unpivotr::behead()
unpivotr::behead_if()
This is based on a talk. You might want to watch the video or read the slides (see speaker notes by clicking the cog):
https://docs.google.com/presentation/d/1tVwn_-QVGZTflnF9APiPACNvyAKqujdl6JmxmrdDjok
It is easy to read a spreadsheet into R when it has:
Here is an example, a dataset of student test marks in different subjects.
To test whether a table will be easy to import, ask yourself “Is every row self-sufficient? Could I read only one row and understand all the data in it?” In this case, one row will tell you that Ron got two marks in potions in his second year.
Because this table is simple – or ‘tidy’ – it is easily imported into a data frame, using the {readxl} package.
library(readxl) # for read_excel()
hp_xlsx <- system.file("extdata/harry-potter.xlsx", package = "unpivotr")
tidy <- read_excel(hp_xlsx, sheet = "tidy")
tidy
#> # A tibble: 8 × 4
#> Pupil Year Subject Mark
#> <chr> <chr> <chr> <dbl>
#> 1 Ron 1st year Potions 3
#> 2 Ron 1st year Herbology 7
#> 3 Ron 2nd year Potions 2
#> 4 Ron 2nd year Herbology 10
#> 5 Ginny 1st year Potions 8
#> 6 Ginny 1st year Herbology 9
#> 7 Ginny 2nd year Potions 9
#> 8 Ginny 2nd year Herbology 7
Note that the row of column names in the spreadsheet has been used as
column names of the data frame. Also the data type of each column is
either dbl
(double, which means a number), or
chr
(character) as appropriate.
Here’s is the same data but this time it is in a spreadsheet that the {readxl} package can’t read so easily. Why not?
The Pupil
and Year
columns have been
combined into one, so the names of the pupils aren’t in the same rows as
their marks, nor are they in the same columns. There is also a text
value "10 - really?"
amongst a column of numbers.
Is every row self-sufficient? Could you read only one row and understand all the data in it? No, because one row will only tell you the mark, subject and year, but not the name. Or else it will tell you the name, but not the mark, subject or year.
Here is what happens when the table is read with the {readxl} package.
untidy <- read_excel(hp_xlsx, sheet = "untidy")
#> New names:
#> • `` -> `...1`
untidy
#> # A tibble: 6 × 3
#> ...1 Potions Herbology
#> <chr> <dbl> <chr>
#> 1 Ron NA <NA>
#> 2 1st year 3 7
#> 3 2nd year 2 10 - really?
#> 4 Ginny NA <NA>
#> 5 1st year 8 9
#> 6 2nd year 9 7
What has gone wrong? The spreadsheet has broken the assumptions that the {readxl} package makes about data.
"Ron"
and
"Ginny"
."Ron"
, "Ginny"
) and years in plain type,
("1st year"
, "2nd year"
)."10 - really?"
.The readxl
package has done its best with a difficult
file.
...1
to fill the cell in the top-left corner with a
column header, and NA
to fill the cells to the right of
Ron
and Ginny
."10 - really?"
.Unfortunately {readxl} hasn’t been able to make the data tidy. Each row still isn’t self-sufficient. You couldn’t read only one row and understand all the data in it.
Here is a final example of a spreadsheet that breaks the one remaining assumption: that there is a single row of column headers. This file has two rows of column headers.
The rest of this tutorial will demonstrate how to use the {tidyxl} and {unpivotr} packages to import that spreadsheet.
Don’t expect to understand yet how the following code works. It is here to show you what to expect later, and it is the entire code to import the spreadsheet above.
library(dplyr)
library(tidyr)
#>
#> Attaching package: 'tidyr'
#> The following objects are masked from 'package:unpivotr':
#>
#> pack, unpack
library(tidyxl)
library(unpivotr)
hp_xlsx <- system.file("extdata/harry-potter.xlsx", package = "unpivotr")
cells <- xlsx_cells(hp_xlsx, sheets = "pivoted")
formats <- xlsx_formats(hp_xlsx)
indent <- formats$local$alignment$indent
tidied <-
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name") %>%
behead_if(indent[local_format_id] == 0,
direction = "left-up",
name = "location") %>%
behead("left", "subject") %>%
select(address, dormitory, name, location, subject, mark = numeric) %>%
arrange(dormitory, name, location, subject)
tidied
#> # A tibble: 24 × 6
#> address dormitory name location subject mark
#> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 C4 Witch Ginny Castle Charms 6
#> 2 C5 Witch Ginny Castle Potions 5
#> 3 C3 Witch Ginny Castle <NA> 11
#> 4 C8 Witch Ginny Grounds Care of Magical Creatures 7
#> 5 C7 Witch Ginny Grounds Herbology 1
#> 6 C6 Witch Ginny Grounds <NA> 8
#> 7 B4 Witch Hermione Castle Charms 2
#> 8 B5 Witch Hermione Castle Potions 9
#> 9 B3 Witch Hermione Castle <NA> 11
#> 10 B8 Witch Hermione Grounds Care of Magical Creatures 2
#> 11 B7 Witch Hermione Grounds Herbology 5
#> 12 B6 Witch Hermione Grounds <NA> 7
#> 13 D4 Wizard Harry Castle Charms 0
#> 14 D5 Wizard Harry Castle Potions 7
#> 15 D3 Wizard Harry Castle <NA> 7
#> 16 D8 Wizard Harry Grounds Care of Magical Creatures 3
#> 17 D7 Wizard Harry Grounds Herbology 8
#> 18 D6 Wizard Harry Grounds <NA> 11
#> 19 E4 Wizard Ron Castle Charms 0
#> 20 E5 Wizard Ron Castle Potions 2
#> 21 E3 Wizard Ron Castle <NA> 2
#> 22 E8 Wizard Ron Grounds Care of Magical Creatures 3
#> 23 E7 Wizard Ron Grounds Herbology NA
#> 24 E6 Wizard Ron Grounds <NA> 3
The first step to import a difficult spreadsheet is to read it with
tidyxl::xlsx_cells()
.
