session (and which
possibly was never loaded to the S session). Finally, if both these tests fail, the ESS process
is consulted and a dump() command issued. If you want to force ESS to ask the ESS process
for the object’s definition (say, to reformat an unmodified buffer or to revert back to S’s idea
of the object’s definition) pass a prefix argument to ess-dump-object-into-edit-buffer

by typing C-u C-c C-e C-d.

7.2 Loading source files into the ESS process

The best way to get information — particularly function definitions — into S is to load
them in as source file, using S’s source function. You have already seen how to create
source files using C-c C-e C-d; ESS provides a complementary command for loading source
files (even files not created with ESS!) into the ESS process, namely ess-load-file (C-c
C-l). see Section 4.5 [Hot keys], page 31.

After typing C-c C-l you will prompt for the name of the file to load into S; usually this is
the current buffer’s file which is the default value (selected by simply pressing RET at the
prompt). You will be asked to save the buffer first if it has been modified (this happens
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automatically if the buffer was generated with C-c C-e C-d). The file will then be loaded,
and if it loads successfully you will be returned to the ESS process.

7.3 Detecting errors in source files

If any errors occur when loading a file with C-c C-l, ESS will inform you of this fact. In
this case, you can jump directly to the line in the source file which caused the error by
typing C-c ‘ (ess-parse-errors). You will be returned to the offending file (loading it
into a buffer if necessary) with point at the line S reported as containing the error. You
may then correct the error, and reload the file. Note that none of the commands in an S
source file will take effect if any part of the file contains errors.

Sometimes the error is not caused by a syntax error (loading a non-existent file for
example). In this case typing C-c ‘ will simply display a buffer containing S’s error message.
You can force this behavior (and avoid jumping to the file when there is a syntax error) by
passing a prefix argument to ess-parse-errors with C-u C-c ‘.

7.4 Indenting and formatting S code

ESS provides a sophisticated mechanism for indenting S source code (thanks to Ken’ichi
Shibayama). Compound statements (delimited by ‘{’ and ‘}’) are indented relative to their
enclosing block. In addition, the braces have been electrified to automatically indent to
the correct position when inserted, and optionally insert a newline at the appropriate place
as well. Lines which continue an incomplete expression are indented relative to the first
line of the expression. Function definitions, if statements, calls to expression() and loop
constructs are all recognized and indented appropriately. User variables are provided to
control the amount of indentation in each case, and there are also a number of predefined
indentation styles to choose from.

Comments are also handled specially by ESS, using an idea borrowed from the Emacs-
Lisp indentation style. By default, comments beginning with ‘###’ are aligned to the begin-
ning of the line. Comments beginning with ‘##’ are aligned to the current level of indentation
for the block containing the comment. Finally, comments beginning with ‘#’ are aligned
to a column on the right (the 40th column by default, but this value is controlled by the
variable comment-column,) or just after the expression on the line containing the comment
if it extends beyond the indentation column. You turn off the default behavior by adding
the line (setq ess-indent-with-fancy-comments nil) to your ‘.emacs’ file.

ESS also supports Roxygen entries which is R documentation maintained in the source
code as comments See Section 10.2.2 [Roxygen], page 53.

The indentation commands provided by ESS are:

[Command]ess-indent-or-complete
TAB Indents the current line as S code.

Try to indent first, and if code is already properly indented, complete instead. In
ess-mode, only tries completion if ess-tab-complete-in-script is non-nil. See also
ess-first-tab-never-complete.

[User Option]ess-tab-complete-in-script
If non-nil, TAB in script buffers tries to complete if there is nothing to indent.
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[User Option]ess-first-tab-never-complete
If non-nil, TAB never tries to complete in ess-mode. The default ’symbol does not
try to complete if the next char is a valid symbol constituent. There are more options,
see the help (C-h v).

[Command]ess-indent-exp
TAB Indents each line in the S (compound) expression which follows point. Very useful
for beautifying your S code.

[Command]ess-electric-brace
{ } The braces automatically indent to the correct position when typed.

The following Emacs command are also helpful:

RET

LFD newline-and-indent Insert a newline, and indent the next line. (Note that
most keyboards nowadays do not have a LINEFEED key, but RET and C-j are
equivalent.)

M-; indent-for-comment Indents an existing comment line appropriately, or inserts
an appropriate comment marker.

7.4.1 Changing indentation styles

The combined value of nine variables that control indentation are collectively termed a style.
ESS provides several styles covering the common styles of indentation: DEFAULT, OWN, GNU,
BSD, K&R, C++, RRR, CLB. The variable ess-style-alist lists the value of each indentation
variable per style.

[Command]ess-set-style
C-c . Sets the formatting style in this buffer to be one of the predefined styles,
including GNU, BSD, K&R, CLB, and C++. The DEFAULT style uses the default values for
the indenting variables; The OWN style allows you to use your own private values of
the indentation variable, see below.

(setq ess-default-style ’C++)

[User Option]ess-default-style
The default value of ess-style. See the variable ess-style-alist for how these
groups (DEFAULT, OWN, GNU, BSD, . . . ) map onto different settings for variables.

[User Option]ess-style-alist
Predefined formatting styles for ESS code. Values for all groups, except OWN, are
fixed. To change the value of variables in the OWN group, customize the variable
ess-own-style-list. The default style in use is controlled by ess-default-style.

The styles DEFAULT and OWN are initially identical. If you wish to edit some of the default
values, set ess-default-style to ’OWN and change ess-own-style-list. See Appendix A
[Customization], page 83, for convenient ways to set both these variables.

If you prefer not to use the custom facility, you can change individual indentation vari-
ables within a hook, for example:
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(defun myindent-ess-hook ()

(setq ess-indent-level 4))

(add-hook ’ess-mode-hook ’myindent-ess-hook)

In the rare case that you’d like to add an entire new indentation style of your own, copy
the definition of ess-own-style-list to a new variable and ensure that the last line of
the :set declaration calls ess-add-style with a unique name for your style (e.g. ’MINE).
Finally, add (setq ess-default-style ’MINE) to use your new style.

7.5 Commands for motion, completion and more

A number of commands are provided to move across function definitions in the edit buffer:

[Command]ess-goto-beginning-of-function-or-para
ESC C-a aka C-M-a If inside a function go to the beginning of it, otherwise go to the
beginning of paragraph.

[Command]ess-goto-end-of-function-or-para
ESC C-e aka C-M-e Move point to the end of the function containing point.

[Command]ess-mark-function
ESC C-h aka C-M-h Place point at the beginning of the S function containing point,
and mark at the end.

Don’t forget the usual Emacs commands for moving over balanced expressions and paren-
theses: See Section “Lists and Sexps” in The GNU Emacs Reference Manual.

Completion is provided in the edit buffer in a similar fashion to the process buffer: TAB
first indents, and if there is nothing to indent, completes the object or file name; M-? lists
file completions. See See Chapter 9 [Completion], page 47, for more.

Finally, C-c C-z (ess-switch-to-inferior-or-script-buffer) returns you to the
iESS process buffer, if done from a script buffer, placing point at the end of the buffer.
If this is done from the iESS process buffer, point is taken to the script buffer.

In addition some commands available in the process buffer are also available in the script
buffer. You can still read help files with C-c C-v, edit another function with C-c C-e C-d

and of course C-c C-l can be used to load a source file into S.

7.6 Maintaining S source files

Every edit buffer in ESS is associated with a dump file on disk. Dump files are created
whenever you type C-c C-e C-d (ess-dump-object-into-edit-buffer), and may either
be deleted after use, or kept as a backup file or as a means of keeping several versions of an
S function.

[User Option]ess-delete-dump-files
If non-nil, dump files created with C-c C-e C-d are deleted immediately after they
are created by the ess-process.

Since immediately after S dumps an object’s definition to a disk file the source code
on disk corresponds exactly to S’s idea of the object’s definition, the disk file isn’t needed;
deleting it now has the advantage that if you don’t modify the file (say, because you just
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wanted to look at the definition of one of the standard S functions) the source dump file
won’t be left around when you kill the buffer. Note that this variable only applies to files
generated with S’s dump function; it doesn’t apply to source files which already exist. The
default value is t.

[User Option]ess-keep-dump-files
Variable controlling whether to delete dump files after a successful load. If ‘nil’:
always delete. If ‘ask’, confirm to delete. If ‘check’, confirm to delete, except for
files created with ess-dump-object-into-edit-buffer. Anything else, never delete.
This variable only affects the behaviour of ess-load-file. Dump files are never
deleted if an error occurs during the load.

After an object has been successfully (i.e. without error) loaded back into S with C-c

C-l, the disk file again corresponds exactly (well, almost — see below) to S’s record of the
object’s definition, and so some people prefer to delete the disk file rather than unnecessarily
use up space. This option allows you to do just that.

If the value of ess-keep-dump-files is t, dump files are never deleted after they are
loaded. Thus you can maintain a complete text record of the functions you have edited
within ESS. Backup files are kept as usual, and so by using the Emacs numbered backup
facility — see Section “Single or Numbered Backups” in The Gnu Emacs Reference Manual,
you can keep a historic record of function definitions. Another possibility is to maintain
the files with a version-control system such as RCS See Section “Version Control” in The
Gnu Emacs Reference Manual. As long as a dump file exists in the appropriate place
for a particular object, editing that object with C-c C-e C-d finds that file for editing
(unless a prefix argument is given) — the ESS process is not consulted. Thus you can
keep comments outside the function definition as a means of documentation that does not
clutter the S object itself. Another useful feature is that you may format the code in any
fashion you please without S re-indenting the code every time you edit it. These features
are particularly useful for project-based work.

If the value of ess-keep-dump-files is nil, the dump file is always silently deleted after
a successful load with C-c C-l. While this is useful for files that were created with C-c C-e

C-d it also applies to any other file you load (say, a source file of function definitions), and
so can be dangerous to use unless you are careful. Note that since ess-keep-dump-files

is buffer-local, you can make sure particular files are not deleted by setting it to t in the
Local Variables section of the file See Section “Local Variables in Files” in The Gnu Emacs
Reference Manual.

A safer option is to set ess-keep-dump-files to ask; this means that ESS will always
ask for confirmation before deleting the file. Since this can get annoying if you always want
to delete dump files created with C-c C-e C-d, but not any other files, setting ess-keep-

dump-files to check (the default value) will silently delete dump files created with C-c

C-e C-d in the current Emacs session, but query for any other file. Note that in any case
you will only be asked for confirmation once per file, and your answer is remembered for
the rest of the Emacs session.

Note that in all cases, if an error (such as a syntax error) is detected while loading the
file with C-c C-l, the dump file is never deleted. This is so that you can edit the file in a
new Emacs session if you happen to quit Emacs before correcting the error.

Dump buffers are always autosaved, regardless of the value of ess-keep-dump-files.
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7.7 Names and locations of dump files

Every dump file should be given a unique file name, usually the dumped object name with
some additions.

[User Option]ess-dump-filename-template
Template for filenames of dumped objects. %s is replaced by the object name.

By default, dump file names are the user name, followed by ‘.’ and the object and end-
ing with ‘.S’. Thus if user joe dumps the object myfun the dump file will have name
‘joe.myfun.S’. The username part is included to avoid clashes when dumping into a
publicly-writable directory, such as ‘/tmp’; you may wish to remove this part if you are
dumping into a directory owned by you.

You may also specify the directory in which dump files are written:

[User Option]ess-source-directory
Directory name (ending in a slash) where S dump files are to be written.

