vistla: Detecting Influence Paths with Information Theory
Traces information spread through interactions between features, utilising information theory measures and a higher-order generalisation of the concept of widest paths in graphs.
In particular, 'vistla' can be used to better understand the results of high-throughput biomedical experiments, by organising the effects of the investigated intervention in a tree-like hierarchy from direct to indirect ones, following the plausible information relay circuits.
Due to its higher-order nature, 'vistla' can handle multi-modality and assign multiple roles to a single feature.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=vistla
to link to this page.