What does tidyxl::xlsx_cells()
do that is different from
readxl::read_excel()
? Instead of returning the
data in a data frame, it returns individual cells in a
data frame. Try matching each row of the output of
xlsx_cells()
to a cell in the spreadsheet.
cells <-
xlsx_cells(hp_xlsx, sheets = "pivoted") %>%
# Drop some columns to make it clearer what is going on
select(row, col, is_blank, data_type, character, numeric, local_format_id)
cells
#> # A tibble: 47 × 7
#> row col is_blank data_type character numeric local_format_id
#> <int> <int> <lgl> <chr> <chr> <dbl> <int>
#> 1 1 2 FALSE character Witch NA 2
#> 2 1 4 FALSE character Wizard NA 2
#> 3 2 1 TRUE blank <NA> NA 9
#> 4 2 2 FALSE character Hermione NA 3
#> 5 2 3 FALSE character Ginny NA 4
#> 6 2 4 FALSE character Harry NA 3
#> 7 2 5 FALSE character Ron NA 4
#> 8 3 1 FALSE character Castle NA 12
#> 9 3 2 FALSE numeric <NA> 11 5
#> 10 3 3 FALSE numeric <NA> 11 6
#> 11 3 4 FALSE numeric <NA> 7 5
#> 12 3 5 FALSE numeric <NA> 2 6
#> 13 4 1 FALSE character Charms NA 10
#> 14 4 2 FALSE numeric <NA> 2 2
#> 15 4 3 FALSE numeric <NA> 6 1
#> 16 4 4 FALSE numeric <NA> 0 2
#> 17 4 5 FALSE numeric <NA> 0 1
#> 18 5 1 FALSE character Potions NA 11
#> 19 5 2 FALSE numeric <NA> 9 3
#> 20 5 3 FALSE numeric <NA> 5 4
#> 21 5 4 FALSE numeric <NA> 7 3
#> 22 5 5 FALSE numeric <NA> 2 4
#> 23 6 1 FALSE character Grounds NA 12
#> 24 6 2 FALSE numeric <NA> 7 5
#> 25 6 3 FALSE numeric <NA> 8 6
#> 26 6 4 FALSE numeric <NA> 11 5
#> 27 6 5 FALSE numeric <NA> 3 6
#> 28 7 1 FALSE character Herbology NA 10
#> 29 7 2 FALSE numeric <NA> 5 2
#> 30 7 3 FALSE numeric <NA> 1 1
#> 31 7 4 FALSE numeric <NA> 8 2
#> 32 7 5 FALSE character 10 - really? NA 13
#> 33 8 1 FALSE character Care of Magical Creat… NA 14
#> 34 8 2 FALSE numeric <NA> 2 15
#> 35 8 3 FALSE numeric <NA> 7 17
#> 36 8 4 FALSE numeric <NA> 3 15
#> 37 8 5 FALSE numeric <NA> 3 16
#> 38 9 1 TRUE blank <NA> NA 14
#> 39 9 2 TRUE blank <NA> NA 15
#> 40 9 3 TRUE blank <NA> NA 17
#> 41 9 4 TRUE blank <NA> NA 15
#> 42 9 5 TRUE blank <NA> NA 16
#> 43 10 1 TRUE blank <NA> NA 14
#> 44 10 2 TRUE blank <NA> NA 15
#> 45 10 3 TRUE blank <NA> NA 17
#> 46 10 4 TRUE blank <NA> NA 15
#> 47 10 5 TRUE blank <NA> NA 16
The first row of the output describes the cell B2 (row 1, column 2)
of the spreadsheet, with the character value "Witch"
.
# A tibble: 47 x 7
row col is_blank data_type character numeric local_format_id
<int> <int> <lgl> <chr> <chr> <dbl> <int>
1 1 2 FALSE character Witch NA 2
Row 10 describes the cell C3 (row 3, column 3) of the spreadsheet,
with the numeric value 11
.