By default, dump files are always written to ‘/tmp’, which is fine when ess-keep-dump-

files is nil. If you are keeping dump files, then you will probably want to keep them
somewhere in your home directory, say ‘~/S-source’. This could be achieved by including
the following line in your ‘.emacs’ file:

(setq ess-source-directory (expand-file-name "~/S-source/"))

If you would prefer to keep your dump files in separate directories depending on the value
of some variable, ESS provides a facility for this also. By setting ess-source-directory to
a lambda expression which evaluates to a directory name, you have a great deal of flexibility
in selecting the directory for a particular source file to appear in. The lambda expression is
evaluated with the process buffer as the current buffer and so you can use the variables local
to that buffer to make your choice. For example, the following expression causes source files
to be saved in the subdirectory ‘Src’ of the directory the ESS process was run in.

(setq ess-source-directory

(lambda ()

(concat ess-directory "Src/")))

(ess-directory is a buffer-local variable in process buffers which records the directory the
ESS process was run from.) This is useful if you keep your dump files and you often edit
objects with the same name in different ESS processes. Alternatively, if you often change
your S working directory during an S session, you may like to keep dump files in some
subdirectory of the directory pointed to by the first element of the current search list. This
way you can edit objects of the same name in different directories during the one S session:

(setq ess-source-directory

(lambda ()

(file-name-as-directory

(expand-file-name (concat

(car ess-search-list)

"/.Src")))))
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If the directory generated by the lambda function does not exist but can be created,
you will be asked whether you wish to create the directory. If you choose not to, or the
directory cannot be created, you will not be able to edit functions.
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8 Reading help files

ESS provides an easy-to-use facility for reading S help files from within Emacs. From within
the ESS process buffer or any ESS edit buffer, typing C-c C-v (ess-display-help-on-
object) will prompt you for the name of an object for which you would like documentation.
Completion is provided over all objects which have help files.

If the requested object has documentation, you will be popped into a buffer (named
*help(obj-name)*) containing the help file. This buffer is placed in a special ‘S Help’
mode which disables the usual editing commands but which provides a number of keys for
paging through the help file.

Help commands:

? ess-describe-help-mode Pops up a help buffer with a list of the commands
available in S help mode.

h ess-display-help-on-object Pop up a help buffer for a different object.

Paging commands:

b

DEL scroll-down Move one page backwards through the help file.

SPC scroll-up Move one page forwards through the help file.

>

< end-of-buffer Move to the beginning and end of the help file, respectively.

Section-based motion commands:

n

p ess-skip-to-previous-section and ess-skip-to-next-section Move to
the next and previous section header in the help file, respectively. A section
header consists of a number of capitalized words, followed by a colon.

In addition, the s key followed by one of the following letters will jump to a particular
section in the help file. Note that R uses capitalized instead of all-capital section headers,
e.g., ‘Description:’ instead of ‘DESCRIPTION:’ and also only some versions of S(-plus) have
sections ‘BACKGROUND’, ‘BUGS’, ‘OPTIONAL ARGUMENTS’, ‘REQUIRED ARGUMENTS’, and ‘SIDE
EFFECTS’.

Do use s ? to get the current list of active key bindings.

‘a’ ARGUMENTS:

‘b’ BACKGROUND:

‘B’ BUGS:

‘d’ DESCRIPTION:

‘D’ DETAILS:

‘e’ EXAMPLES:

‘n’ NOTE:

‘O’ OPTIONAL ARGUMENTS:
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‘R’ REQUIRED ARGUMENTS:

‘r’ REFERENCES:

‘s’ SEE ALSO:

‘S’ SIDE EFFECTS:

‘u’ USAGE:

‘v’ VALUE:

‘<’ Jumps to beginning of file

‘>’ Jumps to end of file

‘?’ Pops up a help buffer with a list of the defined section motion keys.

Evaluation:

l ess-eval-line-and-step Evaluates the current line in the ESS process, and
moves to the next line. Useful for running examples in help files.

r ess-eval-region Send the contents of the current region to the ESS process.
Useful for running examples in help files.

Quit commands:

q ess-help-quit Return to previously selected buffer, and bury the help buffer.

k kill-buffer Return to previously selected buffer, and kills the help buffer.

x ess-kill-buffer-and-go Return to the ESS process, killing this help buffer.

Miscellaneous:

i ess-display-index Prompt for a package and display it’s help index.

v ess-display-vignettes Display all available vignettes.

w ess-display-help-in-browser Display current help page with the web
browser.

/ isearch-forward Same as C-s.

In addition, all of the ESS commands available in the edit buffers are also available in S
help mode (see Section 7.1 [Edit buffer], page 38). Of course, the usual (non-editing) Emacs
commands are available, and for convenience the digits and - act as prefix arguments.

If a help buffer already exists for an object for which help is requested, that buffer is
popped to immediately; the ESS process is not consulted at all. If the contents of the help
file have changed, you either need to kill the help buffer first, or pass a prefix argument
(with C-u) to ess-display-help-on-object.

Help buffers are marked as temporary buffers in ESS, and are deleted when ess-quit

or ess-cleanup are called.

Help buffers normally appear in another window within the current frame. If you wish
help buffers to appear in their own frame (either one per help buffer, or one for all help
buffers), you can customize the variable ess-help-own-frame.
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9 Completion

9.1 Completion of object names

The TAB key is for completion. The value of the variable ess-first-tab-never-complete
controls when completion is allowed controls when completion is allowed to occur. In ess-

mode TAB first tries to indent, and if there is nothing to indent, complete the object name
instead.

TAB comint-dynamic-complete Complete the S object name or filename before
point.

When the cursor is just after a partially-completed object name, pressing TAB provides
completion in a similar fashion to tcsh except that completion is performed over all known
S object names instead of file names. ESS maintains a list of all objects known to S at any
given time, which basically consists of all objects (functions and datasets) in every attached
directory listed by the search() command along with the component objects of attached
data frames (if your version of S supports them).

For example, consider the three functions (available in Splus version 3.0) called
binomplot(), binom.test() and binomial(). Typing bin TAB after the S prompt will
insert the characters ‘om’, completing the longest prefix (‘binom’) which distinguishes these
three commands. Pressing TAB once more provides a list of the three commands which
have this prefix, allowing you to add more characters (say, ‘.’) which specify the function
you desire. After entering more characters pressing TAB yet again will complete the object
name up to uniqueness, etc. If you just wish to see what completions exist without adding
any extra characters, type M-?.

[Command]ess-list-object-completions
M-? List all possible completions of the object name at point.

ESS also provides completion over the components of named lists and environments
(after ‘$’), S4 classes slots (after @), package and namespace objects (after :: and :::).

Completion is also provided over file names, which is particularly useful when using S
functions such as get() or scan() which require fully expanded file names.

In the Inferior ESS buffer, if the cursor is not in a string and does not follow a (partial)
object name, the TAB key has a third use: it expands history references. See Section 4.4
[History expansion], page 30.

Efficiency in completion is gained by maintaining a cache of objects currently known
to S; when a new object becomes available or is deleted, only one component of the cache
corresponding to the associated directory needs to be refreshed. If ESS ever becomes con-
fused about what objects are available for completion (such as when if refuses to complete
an object you know is there), the command M-x ess-resynch forces the entire cache to be
refreshed, which should fix the problem.
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9.2 Completion of function arguments

When inside a function call (i.e. following ‘(’), TAB completion also provides function
arguments. If function is a generic, completion will provide all the arguments of S3 methods
known to R.

A related functionality is See Section 11.1 [ESS ElDoc], page 57, which displays function
arguments in the echo area whenever the point is inside a function call.

9.3 Minibuffer completion

From version 12.03, ESS uses IDO mechanism (part of default emacs) for minibuffer com-
pletion if ido.el package is available and the value of ess-use-ido it t (the default).
The completion command ess-completing-read falls back on classic completion-read

interface if this feature is not available for whatever reason.

9.4 Integration with auto-complete package

ESS provides three sources for Auto Completion mode: ac-source-R-args, ac-

source-R-objects and ac-source-R. The last one combines the previous two
and makes them play nicely together. See auto-complete package documentation
(http://cx4a.org/software/auto-complete/) for how to modify and install your own
completion sources.

For the default auto-complete ESS configuration, install the latest version of auto-

complete package. ESS automatically detect the package and activates auto-complete in
ESS buffers.

To deactivate AC, place the following into your init file:

(setq ess-use-auto-complete nil)

Or, to activate auto-completion only in the ess-mode buffers:

(setq ess-use-auto-complete ’script-only)

ESS provides AC help both for arguments and objects (default keys C-? or <f1>). You
can bind M-h to display quick help pop-ups:

(define-key ac-completing-map (kbd "M-h") ’ac-quick-help)

AC binds M-n, and M-p for the navigation in the completion menu, which might be
inconvenient if you want it to use in the inferior R. Bind it to something else:

(define-key ac-completing-map "\M-n" nil) ;; was ac-next

(define-key ac-completing-map "\M-p" nil) ;; was ac-previous

(define-key ac-completing-map "\M-," ’ac-next)

(define-key ac-completing-map "\M-k" ’ac-previous)

9.5 Icicles

Another option for comprehensively handling completion in Emacs is via Icicles
(http://www.emacswiki.org/emacs/Icicles). It allows users to have completions shown
temporarily in the standard ‘*Completions*’ buffer, and interactively select completion
candidates using several methods. As of version 2013.04.04, Icicles provides support for
completion in ESS. Please consult Icicles documentation, which is easily accessible via
customize-group Icicles, for more details on installation and customization options.

http://cx4a.org/software/auto-complete/
http://www.emacswiki.org/emacs/Icicles


Chapter 9: Completion 49

Once installed, Icicles can be activated by evaluating (maybe place in ‘~/.emacs’):

(require ’icicles)

(icy-mode 1)

Icicles can be toggled at any moment by typing M-x icy.

When Icicles is on, TAB offers completion, provided the conditions determined by ess-

first-tab-never-complete allow it. Typing M-TAB will attempt completion regardless.
Typing M-? in ESS or iESS modes brings up the relevant completion candidates from which
to choose. Minibuffer input filters the available candidates. Use TAB for prefix completion
or S-TAB for substring or regexp completion. Use S-SPC to match an additional pattern
(repeatable). You can cycle among the matching candidates, choosing with RET or mouse-2.
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10 Developing with ESS

ESS provides several tools to help you with the development of your R packages:

10.1 ESS tracebug

ESS tracebug offers visual debugging, interactive error navigation, interactive backtrace,
breakpoint manipulation, control over R error actions, watch window and interactive flag-
ging/unflagging of functions for debugging.

From ESS13.05 ess-tracebug is on by default. You can toggle it on and off with M-x

ess-tracebug. To disable startup activation of ess-tracebug set ess-use-tracebug to
nil.

Tracebug functionality can be found on ess-dev-map, bound to C-c C-t. Additionally,
when subprocess is in a debugging state ess-debug-minor-mode is active and the following
additional shortcuts are available:

* Interactive Debugging (‘ess-debug-minor-mode-map’):

M-C . Continue . ‘ess-debug-command-continue’

M-C-C . Continue multi . ‘ess-debug-command-continue-multi’

M-N . Next step . ‘ess-debug-command-next’

M-C-N . Next step multi . ‘ess-debug-command-next-multi’

M-U . Up frame . ‘ess-debug-command-up’

M-Q . Quit debugging . ‘ess-debug-command-quit’

These are all the tracebug commands defined in ess-dev-map (C-c C-t ? to show this
table):

* Breakpoints (‘ess-dev-map’):

b . Set BP (repeat to cycle BP type) . ‘ess-bp-set’

B . Set conditional BP . ‘ess-bp-set-conditional’

k . Kill BP . ‘ess-bp-kil’

K . Kill all BPs . ‘ess-bp-kill-all’

o . Toggle BP state . ‘ess-bp-toggle-state’

l . Set logger BP . ‘ess-bp-set-logger’

n . Goto next BP . ‘ess-bp-next’

p . Goto previous BP . ‘ess-bp-previous’

(C- prefixed equivalents are also defined)

* Debugging (‘ess-dev-map’):

‘ . Show traceback . ‘ess-show-traceback’ (also on C-c ‘)

~ . Show callstack . ‘ess-show-call-stack’ (also on C-c ~)

e . Toggle error action (repeat to cycle). ‘ess-debug-toggle-error-action’

d . Flag for debugging . ‘ess-debug-flag-for-debugging’

u . Unflag for debugging . ‘ess-debug-unflag-for-debugging’
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w . Watch window . ‘ess-watch’

(C- prefixed equivalents are also defined)

* Navigation to errors (general emacs functionality):

C-x ‘, M-g n . ‘next-error’

M-g p . ‘previous-error’

* Misc:

? . Show this help . ‘ess-tracebug-show-help’

To configure how electric watch window splits the display see ess-watch-width-

threshold and ess-watch-height-threshold variables.

A more detailed ess-tracebug documentation with screenshots is available at
http://code.google.com/p/ess-tracebug/.

A short tutorial is at http://code.google.com/p/ess-tracebug/wiki/GettingStarted.

Note: Currently, ess-tracebug does not detect some of R’s debug related messages in
non-English locales. To set your R messages to English add the following line to your
.Rprofile init file:

Sys.setlocale("LC_MESSAGES", "C")

10.2 Editing documentation

ESS provides two ways of writing documentation for R objects. Either using the standard
R documentation system or using in-source documentation written as structured comment
fields for use with the Roxygen package.

10.2.1 Editing R documentation (Rd) files

R objects are documented in files written in the R documentation (“Rd”), a simple markup
language closely resembling (La)TEX, which can be processed into a variety of formats,
including LaTEX, HTML, and plain text. Rd format is described in section “Rd format” of
the “Writing R Extensions” manual in the R distribution. ESS has several features that
facilitate editing Rd files.

Visiting an Rd file as characterized by its extension ‘Rd’ will activate Rd Mode, which
provides several facilities for making editing R documentation files more convenient, by
helping with indentation, insertions, even doing some of the typing for you (with Abbrev
Mode), and by showing Rd keywords, strings, etc. in different faces (with Font Lock Mode).

Note that R also accepts Rd files with extension ‘rd’; to activate ESS[Rd] support for
this extension, you may need to add

(add-to-list ’auto-mode-alist ’("\\.rd\\’" . Rd-mode))

to one of your Emacs startup files.

In Rd mode, the following special Emacs commands can be used in addition to the
standard Emacs commands.

http://code.google.com/p/ess-tracebug/
http://code.google.com/p/ess-tracebug/wiki/GettingStarted
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C-h m Describe the features of Rd mode.

LFD

RET Reindent the current line, insert a newline and indent the new line (reindent-
then-newline-and-indent). An abbrev before point is expanded if abbrev-
mode is non-nil.

TAB Indent current line based on its contents and on previous lines. (indent-
according-to-mode).

C-c C-e Insert a “skeleton” with Rd markup for at least all mandatory entries in Rd files
(Rd-mode-insert-skeleton). Note that many users might prefer to use the R
function prompt on an existing R object to generate a non-empty Rd “shell”
documenting the object (which already has all information filled in which can
be obtained from the object).

C-c C-f Insert “font” specifiers for some of the Rd markup commands markup available
for emphasizing or quoting text, including markup for URLs and email addresses
(Rd-font). C-c C-f is only a prefix; see e.g. C-c C-f TAB for the available
bindings. Note that currently, not all of the Rd text markup as described in
section “Marking text” of “Writing R Extensions” can be accessed via C-c C-f.

C-c C-j Insert a suitably indented ‘\item{’ on the next line (Rd-mode-insert-item).

C-c C-p Preview a plain text version (“help file”, see Chapter 8 [Help], page 45) gener-
ated from the Rd file (Rd-preview-help).

In addition, when editing Rd files one can interact with a running R process in a similar
way as when editing R language files. E.g., C-c C-v provides access to on-line help, and C-c

C-n sends the current line to the R process for evaluation. This interaction is particularly
useful when editing the examples in the Rd file. See C-h m for all available commands.

Rd mode also provides access to abbreviations for most of the Rd markup commands.
Type M-x list-abbrevs with Abbrev mode turned on to list all available abbrevs. Note
that all Rd abbrevs start with a grave accent.

Rd mode can be customized via the following variables.

[User Option]Rd-mode-hook
Hook to be run when Rd mode is entered.

[User Option]Rd-indent-level
The indentation of Rd code with respect to containing blocks. Default is 2.

[User Option]Rd-to-help-command
The shell command used for converting Rd source to help text. Default is ‘R CMD

Rd2txt’.

To automatically turn on the abbrev and font-lock features of Rd mode, add the following
lines to one of your Emacs startup files:

(add-hook ’Rd-mode-hook

(lambda ()

(abbrev-mode 1)

(font-lock-mode 1)))
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10.2.2 Editing Roxygen documentation

The Roxygen R package makes it possible to keep the intended contents for Rd files as
structured comments in the R source files. Roxygen can then parse R files and generate ap-
propriate Rd files from these comments, fill the usage fields as well as updating ‘NAMESPACE’
files. See the Roxygen documentation found via http://roxygen.org for more information
on its usage. An example of an Roxygen entry for a simple R function can look like this:

##’ Description of the function

##’

##’ Further details about this function

##’ @title A title

##’ @param me all parameters must be listed and documented

##’ @return Description of the return value

##’ @author The author

myfun <- function(me)

cat("Hello", me, "\n")

The entry is immediately preceding the object to document and all lines start with the
Roxygen prefix string, in this case ##’. ESS provides support to edit these documentation
entries by providing line filling, navigation, template generation etc. Syntax highlighting is
provided for Emacs but not for XEmacs.

Roxygen is customized by the variables in the customization group “Ess Roxy”. Cus-
tomizables include the Roxygen prefix, use of folding to toggle visibility of Roxygen entries
and the Roxygen template.

All ESS Roxygen support is defined in ‘ess-roxy.el’ which is loaded by default in ESS.
The following special Emacs commands are provided.

[Command]ess-roxy-update-entry
C-c C-o C-o Generate a Roxygen template or update the parameter list in Roxygen
entry at point (or above the function at the point). Documented parameters that are
not in the function are placed last in the list, parameters that are not documented
and not in the definition are dropped. Parameter descriptions are filled if ess-roxy-
fill-param-p is non-nil.

[Command]ess-roxy-toggle-roxy-region beg end
C-c C-o C-c Toggle the presence of the leading Roxygen string on all lines in the
marked region (between beg and end. Convenient for transferring text to Roxygen
entries and to evaluate example fields.

[Command]ess-roxy-preview-Rd name-file
C-c C-o C-r Use the attached R process to parse the entry at point to obtain the Rd
code. Convenient for previewing and checking syntax. When used with the prefix
argument name-file, i.e. C-u C-c C-e C-r, place the content in a buffer associated
with a Rd file with the same name as the documentation. Requires the Roxygen
package to be installed.

[Command]ess-roxy-preview-HTML visit-instead-of-open
C-c C-o C-t Use the attached R process to parse the entry at to generate HTML for
the entry and open it in a browser. When used with the prefix argument visit-instead-

http://roxygen.org
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of-open, i.e. C-u C-c C-e C-t, visit the generated HTML file instead. Requires the
Roxygen and tools packages to be installed.

[Command]ess-roxy-previous-entry
C-c C-o p Go to start of the Roxygen entry above point.

[Command]ess-roxy-next-entry
C-c C-o n Go to end of the Roxygen entry above point.

[Command]ess-roxy-hide-all
C-c C-o C-h Use the hideshow mode to fold away the visibility of all Roxygen entries.
Hide-show support must be enabled for this binding to get defined.

ESS also advises the following standard editing functions in order to make Roxygen
editing more intuitive:

TAB ess-R-complete-object-name Complete Roxygen tag at point. E.g. doing
TAB when the point is at the end of @par completes to @param.

M-h mark-paragraph If the transient mark mode is active, place mark and point at
start end end of the field at point and activate the mark.

TAB ess-indent-command If hide-show support is enabled, fold away the visibility
of the Roxygen entry at point.

M-q fill-paragraph Fill the Roxygen field at point.

C-a move-beginning-of-line Move to the point directly to the right of the Rox-
ygen start string.

RET newline-and-indent Insert a new line and the Roxygen prefix string.

10.3 ESS developer

Usual ESS evaluation commands, See Chapter 5 [Evaluating code], page 35, send portions
of the current buffer for the evaluation in the current environment (usually R_GlobalEnv).
Often, when developing packages with namespaces, it is necessary to evaluate code directly
in the package’s environment or its namespace. The ess-developer utility provides such
a functionality with minimal disruption of the usual ESS work-flow.

To understand how ess-developer works you must be familiar with namespace system
in R. In a nutshell, all objects defined in a package ’foo’ are stored in an environment
called ’namespace:foo’. Parent environment of ’namespace:foo’ is an environment ’im-
ports:foo’ which contains copies of all objects from other packages which ’foo’ imports.
Parent environment of ’imports:foo’ is the ’namespace:base’. Parent environment of ’names-
pace:base’ is .GlobalEnv. Thus functions and methods stored in ’namespace:foo’ see all the
objects in .GlobalEnv unless shadowed by objects in ’imports:foo’, ’namespace:base’, or
’namespace:foo’ itself. There is another environment associated with ’foo’ - ’package:foo’.
This environment stores *copies* of exported objects from ’namespace:foo’ and is placed
on the search() path, i.e. if ’foo’ is loaded and if you start with .GlobalEnv and iter-
atively call parent.env() you will get eventually to ’package:foo’. Thus all methods and
functions defined in .GlobalEnv can "see" objects in ’package:foo’ environment. See also
http://cran.r-project.org/doc/manuals/R-ints.html#Namespaces.

http://cran.r-project.org/doc/manuals/R-ints.html#Namespaces
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In order to use ess-developer you must add names of the packages that you are developing
to ess-developer-packages. You can also do that interactively with C-c C-t C-a. To
remove packages from ess-developer-packages use C-c C-t C-r. When developer mode
is on, the process mode line indicator displays a small or capital letter "d".

If variable ess-developer-activate-in-package is t (the default) R-mode will check
after visiting the file whether or not the file is part of the package. If visited file is part of
a package listed in ess-developer-packages, developer mode is activated automatically.

Developer mode is usually activated on per-file basis and a small "d" appears in the
modeline. You can also activate ess-developer for all buffers connected to current process.
This is done by toggling ess-developer in subprocess buffer. In this case a big "D" will
appear in the modeline.

[Command]ess-developer val
C-c C-t C-t Toggle developer mode on and off. If called from script buffer, toggle
developer on file-by-file basis. When called from process buffer, toggle developer on
per-process basis.