So what xlsx_cells()
has done is give you a data frame
that isn’t data itself, but it describes the data in the
spreadsheet. Each row describes one cell. This allows you to do some
fancy tricks, like filter for all the numeric cells.
cells %>%
filter(data_type == "numeric")
#> # A tibble: 23 × 7
#> row col is_blank data_type character numeric local_format_id
#> <int> <int> <lgl> <chr> <chr> <dbl> <int>
#> 1 3 2 FALSE numeric <NA> 11 5
#> 2 3 3 FALSE numeric <NA> 11 6
#> 3 3 4 FALSE numeric <NA> 7 5
#> 4 3 5 FALSE numeric <NA> 2 6
#> 5 4 2 FALSE numeric <NA> 2 2
#> 6 4 3 FALSE numeric <NA> 6 1
#> 7 4 4 FALSE numeric <NA> 0 2
#> 8 4 5 FALSE numeric <NA> 0 1
#> 9 5 2 FALSE numeric <NA> 9 3
#> 10 5 3 FALSE numeric <NA> 5 4
#> 11 5 4 FALSE numeric <NA> 7 3
#> 12 5 5 FALSE numeric <NA> 2 4
#> 13 6 2 FALSE numeric <NA> 7 5
#> 14 6 3 FALSE numeric <NA> 8 6
#> 15 6 4 FALSE numeric <NA> 11 5
#> 16 6 5 FALSE numeric <NA> 3 6
#> 17 7 2 FALSE numeric <NA> 5 2
#> 18 7 3 FALSE numeric <NA> 1 1
#> 19 7 4 FALSE numeric <NA> 8 2
#> 20 8 2 FALSE numeric <NA> 2 15
#> 21 8 3 FALSE numeric <NA> 7 17
#> 22 8 4 FALSE numeric <NA> 3 15
#> 23 8 5 FALSE numeric <NA> 3 16
Or you could filter for a particular cell by its row and column position.
cells %>%
filter(row == 2, col == 4)
#> # A tibble: 1 × 7
#> row col is_blank data_type character numeric local_format_id
#> <int> <int> <lgl> <chr> <chr> <dbl> <int>
#> 1 2 4 FALSE character Harry NA 3
And you can filter out all ‘blank’ cells. A cell is ‘blank’ if it has formatting but no value. Sometimes it’s useful to have these, but usually you should discard them.
cells %>%
filter(!is_blank)
#> # A tibble: 36 × 7
#> row col is_blank data_type character numeric local_format_id
#> <int> <int> <lgl> <chr> <chr> <dbl> <int>
#> 1 1 2 FALSE character Witch NA 2
#> 2 1 4 FALSE character Wizard NA 2
#> 3 2 2 FALSE character Hermione NA 3
#> 4 2 3 FALSE character Ginny NA 4
#> 5 2 4 FALSE character Harry NA 3
#> 6 2 5 FALSE character Ron NA 4
#> 7 3 1 FALSE character Castle NA 12
#> 8 3 2 FALSE numeric <NA> 11 5
#> 9 3 3 FALSE numeric <NA> 11 6
#> 10 3 4 FALSE numeric <NA> 7 5
#> 11 3 5 FALSE numeric <NA> 2 6
#> 12 4 1 FALSE character Charms NA 10
#> 13 4 2 FALSE numeric <NA> 2 2
#> 14 4 3 FALSE numeric <NA> 6 1
#> 15 4 4 FALSE numeric <NA> 0 2
#> 16 4 5 FALSE numeric <NA> 0 1
#> 17 5 1 FALSE character Potions NA 11
#> 18 5 2 FALSE numeric <NA> 9 3
#> 19 5 3 FALSE numeric <NA> 5 4
#> 20 5 4 FALSE numeric <NA> 7 3
#> 21 5 5 FALSE numeric <NA> 2 4
#> 22 6 1 FALSE character Grounds NA 12
#> 23 6 2 FALSE numeric <NA> 7 5
#> 24 6 3 FALSE numeric <NA> 8 6
#> 25 6 4 FALSE numeric <NA> 11 5
#> 26 6 5 FALSE numeric <NA> 3 6
#> 27 7 1 FALSE character Herbology NA 10
#> 28 7 2 FALSE numeric <NA> 5 2
#> 29 7 3 FALSE numeric <NA> 1 1
#> 30 7 4 FALSE numeric <NA> 8 2
#> 31 7 5 FALSE character 10 - really? NA 13
#> 32 8 1 FALSE character Care of Magical Creat… NA 14
#> 33 8 2 FALSE numeric <NA> 2 15
#> 34 8 3 FALSE numeric <NA> 7 17
#> 35 8 4 FALSE numeric <NA> 3 15
#> 36 8 5 FALSE numeric <NA> 3 16
That is all you need to know about the tidyxl package for now. Later you will be shown how to filter for cells by their formatting (e.g. bold cells, indented cells, or cells with coloured text).