[Command]ess-developer-add-package from-attached remove
C-c C-t C-a Add a package to your development list (ess-developer-packages).

[Command]ess-developer-remove-package
C-c C-t C-r Remove a package from your development list.

When you add a package to ess-developer-packages, ESS will ask for loading com-
mand. By default there are two options library and load_all from devtools package.
You can configure this behavior in ess-developer-load-on-add-commands. To explicitly
load the package containing current file use C-c C-t l.

[Command]ess-developer-load-package
C-c C-t l Load package with load_all utility from devtools package.

When developer mode is on, ESS evaluation commands behave differently:

• C-c C-l (ess-load-file) asks for the package to source into and inserts all redefined
objects into the package:foo or namespace:foo accordingly.

− PLAIN OBJECTS and FUNCTIONS:
If the object is found in an environment (package:foo or namespace:foo), and differs
from the old one it is assigned into the corresponding environment. If the object
is not found it is assigned into .GlobalEnv. The environment of functions is set to
namespace:foo.

− CLASSES:
Same as plain objects, with the difference that even if the class definition is assigned
into .GlobalEnv, it is still associated with the package foo. Thus if you issue
getClassDeff("foo") you will get a class definition with the slot @package pointing
to package "foo".

Note: Occasionally, after adding new classes you might get warnings from
"setClass". This is especially true if new class inherits or is inherited by a class
whose definition is not exported. You might get something like: Warning:



Chapter 10: Developing with ESS 56

Class "boo" is defined (with package slot foo) but no metadata object

found to revise subclass information---not exported?

You can safely ignore this warnings.

− S4 METHODS:
Similarly to function definitions modified methods are assigned in the local method
table in the namespace:foo. New methods are assigned into .GlobalEnv, but with
the environment pointing to namespace:foo. There is a subtle catch with method
caching in R though. See the code in etc/ESSR/developer.R for more details.

− S3 METHODS:
S3 methods are not automatically registered. You can register them manually after
you have inserted method name.my class into your package environment using ess-
developer, like follows:

registerS3method("method name", "my class", my package:::method name.my class)

If you don’t register your S3 method, R will call the registered (aka cached) S3
method instead of the new method that ess-developer inserted in the package
environment.

• C-c C-r(ess-eval-region) and functions that depend on it (ess-eval-paragraph,
ess-eval-buffer etc.), behave as ess-load-file, but restrict the evaluation to the
corresponding region.

• C-c C-f (ess-eval-function) and friends check if the current function’s name can be
found in a namespace:foo or package:foo for a ’foo’ from ‘ess-developer-packages’. If
found, and new function definition differs from the old one, the function is assigned
into that namespace. If not found, it is assigned into .GlobalEnv.
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11 Other ESS features and tools

ESS has a few extra features, which didn’t fit anywhere else.

11.1 ElDoc

In ElDoc mode, the echo area displays function’s arguments at point. From ESS version
12.03, ElDoc is active by default in ess-mode and inferior-ess-mode buffers. To activate
it only in ess-mode buffers, place the following into your init file:

(setq ess-use-eldoc ’script-only)

[User Option]ess-use-eldoc
If ‘t’, activate eldoc in ess-mode and inferior-ess-mode buffers. If ‘’script-only’
activate in ess-mode buffers only. Set ess-use-eldoc to nil to stop using ElDoc

altogether.

[User Option]ess-eldoc-show-on-symbol
This variable controls whether the help is shown only inside function calls. If set
to ‘t’, ElDoc shows help string whenever the point is on a symbol, otherwise (the
default), shows only when the point is in a function call, i.e. after ‘’(’’.

[User Option]ess-eldoc-abbreviation-style
The variable determines how the doc string should be abbreviated to fit into mini-
buffer. Posible values are ‘nil’, ‘mild’, ‘normal’, ‘strong’ and ‘aggressive’. Please
see the documentation of the variable for more details. The default filter is ‘normal’.

Ess-eldoc also honors the value of eldoc-echo-area-use-multiline-p, which if set
to ‘nil’, will cause the truncation of doc string indifferent of the value of ess-eldoc-
abbreviation-style. This way you can combine different filter levels with the truncation.

11.2 Handy commands

[Command]ess-handy-commands
Request and execute a command from ess-handy-commands list.

[User Option]ess-handy-commands
An alist of custom ESS commands available for call by ess-handy-commands and
ess-smart-comma function.

Currently contains:

change-directory
ess-change-directory

help-index ess-display-index

help-object
ess-display-help-on-object

vignettes ess-display-vignettes

objects[ls] ess-execute-objects
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search ess-execute-search

set-width ess-execute-screen-options

install.packages
ess-install.packages

library ess-library

setRepos ess-setRepositories

sos ess-sos

Handy commands: ess-library, ess-install.packages, etc - ask for item with com-
pletion and execute the correspond command. ess-sos is a interface to findFn function in
package sos. If package sos is not found, ask user for interactive install.

11.3 Syntactic highlighting of buffers

ESS provides Font-Lock (see Section “Using Multiple Typefaces” in The Gnu Emacs Ref-
erence Manual) patterns for Inferior S Mode, S Mode, and S Transcript Mode buffers.

Syntax highlighting within ESS buffers is controlled by:

[User Option]ess-font-lock-mode
Non-‘nil’ means we use font lock support for ESS buffers. Default is ‘t’, to use font
lock support. If you change the value of this variable, restart Emacs for it to take
effect.

The font-lock patterns are defined by the following variables, which you may modify if
desired:

[User Option]inferior-R-font-lock-keywords
Font-lock patterns for inferior *R* processes. (There is a corresponding inferior-

S-font-lock-keywords for *S* processes.) The default value highlights prompts,
inputs, assignments, output messages, vector and matrix labels, and literals such as
‘NA’ and TRUE.

[User Option]ess-R-font-lock-keywords
Font-lock patterns for ESS R programming mode. (There is a corresponding ess-

S-font-lock-keywords for S buffers.) The default value highlights function names,
literals, assignments, source functions and reserved words.

11.4 Parenthesis matching

Emacs and XEmacs have facilities for highlighting the parenthesis matching the parenthesis
at point. This feature is very useful when trying to examine which parentheses match each
other. This highlighting also indicates when parentheses are not matching. Depending on
what version of emacs you use, one of the following should work in your initialisation file:

(paren-set-mode ’paren) ;for XEmacs

(show-paren-mode t) ;for Emacs
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11.5 Using graphics with ESS

One of the main features of the S package is its ability to generate high-resolution graphics
plots, and ESS provides a number of features for dealing with such plots.

11.5.1 Using ESS with the printer() driver

This is the simplest (and least desirable) method of using graphics within ESS. S’s
printer() device driver produces crude character based plots which can be contained
within the ESS process buffer itself. To start using character graphics, issue the S
command

printer(width=79)

(the width=79 argument prevents Emacs line-wrapping at column 80 on an 80-column
terminal. Use a different value for a terminal with a different number of columns.) Plotting
commands do not generate graphics immediately, but are stored until the show() command
is issued, which displays the current figure.

11.5.2 Using ESS with windowing devices

Of course, the ideal way to use graphics with ESS is to use a windowing system. Under X
Windows, or X11, this requires that the DISPLAY environment variable be appropriately
set.

11.5.3 Java Graphics Device

S+6.1 and newer on Windows contains a java library that supports graphics. Send the
commands:

library(winjava)

java.graph()

to start the graphics driver. This allows you to use ESS for both interaction and graphics
within S-PLUS. (Thanks to Tim Hesterberg for this information.)

11.6 Imenu

Imenu is an Emacs tool for providing mode-specific buffer indexes. In some of the ESS
editing modes (currently SAS and S), support for Imenu is provided. For example, in S
mode buffers, the menubar should display an item called "Imenu-S". Within this menubar
you will then be offered bookmarks to particular parts of your source file (such as the
starting point of each function definition).

Imenu works by searching your buffer for lines that match what ESS thinks is the begin-
ning of a suitable entry, e.g. the beginning of a function definition. To examine the regular
expression that ESS uses, check the value of imenu-generic-expression. This value is set
by various ESS variables such as ess-imenu-S-generic-expression.

11.7 Toolbar

The R and S editing modes have support for a toolbar. This toolbar provides icons to
act as shortcuts for starting new S/R processes, or for evaluating regions of your source
buffers. The toolbar should be present if your emacs can display images. See Appendix A
[Customization], page 83, for ways to change the toolbar.
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11.8 TAGS

The Emacs tags facility can be used to navigate around your files containing definitions of
S functions. This facility is independent of ESS usage, but is written here since ESS users
may wish to take advantage of TAGS facility. Read more about emacs tags in an emacs
manual.

Etags, the program that generates the TAGS file, does not yet know the syntax to
recognise function definitions in S files. Hence, you will need to provide a regexp that
matches your function definitions. Here is an example call (broken over two lines; type as
one line) that should be appropriate.

etags --language=none

--regex=’/\([^ \t]+\)[ \t]*<-[ \t]*function/\1/’ *.R

This will find entries in your source file of the form:

some.name <- function

with the function name starting in column 0. Windows users may need to change the
single quotes to double quotes.

R version 2.9.0 introduced a front-end script for finding R tags, which calls the ‘rtags()’
function. By default, this script will recursively search the directories for relevant tags in
R/C/Rd files. To use this script from the command line, try the following to get started:

R CMD rtags --help

For further details, see http://developer.r-project.org/rtags.html

11.9 Rdired

Ess-rdired provides a dired-like buffer for viewing, editing and plotting objects in your
current R session. If you are used to using the dired (directory editor) facility in Emacs,
this mode gives you similar functionality for R objects.

Start an R session with M-x R and then store a few variables, such as:

s <- sin(seq(from=0, to=8*pi, length=100))

x <- c(1, 4, 9)

y <- rnorm(20)

z <- TRUE

Then use M-x ess-rdired to create a buffer listing the objects in your current environ-
ment and display it in a new window:

mode length

s numeric 100

x numeric 3

y numeric 20

z logical 1

Type C-h m or ? to get a list of the keybindings for this mode. For example, with your
point on the line of a variable, ‘p’ will plot the object, ‘v’ will view it, and ‘d’ will mark the
object for deletion (‘x’ will actually perform the deletion).

http://developer.r-project.org/rtags.html
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11.10 Rutils

Ess-rutils builds up on ess-rdired, providing key bindings for performing basic R functions in
the inferior-ESS process buffer, such as loading and managing packages, object manipulation
(listing, viewing, and deleting), and alternatives to help.start() and RSiteSearch() that
use the browse-url Emacs function. The library can be loaded using M-x load-file, but
the easiest is to include:

(require ’ess-rutils)

in your .emacs. Once R is started with M-x R, and if the value of the customizable
variable ess-rutils-keys is true, several key bindings become available in iESS process
buffers:

[Command]ess-rutils-local-pkgs
C-c C-. l List all packages in all available libraries.

[Command]ess-rutils-repos-pkgs
C-c C-. r List available packages from repositories listed by getOptions(‘‘repos’’)
in the current R session.

[Command]ess-rutils-update-pkgs lib repos
C-c C-. u Update packages in a particular library lib and repository repos.

[Command]ess-rutils-apropos
C-c C-. a Search for a string using apropos.

[Command]ess-rutils-rm-all
C-c C-. m Remove all R objects.

[Command]ess-rutils-objs
C-c C-. o Manipulate R objects; wrapper for ess-rdired.

[Command]ess-rutils-load-wkspc
C-c C-. w Load a workspace file into R.

[Command]ess-rutils-save-wkspc
C-c C-. s Save a workspace file.

[Command]ess-change-directory
C-c C-. d Change the working directory for the current R session.

[Command]ess-rutils-html-docs
C-c C-. H Use browse-url to navigate R html documentation.

See the submenu ‘Rutils’ under the iESS menu for alternative access to these functions.
The function ess-rutils-rsitesearch is provided without a particular key binding. This
function is useful in any Emacs buffer, so can be bound to a user-defined key:

(eval-after-load "ess-rutils"

’(global-set-key [(control c) (f6)] ’ess-rutils-rsitesearch))

Functions for listing objects and packages (ess-rutils-local-pkgs, ess-rutils-

repos-pkgs, and ess-rutils-objs) show results in a separate buffer and window, in
ess-rutils-mode, providing useful key bindings in this mode (type ? in this buffer for a
description).
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11.11 Interaction with Org mode

Org-mode (http://orgmode.org) now supports reproducible research and literate
programming in many languages (including R) – see chapter 14 of the Org manual
(http://orgmode.org/org.html#Working-With-Source-Code). For ESS users, this
offers a document-based work environment within which to embed ESS usage. R code lives
in code blocks of an Org document, from which it can be edited in ess-mode, evaluated,
extracted ("tangled") to pure code files. The code can also be exported ("woven") with
the surrounding text to several formats including HTML and LaTeX. Results of evaluation
including figures can be captured in the Org document, and data can be passed from the
Org document (e.g. from a table) to the ESS R process. (This section contributed by Dan
Davison and Eric Schulte.)

11.12 Support for Sweave in ESS and AUCTeX

ESS provides support for writing and processing Sweave (http://www.statistik.lmu.de/~leisch/Sweave),
building up on Emacs’ ess-noweb-mode for literate programming. When working on an
Sweave document, the following key bindings are available:

[Command]ess-swv-weave choose
M-n s Run Sweave on the current .Rnw file. If choose is non-‘nil’, offer a menu of
available weavers.

[Command]ess-swv-latex
M-n l Run LaTeX after Sweave’ing.

[Command]ess-swv-PS
M-n p Generate and display a postscript file after LaTeX’ing.

[Command]ess-swv-PDF pdflatex-cmd
M-n P Generate and display a PDF file after LaTeX’ing. Optional argument pdflatex-
cmd is the command to use, which by default, is the command used to generate the
PDF file is the first element of ess-swv-pdflatex-commands.

[User Option]ess-swv-pdflatex-commands
Commands used by ess-swv-PDF to run a version of pdflatex; the first entry is the
default command.

Sweave’ing with ess-swv-weave starts an inferior-ESS process, if one is not available.
Other commands are available from the ‘Sweaving, Tangling, ...’ submenu of the Noweb
menu.

AUCTeX (http://www.gnu.org/software/auctex) users may prefer to set the variable
ess-swv-plug-into-AUCTeX-p (available from the “ESS Sweave” customization group) to
t. Alternatively, the same can be achieved by activating the entry “AUCTeX Interface”
from the ‘Sweaving, Tangling, ...’ submenu, which toggles this variable on or off. When
the interface is activated, new entries for Sweave’ing and LaTeX’ing thereafter are available
from AUCTeX’s “Command” menu. Sweave’ing can, thus, be done by C-c C-c Sweave RET

without an inferior-ESS process. Similarly, LaTeX’ing can be done by C-c C-c LaTeXSweave

RET. In both cases, the process can be monitored with C-c C-l (TeX-recenter-output-
buffer). Open the viewer with C-c C-v (TeX-view), as usual in AUCTeX.

http://orgmode.org
http://orgmode.org/org.html#Working-With-Source-Code
http://www.statistik.lmu.de/~leisch/Sweave
http://www.gnu.org/software/auctex
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12 Overview of ESS features for the S family

12.1 ESS[S]–Editing files

ESS[S] is the mode for editing S language files. This mode handles:

− proper indenting, generated by both [Tab] and [Return].

− color and font choices based on syntax.

− ability to send the contents of an entire buffer, a highlighted region, an S function, or
a single line to an inferior S process, if one is currently running.

− ability to switch between processes which would be the target of the buffer (for the
above).

− The ability to request help from an S process for variables and functions, and to have
the results sent into a separate buffer.

− completion of object names and file names.

ESS[S]mode should be automatically turned on when loading a file with the suffices found
in ess-site (*.R, *.S, *.s, etc). Alternatively, type M-x R-mode to put the current buffer into
R mode. However, one will have to start up an inferior process to take advantage of the
interactive features.

12.2 iESS[S]–Inferior ESS processes

iESS (inferior ESS) is the mode for interfacing with active statistical processes (programs).
This mode handles:

− proper indenting, generated by both [Tab] and [Return].

− color and font highlighting based on syntax.

− ability to resubmit the contents of a multi-line command to the executing process with
a single keystroke [RET].

− The ability to request help from the current process for variables and functions, and
to have the results sent into a separate buffer.

− completion of object names and file names.

− interactive history mechanism.

− transcript recording and editing.

To start up iESS mode, use:

M-x S+3

M-x S4

M-x S+5

M-x S+6

M-x R

(for S-PLUS 3.x, S4, S+5, S+6 or S+7, and R, respectively. This assumes that you have
access to each). Usually the site will have defined one of these programs (by default S+6)
to the simpler name:

M-x S
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In the (rare) case that you wish to pass command line arguments to the starting S+6
process, set the variable inferior-Splus-args.

Note that R has some extremely useful command line arguments. For example, --

vanilla will ensure R starts up without loading in any init files. To enter a command line
argument, call R using a "prefix argument", by

C-u M-x R

and when ESS prompts for "Starting Args ? ", enter (for example):

--vanilla

Then that R process will be started up using R --vanilla. If you wish to always call R
with certain arguments, set the variable inferior-R-args accordingly.

If you have other versions of R or S-Plus available on the system, ESS is also able to start
those versions. How this exactly works depend on which OS you are using, as described in
the following paragraphs. The general principle, regardless of OS, is that ESS searches the
paths listed in the variable exec-path for R binaries. If ESS cannot find your R binaries,
on Unix you can change the unix environment variable PATH, as this variable is used to set
exec-path.

R on Unix systems: If you have "R-1.8.1" on your exec-path, it can be started using M-x
R-1.8.1. By default, ESS will find versions of R beginning "R-1" or "R-2". If your versions
of R are called other names, consider renaming them with a symbolic link or change the
variable ess-r-versions. To see which functions have been created for starting different
versions of R, type M-x R- and then hit [Tab]. These other versions of R can also be started
from the "ESS->Start Process->Other" menu.

R on Windows systems: If you have "rw1081" on your exec-path, it can be started
using M-x rw1081. By default, ESS will find versions of R located in directories parallel to
the version of R in your PATH. If your versions of R are called other names, you will need
to change the variable ess-rterm-versions. To see which functions have been created for
starting different versions of R, type M-x rw and then hit [Tab]. These other versions of R
can also be started from the "ESS->Start Process->Other" menu.

Once ESS has found these extra versions of R, it will then create a new function, called
M-x R-newest, which will call the newest version of R that it found. (ESS examines the
date in the first line of information from R --version to determine which is newest.)

S on Unix systems: If you have "Splus7" on your exec-path, it can be started using
M-x Splus7. By default, ESS will find all executables beginning "Splus" on your path. If
your versions of S are called other names, consider renaming them with a symbolic link or
change the variable ess-s-versions. To see which functions have been created for starting
different versions of Splus, type M-x Splus and then hit [Tab]. These other versions of Splus
can also be started from the "ESS->Start Process->Other" menu.

A second mechanism is also available for running other versions of Splus. The variable
ess-s-versions-list is a list of lists; each sublist should be of the form: (DEFUN-NAME
PATH ARGS). DEFUN-NAME is the name of the new emacs function you wish to create
to start the new S process; PATH is the full path to the version of S you want to run;
ARGS is an optional string of command-line arguments to pass to the S process. Here is
an example setting:

(setq ess-s-versions-list
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’( ("Splus64" "/usr/local/bin/Splus64")

("Splus64-j" "/usr/local/bin/Splus64" "-j")))

which will then allow you to do M-x Splus64-j to start Splus64 with the corresponding
command line arguments.

If you change the value of either ess-s-versions or ess-s-versions-list, you should
put them in your .emacs before ess-site is loaded, since the new emacs functions are created
when ESS is loaded.

Sqpe (S-Plus running inside an emacs buffer) on Windows systems: If you have an
older version of S-Plus (S-Plus 6.1 for example) on your system, ir can be started inside
an emacs buffer with M-x splus61. By default, ESS will find versions of S-Plus located in
the installation directories that Insightful uses by default. If your versions of S-Plus are
anywhere else, you will need to change the variable ess-SHOME-versions. To see which
functions have been created for starting different versions of S-Plus, type M-x spl and then
hit [Tab]. These other versions of S-Plus can also be started from the "ESS->Start Process-
>Other" menu.

12.3 ESS-help–assistance with viewing help

ESS has built-in facilities for viewing help files from S. See Chapter 8 [Help], page 45.

12.4 Philosophies for using ESS[S]

The first is preferred, and configured for. The second one can be retrieved again, by changing
emacs variables.

1: (preferred by the current group of developers): The source code is real. The objects
are realizations of the source code. Source for EVERY user modified object is placed in a
particular directory or directories, for later editing and retrieval.

2: (older version): S objects are real. Source code is a temporary realization of the
objects. Dumped buffers should not be saved. We strongly discourage this approach .
However, if you insist, add the following lines to your .emacs file:

(setq ess-keep-dump-files ’nil)

(setq ess-delete-dump-files t)

(setq ess-mode-silently-save nil)

The second saves a small amount of disk space. The first allows for better portability as
well as external version control for code.

12.5 Scenarios for use (possibilities–based on actual usage)

We present some basic suggestions for using ESS to interact with S. These are just a subset
of approaches, many better approaches are possible. Contributions of examples of how you
work with ESS are appreciated (especially since it helps us determine priorities on future
enhancements)! (comments as to what should be happening are prefixed by "##").

1: ## Data Analysis Example (source code is real)
## Load the file you want to work with
C-x C-f myfile.s
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## Edit as appropriate, and then start up S-PLUS 3.x
M-x S+3

## A new buffer *S+3:1* will appear. Splus will have been started
## in this buffer. The buffer is in iESS [S+3:1] mode.

## Split the screen and go back to the file editing buffer.
C-x 2 C-x b myfile.s

## Send regions, lines, or the entire file contents to S-PLUS. For regions,
## highlight a region with keystrokes or mouse and then send with:
C-c C-r

## Re-edit myfile.s as necessary to correct any difficulties. Add
## new commands here. Send them to S by region with C-c C-r, or
## one line at a time with C-c C-n.

## Save the revised myfile.s with C-x C-s.

## Save the entire *S+3:1* interaction buffer with C-c C-s. You
## will be prompted for a file name. The recommended name is
## myfile.St. With the *.St suffix, the file will come up in ESS
## Transcript mode the next time it is accessed from Emacs.