You’ve seen that tidyxl::xlsx_cells()
reads a
spreadsheet one cell at a time, so that you can filter for particular
cells by their position, their value, their data type, etc. You could
now write code to tidy up any spreadsheet.
The unpivotr package gives you some pre-packaged tools for tidying up
a spreadsheet. The most important tool is behead()
, which
deals with one layer of header cells at a time.
Let’s look again at the original spreadsheet. I have highlighted the first row of header cells.
Use unpivotr::behead()
to tag data cells with
"Witch"
or "Wizard"
, and then strip (or
behead!) those header cells from the rest – they are no longer
required.
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory")
#> # A tibble: 34 × 8
#> row col is_blank data_type character numeric local_format_id dormitory
#> <int> <int> <lgl> <chr> <chr> <dbl> <int> <chr>
#> 1 2 2 FALSE character Hermione NA 3 Witch
#> 2 2 3 FALSE character Ginny NA 4 Witch
#> 3 3 2 FALSE numeric <NA> 11 5 Witch
#> 4 3 3 FALSE numeric <NA> 11 6 Witch
#> 5 4 2 FALSE numeric <NA> 2 2 Witch
#> 6 4 3 FALSE numeric <NA> 6 1 Witch
#> 7 5 2 FALSE numeric <NA> 9 3 Witch
#> 8 5 3 FALSE numeric <NA> 5 4 Witch
#> 9 6 2 FALSE numeric <NA> 7 5 Witch
#> 10 6 3 FALSE numeric <NA> 8 6 Witch
#> 11 7 2 FALSE numeric <NA> 5 2 Witch
#> 12 7 3 FALSE numeric <NA> 1 1 Witch
#> 13 8 2 FALSE numeric <NA> 2 15 Witch
#> 14 8 3 FALSE numeric <NA> 7 17 Witch
#> 15 2 4 FALSE character Harry NA 3 Wizard
#> 16 2 5 FALSE character Ron NA 4 Wizard
#> 17 3 4 FALSE numeric <NA> 7 5 Wizard
#> 18 3 5 FALSE numeric <NA> 2 6 Wizard
#> 19 4 4 FALSE numeric <NA> 0 2 Wizard
#> 20 4 5 FALSE numeric <NA> 0 1 Wizard
#> 21 5 4 FALSE numeric <NA> 7 3 Wizard
#> 22 5 5 FALSE numeric <NA> 2 4 Wizard
#> 23 6 4 FALSE numeric <NA> 11 5 Wizard
#> 24 6 5 FALSE numeric <NA> 3 6 Wizard
#> 25 7 4 FALSE numeric <NA> 8 2 Wizard
#> 26 7 5 FALSE character 10 - really? NA 13 Wizard
#> 27 8 4 FALSE numeric <NA> 3 15 Wizard
#> 28 8 5 FALSE numeric <NA> 3 16 Wizard
#> 29 3 1 FALSE character Castle NA 12 <NA>
#> 30 4 1 FALSE character Charms NA 10 <NA>
#> 31 5 1 FALSE character Potions NA 11 <NA>
#> 32 6 1 FALSE character Grounds NA 12 <NA>
#> 33 7 1 FALSE character Herbology NA 10 <NA>
#> 34 8 1 FALSE character Care of Mag… NA 14 <NA>
Click through table to check that every cell belonging to the Witch
header has been taggged "Witch"
in the column
dormitory
, and the same for wizards Notice that the
locations Castle
and Grounds
have also been
tagged witch or wizard. Also, all the cells in row 1 have disappeared –
they have become values in the dormitory
column.
What do the arguments to behead("up-left", "dormitory")
mean? The second one, "dormitory"
becomes the column name
of the male/female tags. But the direction "up-left"
is the
most important one. It tells behead()
which way to look for
a header cell.
For example, starting from the cell C3 (row 3 column 3),
behead()
looks up and to the left to find the header
"Witch"
. Starting from the cell D4 (row 4, column 4) it
finds the header "Wizard"
. Starting from cells in the first
column, there is no header cell in the "up-left"
direction,
so they are tagged with missing values. Don’t worry about them – they
will come right later.