2: ## Program revision example (source code is real)

## Start up S-PLUS 3.x in a process buffer (this will be *S+3:1*)
M-x S+3

## Load the file you want to work with
C-x C-f myfile.s

## edit program, functions, and code in myfile.s, and send revised
## functions to S when ready with
C-c C-f
## or highlighted regions with
C-c C-r
## or individual lines with
C-c C-n
## or load the entire buffer with
C-c C-l

## save the revised myfile.s when you have finished
C-c C-s
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3: ## Program revision example (S object is real)

## Start up S-PLUS 3.x in a process buffer (this will be *S+3:1*)
M-x S+3

## Dump an existing S object my.function into a buffer to work with
C-c C-d my.function
## a new buffer named yourloginname.my.function.S will be created with
## an editable copy of the object. The buffer is associated with the
## pathname /tmp/yourloginname.my.function.S and will amlost certainly not
## exist after you log off.

## enter program, functions, and code into work buffer, and send
## entire contents to S-PLUS when ready
C-c C-b

## Go to *S+3:1* buffer, which is the process buffer, and examine
## the results.
C-c C-y
## The sequence C-c C-y is a shortcut for: C-x b *S+3:1*

## Return to the work buffer (may/may not be prefixed)
C-x C-b yourloginname.my.function.S
## Fix the function that didn’t work, and resubmit by placing the
## cursor somewhere in the function and
C-c C-f
## Or you could’ve selected a region (using the mouse, or keyboard
## via setting point/mark) and
C-c C-r
## Or you could step through, line by line, using
C-c C-n
## Or just send a single line (without moving to the next) using
C-c C-j
## To fix that error in syntax for the "rchisq" command, get help
## by
C-c C-v rchisq

4: Data Analysis (S object is real)
## Start up S-PLUS 3.x, in a process buffer (this will be *S+3:1*)
M-x S+3

## Work in the process buffer. When you find an object that needs
## to be changed (this could be a data frame, or a variable, or a
## function), dump it to a buffer:
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C-c C-d my.cool.function

## Edit the function as appropriate, and dump back in to the
## process buffer
C-c C-b

## Return to the S-PLUS process buffer
C-c C-y
## Continue working.

## When you need help, use
C-c C-v rchisq
## instead of entering: help("rchisq")

12.6 Customization Examples and Solutions to Problems

1. Suppose that you are primarily an SPLUS 3.4 user, occasionally using S version 4, and
sick and tired of the buffer-name *S+3* we’ve stuck you with. Simply edit the "ess-dialect"
alist entry in the ess-sp3-d.el and ess-s4-d.el files to be "S" instead of "S4" and "S+3". This
will ensure that all the inferior process buffer names are "*S*".

2. Suppose that you WANT to have the first buffer name indexed by ":1", in the same
manner as your S-PLUS processes 2,3,4, and 5 (for you heavy simulation people). Then
add after your (require ’ess-site) or (load "ess-site") command in your .emacs file, the line:

(setq ess-plain-first-buffername nil)

3. Fontlocking sometimes fails to behave nicely upon errors. When Splus dumps, a
mis-matched " (double-quote) can result in the wrong font-lock face being used for the
remainder of the buffer.

Solution: add a " at the end of the "Dumped..." statement, to revert the font-lock face
back to normal.

4. When you change directory within a *R* or *S* session using the setwd() command,
emacs does not recognise that you have changed the current directory.

Solution: Use M-x ess-change-directory. This will prompt you for the directory to
change to. It will then change directory within the *S* buffer, and also update the emacs
variable default-directory. Alternatively, if you have already executed setwd(), press
M-RET within the *S* buffer so that Emacs can update default-directory.
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13 ESS for SAS

ESS[SAS] was designed for use with SAS. It is descended from emacs macros developed by
John Sall for editing SAS programs and SAS-mode by Tom Cook. Those editing features and
new advanced features are part of ESS[SAS]. The user interface of ESS[SAS] has similarities
with ESS[S] and the SAS Display Manager.

13.1 ESS[SAS]–Design philosophy

ESS[SAS] was designed to aid the user in writing and maintaining SAS programs, such as
‘foo.sas’. Both interactive and batch submission of SAS programs is supported.

ESS[SAS] was written with two primary goals.

1. The emacs text editor provides a powerful and flexible development environment for
programming languages. These features are a boon to all programmers and, with the
help of ESS[SAS], to SAS users as well.

2. Although a departure from SAS Display Manager, ESS[SAS] provides similar key def-
initions to give novice ESS[SAS] users a head start. Also, inconvenient SAS Display
Manager features, like remote submission and syntax highlighting, are provided trans-
parently; appealing to advanced ESS[SAS] users.

13.2 ESS[SAS]–Editing files

ESS[SAS] is the mode for editing SAS language files. This mode handles:

• proper indenting, generated by both TAB and RET.

• color and font choices based on syntax.

• ability to save and submit the file you are working on as a batch SAS process with a
single keypress and to continue editing while it is runs in the background.

• capability of killing the batch SAS process through the ‘*shell*’ buffer or allow the
SAS process to keep on running after you exit emacs.

• single keypress navigation of ‘.sas’, ‘.log’ and ‘.lst’ files (‘.log’ and ‘.lst’ files are
refreshed with each keypress).

• ability to send the contents of an entire buffer, a highlighted region, or a single line to
an interactive SAS process.

• ability to switch between processes which would be the target of the buffer (for the
above).

ESS[SAS] is automatically turned on when editing a file with a ‘.sas’ suffix (or other
extension, if specified via auto-mode-alist). The function keys can be enabled to use the
same function keys that the SAS Display Manager does. The interactive capabilities of ESS
require you to start an inferior SAS process with M-x SAS (See Section 13.6 [iESS(SAS)–
Interactive SAS processes], page 75.)

At this writing, the indenting and syntax highlighting are generally correct. Known
issues: for multiple line * or %* comments, only the first line is highlighted; for ‘.log’
files, only the first line of a NOTE:, WARNING: or ERROR: message is highlighted; unmatched
single/double quotes in CARDS data lines are NOT ignored; in an iterative DO statement, TO
and BY are not highlighted.
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13.3 ESS[SAS]–TAB key

Two options. The TAB key is bound by default to sas-indent-line. This function is used
to syntactically indent SAS code so PROC and RUN are in the left margin, other statements are
indented sas-indent-width spaces from the margin, continuation lines are indented sas-

indent-width spaces in from the beginning column of that statement. This is the type of
functionality that emacs provides in most programming language modes. This functionality
is activated by placing the following line in your initialization file prior to a require/load:

(setq ess-sas-edit-keys-toggle nil)

ESS provides an alternate behavior for TAB that makes it behave as it does in SAS

Display Manager, i.e. move the cursor to the next stop. The alternate behavior also provides
a "TAB" backwards, C-TAB, that moves the cursor to the stop to the left and deletes any
characters between them. This functionality is obtained by placing the following line in
your initialization file prior to a require/load:

(setq ess-sas-edit-keys-toggle t)

Under the alternate behavior, TAB is bound to M-x tab-to-tab-stop and the stops are
defined by ess-sas-tab-stop-list.

13.4 ESS[SAS]–Batch SAS processes

Submission of a SAS batch job is dependent on your environment. ess-sas-submit-method
is determined by your operating system and your shell. It defaults to ’sh unless you are
running Windows or Mac Classic. Under Windows, it will default to ’sh if you are using
a UNIX-imitating shell; otherwise ’ms-dos for an MS-DOS shell. On Mac OS X, it will
default to ’sh, but under Mac Classic, it defaults to ’apple-script. You will also set
this to ’sh if the SAS batch job needs to run on a remote machine rather than your local
machine. This works transparently if you are editing the remote file via ange-ftp/EFS or
tramp. Note that ess-sas-shell-buffer-remote-init is a Local Variable that defaults
to "ssh" which will be used to open the buffer on the remote host and it is assumed that
no password is necessary, i.e. you are using ssh-agent/ssh-add or the equivalent (see the
discussion about Local Variables below if you need to change the default).

However, if you are editing the file locally and transferring it back and forth with Kermit,
you need some additional steps. First, start Kermit locally before remotely logging in. Open
a local copy of the file with the ess-kermit-prefix character prepended (the default is
"#"). Execute the command M-x ess-kermit-get which automatically brings the contents
of the remote file into your local copy. If you transfer files with Kermit manually in a
‘*shell*’ buffer, then note that the Kermit escape sequence is C-q C-\ c rather than C-\ c

which it would be in an ordinary terminal application, i.e. not in an emacs buffer. Lastly,
note that the remote Kermit command is specified by ess-kermit-command.

The command used by the SUBMIT function key (F3 or F8) to submit a batch SAS

job, whether local or remote, is ess-sas-submit-command which defaults to sas-program.
sas-program is "invoke SAS using program file" for Mac Classic and "sas" otherwise.
However, you may have to alter ess-sas-submit-command for a particular program, so it
is defined as buffer-local. Conveniently, it can be set at the end of the program:

endsas;

Local variables:
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ess-sas-submit-command: "sas8"

End:

The command line is also made of ess-sas-submit-pre-command, ess-sas-submit-
post-command and ess-sas-submit-command-options (the last of which is also buffer-
local). Here are some examples for your ‘~/.emacs’ or ‘~/.xemacs/init.el’ file (you may
also use M-x customize-variable):

;’sh default

(setq ess-sas-submit-pre-command "nohup")

;’sh default

(setq ess-sas-submit-post-command "-rsasuser &")

;’sh example

(setq-default ess-sas-submit-command "/usr/local/sas/sas")

;’ms-dos default

(setq ess-sas-submit-pre-command "start")

;’ms-dos default

(setq ess-sas-submit-post-command "-rsasuser -icon")

;Windows example

(setq-default ess-sas-submit-command "c:/progra~1/sas/sas.exe")

;Windows example

(setq-default ess-sas-submit-command "c:\\progra~1\\sas\\sas.exe")

There is a built-in delay before a batch SAS job is submitted when using a UNIX-imitating
shell under Windows. This is necessary in many cases since the shell might not be ready
to receive a command. This delay is currently set high enough so as not to be a problem.
But, there may be cases when it needs to be set higher, or could be set much lower to speed
things up. You can over-ride the default in your ‘~/.emacs’ or ‘~/.xemacs/init.el’ file
by:

(setq ess-sleep-for 0.2)

For example, (setq ess-sas-global-unix-keys t) keys shown, (setq ess-sas-

global-pc-keys t) in parentheses; ESS[SAS] function keys are presented in the next
section. Open the file you want to work with C-x C-f foo.sas. ‘foo.sas’ will be in
ESS[SAS] mode. Edit as appropriate, then save and submit the batch SAS job.

F3 (F8)

The job runs in the ‘*shell*’ buffer while you continue to edit ‘foo.sas’. If ess-sas-
submit-method is ’sh, then the message buffer will display the shell notification when the
job is complete. The ’sh setting also allows you to terminate the SAS batch job before it
is finished.

F8 (F3)

Terminating a SAS batch in the ‘*shell*’ buffer.

kill PID

You may want to visit the ‘.log’ (whether the job is still running or it is finished) and
check for error messages. The ‘.log’ will be refreshed and you will be placed in it’s buffer.
You will be taken to the first error message, if any.

F5 (F6)

Goto the next error message, if any.
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F5 (F6)

Now, ‘refresh’ the ‘.lst’ and go to it’s buffer.

F6 (F7)

If you wish to make changes, go to the ‘.sas’ file with.

F4 (F5)

Make your editing changes and submit again.