What if we try a different direction instead, "up-right"
(up and to the right)? Again, compare the table with the spreadsheet
cells %>%
filter(!is_blank) %>%
behead("up-right", "dormitory")
#> # A tibble: 34 × 8
#> row col is_blank data_type character numeric local_format_id dormitory
#> <int> <int> <lgl> <chr> <chr> <dbl> <int> <chr>
#> 1 2 2 FALSE character Hermione NA 3 Witch
#> 2 3 1 FALSE character Castle NA 12 Witch
#> 3 3 2 FALSE numeric <NA> 11 5 Witch
#> 4 4 1 FALSE character Charms NA 10 Witch
#> 5 4 2 FALSE numeric <NA> 2 2 Witch
#> 6 5 1 FALSE character Potions NA 11 Witch
#> 7 5 2 FALSE numeric <NA> 9 3 Witch
#> 8 6 1 FALSE character Grounds NA 12 Witch
#> 9 6 2 FALSE numeric <NA> 7 5 Witch
#> 10 7 1 FALSE character Herbology NA 10 Witch
#> 11 7 2 FALSE numeric <NA> 5 2 Witch
#> 12 8 1 FALSE character Care of Mag… NA 14 Witch
#> 13 8 2 FALSE numeric <NA> 2 15 Witch
#> 14 2 3 FALSE character Ginny NA 4 Wizard
#> 15 2 4 FALSE character Harry NA 3 Wizard
#> 16 3 3 FALSE numeric <NA> 11 6 Wizard
#> 17 3 4 FALSE numeric <NA> 7 5 Wizard
#> 18 4 3 FALSE numeric <NA> 6 1 Wizard
#> 19 4 4 FALSE numeric <NA> 0 2 Wizard
#> 20 5 3 FALSE numeric <NA> 5 4 Wizard
#> 21 5 4 FALSE numeric <NA> 7 3 Wizard
#> 22 6 3 FALSE numeric <NA> 8 6 Wizard
#> 23 6 4 FALSE numeric <NA> 11 5 Wizard
#> 24 7 3 FALSE numeric <NA> 1 1 Wizard
#> 25 7 4 FALSE numeric <NA> 8 2 Wizard
#> 26 8 3 FALSE numeric <NA> 7 17 Wizard
#> 27 8 4 FALSE numeric <NA> 3 15 Wizard
#> 28 2 5 FALSE character Ron NA 4 <NA>
#> 29 3 5 FALSE numeric <NA> 2 6 <NA>
#> 30 4 5 FALSE numeric <NA> 0 1 <NA>
#> 31 5 5 FALSE numeric <NA> 2 4 <NA>
#> 32 6 5 FALSE numeric <NA> 3 6 <NA>
#> 33 7 5 FALSE character 10 - really? NA 13 <NA>
#> 34 8 5 FALSE numeric <NA> 3 16 <NA>
Check that Ginny has been tagged "Wizard"
, and so have
her marks in cells below. Unpivotr doesn’t know that this is wrong, it
has just done what it was told. The behead()
function isn’t
magic, it just enables you to tell unpivotr which data cells relate to
which header cells.
unpivotr::behead()
Let’s carry on with the second row of header cells (highlighted).
This time the direction is simply "up"
for directly up
because there is a header in every column. Notice that we’re building up
a pipeline of transformations, one set of headers at a time.
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name")
#> # A tibble: 30 × 9
#> row col is_blank data_type character numeric local_format_id dormitory
#> <int> <int> <lgl> <chr> <chr> <dbl> <int> <chr>
#> 1 3 2 FALSE numeric <NA> 11 5 Witch
#> 2 3 3 FALSE numeric <NA> 11 6 Witch
#> 3 4 2 FALSE numeric <NA> 2 2 Witch
#> 4 4 3 FALSE numeric <NA> 6 1 Witch
#> 5 5 2 FALSE numeric <NA> 9 3 Witch
#> 6 5 3 FALSE numeric <NA> 5 4 Witch
#> 7 6 2 FALSE numeric <NA> 7 5 Witch
#> 8 6 3 FALSE numeric <NA> 8 6 Witch
#> 9 7 2 FALSE numeric <NA> 5 2 Witch
#> 10 7 3 FALSE numeric <NA> 1 1 Witch
#> 11 8 2 FALSE numeric <NA> 2 15 Witch
#> 12 8 3 FALSE numeric <NA> 7 17 Witch
#> 13 3 4 FALSE numeric <NA> 7 5 Wizard
#> 14 3 5 FALSE numeric <NA> 2 6 Wizard
#> 15 4 4 FALSE numeric <NA> 0 2 Wizard
#> 16 4 5 FALSE numeric <NA> 0 1 Wizard
#> 17 5 4 FALSE numeric <NA> 7 3 Wizard
#> 18 5 5 FALSE numeric <NA> 2 4 Wizard
#> 19 6 4 FALSE numeric <NA> 11 5 Wizard
#> 20 6 5 FALSE numeric <NA> 3 6 Wizard
#> 21 7 4 FALSE numeric <NA> 8 2 Wizard
#> 22 7 5 FALSE character 10 - really? NA 13 Wizard
#> 23 8 4 FALSE numeric <NA> 3 15 Wizard
#> 24 8 5 FALSE numeric <NA> 3 16 Wizard
#> 25 3 1 FALSE character Castle NA 12 <NA>
#> 26 4 1 FALSE character Charms NA 10 <NA>
#> 27 5 1 FALSE character Potions NA 11 <NA>
#> 28 6 1 FALSE character Grounds NA 12 <NA>
#> 29 7 1 FALSE character Herbology NA 10 <NA>
#> 30 8 1 FALSE character Care of Mag… NA 14 <NA>
#> # ℹ 1 more variable: name <chr>
Click through the table to match it to the spreadsheet. The header
cells in rows 1 and 2 have all disappeared to become values in the
dormitory
and name
columns. The cell C3 (row
3, column 3) has been tagged "Witch"
and
"Ginny"
unpivotr::behead_if()
Applying the same procedure to the headers in column A, which describe the location and subject, what are the directions?
Starting from a data cell, say, B7 (row 7, column 2), the location
is"Grounds"
, which is to the left and then up,
"left-up"
.
But there is a complication. When unpivotr::behead()
is
travelling up the cells in column 1, how does it know to stop at
"Grounds"
and not overshoot to "Potions"
or
any of the cells further up? You must tell behead()
to stop
at the first cell that isn’t indented. Alternatively, you could tell it
to stop at the first cell that is bold.
Use unpivotr::behead_if()
when there is a rule to
identify a header cell. In this case the rule will be “when the cell has
bold formatting”.
A spreadsheet cell can have so many different formats that it would
be unweildy for {tidyxl} to import them all at once. Instead, {tidyxl}
imports a kind of lookup table of formatting, and each cell has a key
into the lookup table, called local_format_id
.
Here’s how to look up the indented
property of a
cell.
formats <- xlsx_formats(hp_xlsx) # load the format lookup table from the file
indent <- formats$local$alignment$indent # find the 'indent' property
indent[cells$local_format_id] # look up the indent property of each cell
#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
#> [39] 0 0 0 0 1 0 0 0 0
When you look up a format from inside behead_if()
, you
don’t need to mention cell$
, but you do have to name the
other arguments to behead()
.
formats <- xlsx_formats(hp_xlsx) # load the format lookup table from the file
indent <- formats$local$alignment$indent # find the 'indent' property
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name") %>%
behead_if(indent[local_format_id] == 0,
direction = "left-up", # This argument has to be named now.
name = "location") # So does this one.
#> # A tibble: 28 × 10
#> row col is_blank data_type character numeric local_format_id dormitory
#> <int> <int> <lgl> <chr> <chr> <dbl> <int> <chr>
#> 1 3 2 FALSE numeric <NA> 11 5 Witch
#> 2 3 3 FALSE numeric <NA> 11 6 Witch
#> 3 4 2 FALSE numeric <NA> 2 2 Witch
#> 4 4 3 FALSE numeric <NA> 6 1 Witch
#> 5 5 2 FALSE numeric <NA> 9 3 Witch
#> 6 5 3 FALSE numeric <NA> 5 4 Witch
#> 7 3 4 FALSE numeric <NA> 7 5 Wizard
#> 8 3 5 FALSE numeric <NA> 2 6 Wizard
#> 9 4 4 FALSE numeric <NA> 0 2 Wizard
#> 10 4 5 FALSE numeric <NA> 0 1 Wizard
#> 11 5 4 FALSE numeric <NA> 7 3 Wizard
#> 12 5 5 FALSE numeric <NA> 2 4 Wizard
#> 13 4 1 FALSE character Charms NA 10 <NA>
#> 14 5 1 FALSE character Potions NA 11 <NA>
#> 15 6 2 FALSE numeric <NA> 7 5 Witch
#> 16 6 3 FALSE numeric <NA> 8 6 Witch
#> 17 7 2 FALSE numeric <NA> 5 2 Witch
#> 18 7 3 FALSE numeric <NA> 1 1 Witch
#> 19 8 2 FALSE numeric <NA> 2 15 Witch
#> 20 8 3 FALSE numeric <NA> 7 17 Witch
#> 21 6 4 FALSE numeric <NA> 11 5 Wizard
#> 22 6 5 FALSE numeric <NA> 3 6 Wizard
#> 23 7 4 FALSE numeric <NA> 8 2 Wizard
#> 24 7 5 FALSE character 10 - really? NA 13 Wizard
#> 25 8 4 FALSE numeric <NA> 3 15 Wizard
#> 26 8 5 FALSE numeric <NA> 3 16 Wizard
#> 27 7 1 FALSE character Herbology NA 10 <NA>
#> 28 8 1 FALSE character Care of Mag… NA 14 <NA>
#> # ℹ 2 more variables: name <chr>, location <chr>
You can give more than one rule to behead_if()
at once.