F3 (F8)

13.5 ESS[SAS]–Function keys for batch processing

The setup of function keys for SAS batch processing is unavoidably complex, but the usage
of function keys is simple. There are five distinct options:

Option 1 (default). Function keys in ESS[SAS] are not bound to elisp commands. This is
in accordance with the GNU Elisp Coding Standards (GECS) which do not allow function
keys to be bound so that they are available to the user.

Options 2-5. Since GECS does not allow function keys to be bound by modes, these keys
are often unused. So, ESS[SAS] provides users with the option of binding elisp commands to
these keys. Users who are familiar with SAS will, most likely, want to duplicate the function
key capabilities of the SAS Display Manager. There are four options (noted in parentheses).

a. SASDisplay Manager has different function key definitions for UNIX (2, 4) andWindows
(3, 5); ESS[SAS] can use either.

b. The ESS[SAS] function key definitions can be active in all buffers (global: 4, 5) or
limited (local: 2, 3) only to buffers with files that are associated with ESS[SAS] as
specified in your auto-mode-alist.

The distinction between local and global is subtle. If you want the ESS[SAS] definitions to
work when you are in the ‘*shell*’ buffer or when editing files other than the file extensions
that ESS[SAS] recognizes, you will most likely want to use the global definitions. If you want
your function keys to understand SAS batch commands when you are editing SAS files, and
to behave normally when editing other files, then you will choose the local definitions. The
option can be chosen by the person installing ESS for a site or by an individual.

a. For a site installation or an individual, place ONLY ONE of the following lines in
your initialization file prior to a require/load. ESS[SAS] function keys are available
in ESS[SAS] if you choose either 2 or 3 and in all modes if you choose 4 or 5:

;;2; (setq ess-sas-local-unix-keys t)

;;3; (setq ess-sas-local-pc-keys t)

;;4; (setq ess-sas-global-unix-keys t)

;;5; (setq ess-sas-global-pc-keys t)

The names -unix- and -pc- have nothing to do with the operating system that you
are running. Rather, they mimic the definitions that the SAS Display Manager uses by
default on those platforms.

b. If your site installation has configured the keys contrary to your liking, then you must
call the appropriate function.

(load "ess-site") ;; local-unix-keys

(ess-sas-global-pc-keys)
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Finally, we get to what the function keys actually do. You may recognize some of the
nicknames as SAS Display Manager commands (they are in all capitals).

UNIX PC Nickname
F2 F2 ‘refresh’

revert the current buffer with the file of the same name if the file is
newer than the buffer

F3 F8 SUBMIT

save the current ‘.sas’ file (which is either the ‘.sas’ file in the
current buffer or the ‘.sas’ file associated with the ‘.lst’ or ‘.log’
file in the current buffer) and submit the file as a batch SAS job

F4 F5 PROGRAM

switch buffer to ‘.sas’ file
F5 F6 LOG

switch buffer to ‘.log’ file, ‘refresh’ and goto next error message,
if any

F6 F7 OUTPUT

switch buffer to ‘.lst’ file and ‘refresh’
F7 F4 ‘filetype-1’

switch buffer to ‘filetype-1’ (defaults to ‘.txt’) file and ‘refresh’
F8 F3 ‘shell’

switch buffer to ‘*shell*’
F9 F9 VIEWTABLE

open an interactive PROC FSEDIT session on the SAS dataset near
point

F10 F10 toggle-log
toggle ESS[SAS] for ‘.log’ files; useful for certain debugging
situations

F11 F11 ‘filetype-2’
switch buffer to ‘filetype-2’ (defaults to ‘.dat’) file and ‘refresh’

F12 F12 viewgraph
open a GSASFILE near point for viewing either in emacs or with an
external viewer

C-F1 C-F1 rtf-portrait
create an MS RTF portrait file from the current buffer with a file
extension of ‘.rtf’

C-F2 C-F2 rtf-landscape
create an MS RTF landscape file from the current buffer with a file
extension of ‘.rtf’

C-F3 C-F8 submit-region
write region to ‘ess-temp.sas’ and submit

C-F5 C-F6 append-to-log
append ‘ess-temp.log’ to the current ‘.log’ file

C-F6 C-F7 append-to-output
append ‘ess-temp.lst’ to the current ‘.lst’ file

C-F9 C-F9 INSIGHT
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open an interactive PROC INSIGHT session on the SAS dataset near
point

C-F10 C-F10 toggle-listing
toggle ESS[SAS] for ‘.lst’ files; useful for toggling read-only

SUBMIT, PROGRAM, LOG and OUTPUT need no further explanation since they mimic the SAS

Display Manager commands and related function key definitions. However, six other keys
have been provided for convenience and are described below.

‘shell’ switches you to the ‘*shell*’ buffer where you can interact with your operating
system. This is especially helpful if you would like to kill a SAS batch job. You can specify a
different buffer name to associate with a SAS batch job (besides ‘*shell*’) with the buffer-
local variable ess-sas-shell-buffer. This allows you to have multiple buffers running
SAS batch jobs on multiple local/remote computers that may rely on different methods
specified by the buffer-local variable ess-sas-submit-method.

F2 performs the ‘refresh’ operation on the current buffer. ‘refresh’ compares the
buffer’s last modified date/time with the file’s last modified date/time and replaces the
buffer with the file if the file is newer. This is the same operation that is automatically
performed when LOG, OUTPUT, ‘filetype-1’ or F11 are pressed.

‘filetype-1’ switches you to a file with the same file name as your ‘.sas’ file, but with
a different extension (‘.txt’ by default) and performs ‘refresh’. You can over-ride the
default extension; for example in your ‘~/.emacs’ or ‘~/.xemacs/init.el’ file:

(setq ess-sas-suffix-1 "csv") ; for example

F9 will prompt you for the name of a permanent SAS dataset near point to be opened
for viewing by PROC FSEDIT. You can control the SAS batch command-line with ess-

sas-data-view-submit-options. For controlling the SAS batch commands, you have the
global variables ess-sas-data-view-libname and ess-sas-data-view-fsview-command

as well as the buffer-local variable ess-sas-data-view-fsview-statement. If you have
your SAS LIBNAME defined in ‘~/autoexec.sas’, then the defaults for these variables should
be sufficient.

Similarly, C-F9 will prompt you for the name of a permanent SAS dataset near point
to be opened for viewing by PROC INSIGHT. You can control the SAS batch command-line
with ess-sas-data-view-submit-options. For controlling the SAS batch commands, you
have the global variables ess-sas-data-view-libname and ess-sas-data-view-insight-

command as well as the buffer-local variable ess-sas-data-view-insight-statement.

F10 toggles ESS[SAS] mode for ‘.log’ files which is off by default (technically, it is
SAS-log-mode, but it looks the same). The syntax highlighting can be helpful in certain
debugging situations, but large ‘.log’ files may take a long time to highlight.

F11 is the same as ‘filetype-1’ except it is ‘.dat’ by default.

F12 will prompt you for the name of a GSASFILE near the point in ‘.log’ to be opened
for viewing either with emacs or with an external viewer. Depending on your version of
emacs and the operating system you are using, emacs may support ‘.gif’ and ‘.jpg’ files
internally. You may need to change the following variables for your own situation. ess-sas-
graph-view-suffix-regexp is a regular expression of supported file types defined via file
name extensions. ess-sas-graph-view-viewer-default is the default external viewer for
your platform. ess-sas-graph-view-viewer-alist is an alist of exceptions to the default;
i.e. file types and their associated viewers which will be used rather than the default viewer.
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(setq ess-sas-graph-view-suffix-regexp (concat "[.]\\([eE]?[pP][sS]\\|"

"[pP][dD][fF]\\|[gG][iI][fF]\\|[jJ][pP][eE]?[gG]\\|"

"[tT][iI][fF][fF]?\\)")) ;; default

(setq ess-sas-graph-view-viewer-default "kodakimg") ;; Windows default

(setq ess-sas-graph-view-viewer-default "sdtimage") ;; Solaris default

(setq ess-sas-graph-view-viewer-alist

’(("[eE]?[pP][sS]" . "gv") ("[pP][dD][fF]" . "gv")) ;; default w/ gv

C-F2 produces US landscape by default, however, it can produce A4 landscape (first line
for "global" key mapping, second for "local"):

(global-set-key [(control f2)] ’ess-sas-rtf-a4-landscape)

(define-key sas-mode-local-map [(control f2)] ’ess-sas-rtf-a4-landscape)

13.6 iESS[SAS]–Interactive SAS processes

Inferior ESS (iESS) is the method for interfacing with interactive statistical processes
(programs). iESS[SAS] is what is needed for interactive SAS programming. iESS[SAS]
works best with the SAS command-line option settings "-stdio -linesize 80 -noovp

-nosyntaxcheck" (the default of inferior-SAS-args).

-stdio

required to make the redirection of stdio work
-linesize 80

keeps output lines from folding on standard terminals
-noovp

prevents error messages from printing 3 times
-nosyntaxcheck

permits recovery after syntax errors

To start up iESS[SAS] mode, use:

M-x SAS

The ‘*SAS:1.log*’ buffer in ESStr mode corresponds to the file ‘foo.log’ in SAS batch
usage and to the ‘SAS: LOG’ window in the SAS Display Manager. All commands submitted
to SAS, informative messages, warnings, and errors appear here.

The ‘*SAS:1.lst*’ buffer in ESSlst mode corresponds to the file ‘foo.lst’ in SAS batch
usage and to the ‘SAS: OUTPUT’ window in the SAS Display Manager. All printed output
appears in this window.

The ‘*SAS:1*’ buffer exists solely as a communications buffer. The user should never use
this buffer directly. Files are edited in the ‘foo.sas’ buffer. The C-c C-r key in ESS[SAS] is
the functional equivalent of bringing a file into the ‘SAS: PROGRAM EDITOR’ window followed
by SUBMIT.

For example, open the file you want to work with.

C-x C-f foo.sas

‘foo.sas’ will be in ESS[SAS] mode. Edit as appropriate, and then start up SAS with
the cursor in the ‘foo.sas’ buffer.
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M-x SAS

Four buffers will appear on screen:

Buffer Mode Description
‘foo.sas’ ESS[SAS] your source file
‘*SAS:1*’ iESS[SAS:1] iESS communication buffer
‘*SAS:1.log*’ Shell ESStr [] SAS log information
‘*SAS:1.lst*’ Shell ESSlst [] SAS listing information

If you would prefer each of the four buffers to appear in its own individual frame,
you can arrange for that. Place the cursor in the buffer displaying ‘foo.sas’. Enter the
sequence C-c C-w. The cursor will normally be in buffer ‘foo.sas’. If not, put it there and
C-x b foo.sas.

Send regions, lines, or the entire file contents to SAS (regions are most useful: a high-
lighted region will normally begin with the keywords DATA or PROC and end with RUN;),
C-c C-r.

Information appears in the log buffer, analysis results in the listing buffer. In case of
errors, make the corrections in the ‘foo.sas’ buffer and resubmit with another C-c C-r.

At the end of the session you may save the log and listing buffers with the usual C-x C-s

commands. You will be prompted for a file name. Typically, the names ‘foo.log’ and
‘foo.lst’ will be used. You will almost certainly want to edit the saved files before including
them in a report. The files are read-only by default. You can make them writable by the
emacs command C-x C-q.

At the end of the session, the input file ‘foo.sas’ will typically have been revised. You
can save it. It can be used later as the beginning of another iESS[SAS] session. It can also
be used as a batch input file to SAS.