They are applied together, so all the rules must evaluate to
TRUE
for a cell to be treated as a header cell. Here’s an
example applying the additional rule that a cell must be bold. The
result in this case is the same.
formats <- xlsx_formats(hp_xlsx)
indent <- formats$local$alignment$indent
bold <- formats$local$font$bold # find the 'bold' property
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name") %>%
behead_if(indent[local_format_id] == 0, # First rule
bold[local_format_id], # Second rule. Both must be TRUE
direction = "left-up",
name = "location")
#> # A tibble: 28 × 10
#> row col is_blank data_type character numeric local_format_id dormitory
#> <int> <int> <lgl> <chr> <chr> <dbl> <int> <chr>
#> 1 3 2 FALSE numeric <NA> 11 5 Witch
#> 2 3 3 FALSE numeric <NA> 11 6 Witch
#> 3 4 2 FALSE numeric <NA> 2 2 Witch
#> 4 4 3 FALSE numeric <NA> 6 1 Witch
#> 5 5 2 FALSE numeric <NA> 9 3 Witch
#> 6 5 3 FALSE numeric <NA> 5 4 Witch
#> 7 3 4 FALSE numeric <NA> 7 5 Wizard
#> 8 3 5 FALSE numeric <NA> 2 6 Wizard
#> 9 4 4 FALSE numeric <NA> 0 2 Wizard
#> 10 4 5 FALSE numeric <NA> 0 1 Wizard
#> 11 5 4 FALSE numeric <NA> 7 3 Wizard
#> 12 5 5 FALSE numeric <NA> 2 4 Wizard
#> 13 4 1 FALSE character Charms NA 10 <NA>
#> 14 5 1 FALSE character Potions NA 11 <NA>
#> 15 6 2 FALSE numeric <NA> 7 5 Witch
#> 16 6 3 FALSE numeric <NA> 8 6 Witch
#> 17 7 2 FALSE numeric <NA> 5 2 Witch
#> 18 7 3 FALSE numeric <NA> 1 1 Witch
#> 19 8 2 FALSE numeric <NA> 2 15 Witch
#> 20 8 3 FALSE numeric <NA> 7 17 Witch
#> 21 6 4 FALSE numeric <NA> 11 5 Wizard
#> 22 6 5 FALSE numeric <NA> 3 6 Wizard
#> 23 7 4 FALSE numeric <NA> 8 2 Wizard
#> 24 7 5 FALSE character 10 - really? NA 13 Wizard
#> 25 8 4 FALSE numeric <NA> 3 15 Wizard
#> 26 8 5 FALSE numeric <NA> 3 16 Wizard
#> 27 7 1 FALSE character Herbology NA 10 <NA>
#> 28 8 1 FALSE character Care of Mag… NA 14 <NA>
#> # ℹ 2 more variables: name <chr>, location <chr>
Check that Hermione got 5 marks in a subject taken in Hogwarts grounds, by looking at cell B7 (row 7, column 2).
Only one layer of headers remains: the subjects in column 1. The
direction is directly "left"
.
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name") %>%
behead_if(indent[local_format_id] == 0,
direction = "left-up",
name = "location") %>%
behead("left", "subject")
#> # A tibble: 24 × 11
#> row col is_blank data_type character numeric local_format_id dormitory
#> <int> <int> <lgl> <chr> <chr> <dbl> <int> <chr>
#> 1 3 2 FALSE numeric <NA> 11 5 Witch
#> 2 3 3 FALSE numeric <NA> 11 6 Witch
#> 3 4 2 FALSE numeric <NA> 2 2 Witch
#> 4 4 3 FALSE numeric <NA> 6 1 Witch
#> 5 5 2 FALSE numeric <NA> 9 3 Witch
#> 6 5 3 FALSE numeric <NA> 5 4 Witch
#> 7 3 4 FALSE numeric <NA> 7 5 Wizard
#> 8 3 5 FALSE numeric <NA> 2 6 Wizard
#> 9 4 4 FALSE numeric <NA> 0 2 Wizard
#> 10 4 5 FALSE numeric <NA> 0 1 Wizard
#> 11 5 4 FALSE numeric <NA> 7 3 Wizard
#> 12 5 5 FALSE numeric <NA> 2 4 Wizard
#> 13 6 2 FALSE numeric <NA> 7 5 Witch
#> 14 6 3 FALSE numeric <NA> 8 6 Witch
#> 15 7 2 FALSE numeric <NA> 5 2 Witch
#> 16 7 3 FALSE numeric <NA> 1 1 Witch
#> 17 8 2 FALSE numeric <NA> 2 15 Witch
#> 18 8 3 FALSE numeric <NA> 7 17 Witch
#> 19 6 4 FALSE numeric <NA> 11 5 Wizard
#> 20 6 5 FALSE numeric <NA> 3 6 Wizard
#> 21 7 4 FALSE numeric <NA> 8 2 Wizard
#> 22 7 5 FALSE character 10 - really? NA 13 Wizard
#> 23 8 4 FALSE numeric <NA> 3 15 Wizard
#> 24 8 5 FALSE numeric <NA> 3 16 Wizard
#> # ℹ 3 more variables: name <chr>, location <chr>, subject <chr>
Check that Hermione got 5 marks in Herbology in particular, taken in Hogwarts grounds, by looking at cell B7 (row 7, column 2).
The final cleanup is straightforward; choose the columns to keep,
using the standard tidyverse function dplyr::select()
. At
the same time you can rename the column numeric
to
mark
, and the column character
to
other
. What is the column other
for? For the
value "10 - really?"
.
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name") %>%
behead_if(indent[local_format_id] == 0,
direction = "left-up",
name = "location") %>%
behead("left", "subject") %>%
select(dormitory, name, location, subject, mark = numeric, other = character)
#> # A tibble: 24 × 6
#> dormitory name location subject mark other
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Witch Hermione Castle <NA> 11 <NA>
#> 2 Witch Ginny Castle <NA> 11 <NA>
#> 3 Witch Hermione Castle Charms 2 <NA>
#> 4 Witch Ginny Castle Charms 6 <NA>
#> 5 Witch Hermione Castle Potions 9 <NA>
#> 6 Witch Ginny Castle Potions 5 <NA>
#> 7 Wizard Harry Castle <NA> 7 <NA>
#> 8 Wizard Ron Castle <NA> 2 <NA>
#> 9 Wizard Harry Castle Charms 0 <NA>
#> 10 Wizard Ron Castle Charms 0 <NA>
#> 11 Wizard Harry Castle Potions 7 <NA>
#> 12 Wizard Ron Castle Potions 2 <NA>
#> 13 Witch Hermione Grounds <NA> 7 <NA>
#> 14 Witch Ginny Grounds <NA> 8 <NA>
#> 15 Witch Hermione Grounds Herbology 5 <NA>
#> 16 Witch Ginny Grounds Herbology 1 <NA>
#> 17 Witch Hermione Grounds Care of Magical Creatures 2 <NA>
#> 18 Witch Ginny Grounds Care of Magical Creatures 7 <NA>
#> 19 Wizard Harry Grounds <NA> 11 <NA>
#> 20 Wizard Ron Grounds <NA> 3 <NA>
#> 21 Wizard Harry Grounds Herbology 8 <NA>
#> 22 Wizard Ron Grounds Herbology NA 10 - really?
#> 23 Wizard Harry Grounds Care of Magical Creatures 3 <NA>
#> 24 Wizard Ron Grounds Care of Magical Creatures 3 <NA>
It is up to you now what to do with the ‘total’ values for the castle
and the grounds. If you don’t want to keep them, it’s easy enough to
filter them out using !is.na(subject)
. That is done in the
final code listing below.
library(dplyr)
library(tidyr)
library(tidyxl)
library(unpivotr)
hp_xlsx <- system.file("extdata/harry-potter.xlsx", package = "unpivotr")
cells <- xlsx_cells(hp_xlsx, sheet = "pivoted")
formats <- xlsx_formats(hp_xlsx)
indent <- formats$local$alignment$indent
tidied <-
cells %>%
filter(!is_blank) %>%
behead("up-left", "dormitory") %>%
behead("up", "name") %>%
behead_if(indent[local_format_id] == 0,
direction = "left-up",
name = "location") %>%
behead("left", "subject") %>%
select(address, dormitory, name, location, subject, mark = numeric) %>%
arrange(dormitory, name, location, subject)
tidied
#> # A tibble: 24 × 6
#> address dormitory name location subject mark
#> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 C4 Witch Ginny Castle Charms 6
#> 2 C5 Witch Ginny Castle Potions 5
#> 3 C3 Witch Ginny Castle <NA> 11
#> 4 C8 Witch Ginny Grounds Care of Magical Creatures 7
#> 5 C7 Witch Ginny Grounds Herbology 1
#> 6 C6 Witch Ginny Grounds <NA> 8
#> 7 B4 Witch Hermione Castle Charms 2
#> 8 B5 Witch Hermione Castle Potions 9
#> 9 B3 Witch Hermione Castle <NA> 11
#> 10 B8 Witch Hermione Grounds Care of Magical Creatures 2
#> 11 B7 Witch Hermione Grounds Herbology 5
#> 12 B6 Witch Hermione Grounds <NA> 7
#> 13 D4 Wizard Harry Castle Charms 0
#> 14 D5 Wizard Harry Castle Potions 7
#> 15 D3 Wizard Harry Castle <NA> 7
#> 16 D8 Wizard Harry Grounds Care of Magical Creatures 3
#> 17 D7 Wizard Harry Grounds Herbology 8
#> 18 D6 Wizard Harry Grounds <NA> 11
#> 19 E4 Wizard Ron Castle Charms 0
#> 20 E5 Wizard Ron Castle Potions 2
#> 21 E3 Wizard Ron Castle <NA> 2
#> 22 E8 Wizard Ron Grounds Care of Magical Creatures 3
#> 23 E7 Wizard Ron Grounds Herbology NA
#> 24 E6 Wizard Ron Grounds <NA> 3
Well done for making it this far. If you have struggled to follow, that is normal – it means you are learning. Try reading through a second or third time, and change parts of the code to see what happens.