The ‘*SAS:1*’ buffer is strictly for ESS use. The user should never need to read it or
write to it. Refer to the ‘.lst’ and ‘.log’ buffers for monitoring output!

Troubleshooting: See Section 13.7 [iESS(SAS)–Common problems], page 76.

13.7 iESS[SAS]–Common problems

1. iESS[SAS] does not work on Windows. In order to run SAS inside an emacs buffer, it
is necessary to start SAS with the -stdio option. SAS does not support the -stdio

option on Windows.

2. If M-x SAS gives errors upon startup, check the following:

• you are running Windows: see 1.

• ‘ess-sas-sh-command’ (from the ESS ‘etc’ directory) needs to be executable; too
check, type M-x dired; if not, fix it as follows, type M-:, then at the minibuffer
prompt ‘Eval:’, type (set-file-modes "ess-sas-sh-command" 493).

• sas isn’t in your executable path; to verify, type M-: and at the minibuffer prompt
‘Eval:’, type (executable-find "sas")

3. M-x SAS starts SAS Display Manager. Probably, the command sas on your system calls
a shell script. In that case you will need to locate the real sas executable and link to
it. You can execute the UNIX command:
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find / -name sas -print

Now place a soft link to the real sas executable in your ~/bin directory, with for
example

cd ~/bin

ln -s /usr/local/sas9/sas sas

Check your PATH environment variable to confirm that ~/bin appears before the directory
in which the sas shell script appears.

13.8 ESS[SAS]–Graphics

Output from a SAS/GRAPH PROC can be displayed in a SAS/GRAPH window for SAS batch
on Windows or for both SAS batch and interactive with XWindows on UNIX. If you need to
create graphics files and view them with F12, then include the following (either in ‘foo.sas’
or in ‘~/autoexec.sas’):

filename gsasfile ’graphics.ps’;

goptions device=ps gsfname=gsasfile gsfmode=append;

PROC PLOT graphs can be viewed in the listing buffer. You may wish to control the
vertical spacing to allow the entire plot to be visible on screen, for example:

proc plot;

plot a*b / vpos=25;

run;

13.9 ESS[SAS]–Windows

• iESS[SAS] does not work on Windows. See Section 13.7 [iESS(SAS)–Common prob-
lems], page 76.

• ESS[SAS] mode for editing SAS language files works very well. See Section 13.2
[ESS(SAS)–Editing files], page 69.

• There are two execution options for SAS on Windows. You can use batch. See
Section 13.4 [ESS(SAS)–Batch SAS processes], page 70.

Or you can mark regions with the mouse and submit the code with ‘submit-region’ or
paste them into SAS Display Manager.
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14 ESS for BUGS

ESS[BUGS] was originally designed for use with BUGS software. Later, it evolved to support
JAGS as a dialect of the BUGS language via ESS[JAGS], however, ESS[JAGS] is documented
in the section Help for JAGS. ESS[BUGS] provides 5 features. First, BUGS syntax is de-
scribed to allow for proper fontification of statements, distributions, functions, commands
and comments in BUGS model files, command files and log files. Second, ESS creates tem-
plates for the command file from the model file so that a BUGS batch process can be defined
by a single file. Third, ESS provides a BUGS batch script that allows ESS to set BUGS
batch parameters. Fourth, key sequences are defined to create a command file and submit a
BUGS batch process. Lastly, interactive submission of BUGS commands is also supported.

14.1 ESS[BUGS]–Model files

Model files with the ‘.bug’ extension are edited in ESS[BUGS]mode if (require ’ess-bugs-

d) was performed. Model files with the ‘.jag’ extension are edited in ESS[JAGS] mode if
(require ’ess-jags-d) was performed. Three keys are bound for your use in ESS[BUGS],
F2, C-c C-c and =. F2 performs the same action as it does in ESS[SAS], See Section 13.5
[ESS(SAS)–Function keys for batch processing], page 72. C-c C-c performs the function
ess-bugs-next-action which you will use a lot. Pressing it in an empty buffer for a model
file will produce a template for you. = inserts the set operator, <-.

14.2 ESS[BUGS]–Command files

To avoid extension name collision, ‘.bmd’ is used for BUGS command files and ‘.jmd’ for
JAGS command files. When you have finished editing your model file and press C-c C-c, a
command file is created if one does not already exist. When you are finished editing your
command file, pressing C-c C-c again will submit your command file as a batch job.

14.3 ESS[BUGS]–Log files

To avoid extension name collision, ‘.bog’ is used for BUGS log files. The command line
generated by ESS creates the ‘.bog’ transcript file. Similarly, ‘.jog’ is used for JAGS log
files.
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15 ESS for JAGS

ESS[BUGS] was originally designed for use with BUGS software. Later, it evolved to support
JAGS as a dialect of the BUGS language via ESS[JAGS]. Since BUGS and JAGS are quite
similar, ESS[BUGS] and ESS[JAGS] are necessarily similar. ESS[JAGS] provides 4 features.
First, JAGS syntax is described to allow for proper fontification of statements, distributions,
functions, commands and comments in JAGS model files, command files and log files.
Second, ESS creates templates for the command file from the model file so that a JAGS
batch process can be defined by a single file. Third, ESS provides a JAGS batch script that
allows ESS to set JAGS batch parameters. Fourth, key sequences are defined to create a
command file and submit a JAGS batch process.

15.1 ESS[JAGS]–Model files

Model files with the ‘.bug’ extension are edited in ESS[BUGS] mode if (require ’ess-

bugs-d) was performed or edited in ESS[JAGS] mode if (require ’ess-jags-d). Three
keys are bound for your use in ESS[BUGS], F2, C-c C-c and =. F2 performs the same action
as it does in ESS[SAS], See Section 13.5 [ESS(SAS)–Function keys for batch processing],
page 72. C-c C-c performs the function ess-bugs-next-action which you will use a lot.
Pressing it in an empty buffer for a model file will produce a template for you. = inserts
the set operator, <-.

ESS[JAGS] does not support "replacement" variables which were part of ESS[BUGS].
Although, "replacement" variables are an extremely convenient feature, creating the elisp
code for their operation was challenging. So, a more elisp-ish approach was adopted for
ESS[JAGS]: elisp local variables. These variables are created as part of the template, i.e.
with the first press of C-c C-c in an empty buffer. For your ‘.bug’ file, they are named
ess-jags-chains, ess-jags-monitor, ess-jags-thin, ess-jags-burnin and ess-jags-

update; they appear in the Local Variables section. When you are finished editing your
model file, pressing C-c C-c will perform the necessary actions to build your command file
for you.

The ess-jags-chains variable is the number of chains that you want to initialize and
sample from; defaults to 1. The ess-jags-monitor variable is a list of variables that you
want monitored: encase each variable in double quotes. When you press C-c C-c, the
appropriate statements are created in the command file to monitor the list of variables. By
default, no variables are explicitly monitored which means JAGS will implicitly monitor all
“default” variables. The ess-jags-thin variable is the thinning parameter. By default,
the thinning parameter is set to 1, i.e. no thinning. The ess-jags-burnin variable is the
number of initial samples to discard. By default, the burnin parameter is set to 10000.
The ess-jags-update variable is the number of post-burnin samples to keep. By default,
the update parameter is set to 10000. Both ess-jags-burnin and ess-jags-update are
multiplied by ess-jags-thin since JAGS does not do it automatically.

15.2 ESS[JAGS]–Command files

To avoid extension name collision, ‘.bmd’ is used for BUGS command files and ‘.jmd’ for
JAGS command files. For your ‘.jmd’ file, there is only one variable, ess-jags-command,
in the Local Variables section. When you have finished editing your model file and press
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C-c C-c, a command file is created if one does not already exist. When you are finished
editing your command file, pressing C-c C-c again will submit your command file as a batch
job. The ess-jags-command variable allows you to specify a different JAGS program to
use to run your model; defaults to “jags”.

15.3 ESS[JAGS]–Log files

The ‘.jog’ extension is used for JAGS log files. You may find F2 useful to refresh the ‘.jog’
if the batch process over-writes or appends it.
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16 Bugs and Bug Reporting, Mailing Lists

16.1 Bugs

• Commands like ess-display-help-on-object and list completion cannot be used
while the user is entering a multi-line command. The only real fix in this situation is
to use another ESS process.

• The ess-eval- commands can leave point in the ESS process buffer in the wrong place
when point is at the same position as the last process output. This proves difficult to
fix, in general, as we need to consider all windows with window-point at the right
place.

• It’s possible to clear the modification flag (say, by saving the buffer) with the edit buffer
not having been loaded into S.

• Backup files can sometimes be left behind, even when ess-keep-dump-files is nil.

• Passing an incomplete S expression to ess-execute causes ESS to hang.

• The function-based commands don’t always work as expected on functions whose body
is not a parenthesized or compound expression, and don’t even recognize anonymous
functions (i.e. functions not assigned to any variable).

• Multi-line commands could be handled better by the command history mechanism.

• Changes to the continutation prompt in R (e.g. options(continue = " ")) are not
automatically detected by ESS. Hence, for now, the best thing is not to change the
continuation prompt. If you do change the continuation prompt, you will need to change
accordingly the value of inferior-ess-secondary-prompt in R-customize-alist.

16.2 Reporting Bugs

Please send bug reports, suggestions etc. to ESS-bugs@stat.math.ethz.ch

The easiest way to do this is within Emacs by typing

M-x ess-submit-bug-report

This also gives the maintainers valuable information about your installation which may
help us to identify or even fix the bug.

If Emacs reports an error, backtraces can help us debug the problem. Type "M-x set-
variable RET debug-on-error RET t RET". Then run the command that causes the error
and you should see a *Backtrace* buffer containing debug information; send us that buffer.

Note that comments, suggestions, words of praise and large cash donations are also more
than welcome.

16.3 Mailing Lists

There is a mailing list for discussions and announcements relating to ESS. Join
the list by sending an e-mail with "subscribe ess-help" (or "help") in the body to
ess-help-request@stat.math.ethz.ch; contributions to the list may be mailed to
ess-help@stat.math.ethz.ch. Rest assured, this is a fairly low-volume mailing list.

The purposes of the mailing list include

mailto:ESS-bugs@stat.math.ethz.ch
mailto:ess-help-request@stat.math.ethz.ch
mailto:ess-help@stat.math.ethz.ch
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• helping users of ESS to get along with it.

• discussing aspects of using ESS on Emacs and XEmacs.

• suggestions for improvements.

• announcements of new releases of ESS.

• posting small patches to ESS.

16.4 Help with emacs

Emacs is a complex editor with many abilities that we do not have space to describe here.
If you have problems with other features of emacs (e.g. printing), there are several sources
to consult, including the emacs FAQs (try M-x xemacs-www-faq or M-x view-emacs-FAQ)
and EmacsWiki (http://www.emacswiki.org). Please consult them before asking on the
mailing list about issues that are not specific to ESS.

http://www.emacswiki.org
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Appendix A Customizing ESS

ESS can be easily customized to your taste simply by including the appropriate lines in
your ‘.emacs’ file. There are numerous variables which affect the behavior of ESS in certain
situations which can be modified to your liking. Keybindings may be set or changed to your
preferences, and for per-buffer customizations hooks are also available.

Most of these variables can be viewed and set using the Custom facility within Emacs.
Type M-x customize-group RET ess RET to see all the ESS variables that can be cus-
tomized. Variables are grouped by subject to make it easy to find related variables.
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