% \VignetteIndexEntry{Q-exponential family} % \VignetteKeywords{htest} % \VignettePackage{tsallisqexp} %---------------------------------------------------------------------------------------------------------- % Copyright (c) 2021 Christophe Dutang, % % The following Latex code is given as an example and not The example % of using Latex to write report, memoir or thesis. % % The licence is unlimited but the copyright authors could NOT be liable % for any direct or indirect damages caused by the use of the following code. % % The following code could be compiled : % - on windows with a Tex distribution such as miktex (http://miktex.org) % and a front end Latex editor such as texniccenter (http://www.toolscenter.org) % - on mac os with a Tex distribution such as TexLive and a front end Latex % editor such as Texshop (http://www.uoregon.edu/~koch/texshop/) % - on linux with a Tex distribution such as teTex (http://www.tug.org/teTeX/) % and a front end Latex editor such as emacs (http://www.gnu.org/software/emacs/) % % We may use \'e (\`e, \`a,...) instead of the accented character to ensure the % portability of the Latex code. This is NOT an obligation of Latex. % %---------------------------------------------------------------------------------------------------------- \documentclass[11pt, a4paper]{article} % package %symbole math de l'American Mathematical Society (AMS) \usepackage{amsfonts,amssymb,amsmath,amsthm} %utiliser les regles de typographie francaise \usepackage[english]{babel} % accents 8 bits dans le fichier %\usepackage[applemac]{inputenc} %MAC encoding \usepackage[utf8]{inputenc} %UNIX encoding %\usepackage[utf8x]{inputenc} %UNIX encoding on MAC %\usepackage[ansinew]{inputenc} %WINDOWS encoding %graphique \usepackage{color, graphicx, wrapfig, subfig} %reference hypertext \usepackage[hyperfootnotes=false]{hyperref} %header %\pagestyle{headings} %pour les url \usepackage{url} \urlstyle{sf} %plusieur colonne dans tableau \usepackage{multirow, multicol} \usepackage[left=2cm, right=2cm, top=2cm, bottom=2cm]{geometry} % les macros generales %layout \newcommand{\HRuleTop}{\noindent\rule{\linewidth}{.5pt}} \newcommand{\HRuleBottom}{\rule{\linewidth}{.5pt}} \newcommand{\ligne}{\rule[2mm]{.3\textwidth}{0,5mm}\\} \newcommand{\myskip}{\vspace{\parskip}} \newcommand{\mytodo}[1]{\todo[color=green]{TODO}#1} \newcommand{\blank}{ \clearpage{\pagestyle{empty}\cleardoublepage} } %text style \newcommand{\pkg}{\textbf} \newcommand{\sigle}{\textsc} \newcommand{\code}{\texttt} \newcommand{\soft}{\textsf} \newcommand{\expo}{\textsuperscript} %\newcommand{\(}{\left(} %system \newcommand{\systL}{\left\{\begin{array}{l}} \newcommand{\systR}{\end{array}\right.} \newcommand{\matL}{\left(\begin{matrix}} \newcommand{\matR}{\end{matrix}\right)} \newcommand{\detL}{\left|\begin{matrix}} \newcommand{\detR}{\end{matrix}\right|} %sets \ifdefined\R \renewcommand{\R}{\mathbb{R}} \else \newcommand{\R}{\mathbb{R}} \fi \title{On the different parametrizations of the Q-exponential family distribution} \author{C. Dutang\footnote{LJK, CNRS, Grenoble INP - UGA}, P. Higbie\footnote{NMSU, Mexico}} \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \section{q-exponential family} The density (Eq. (18) of Naudt (2007)) is defined as $$ f_\theta(x) = c(x) \exp_q(-\alpha(\theta)-\theta H(x)), $$ where $c$, $\alpha$ and $H$ are known functions. Furthermore, $\exp_q$ is the $q$-deformed exponential function defined as $$ \exp_q(z)= [1+(1-q)z]_+^{1/(1-q)} \text{ for } z\in\R, q\neq 1, $$ where $[z]_+=\max(z,0)$. $\exp_q$ is construct as the inverse of the $q$-deformed logarithm defined as $$ \log_q(z) = \frac{z^{1-q}-1}{1-q} \text{ for } z\in\R, q\neq 1. $$ In particular, $\forall z\in\R, \exp_q(\log_q(z)) =z$ and $\forall z\neq0, \log_q(\exp_q(z)) =z$. Special case: for $q\rightarrow1$, $\exp_q\rightarrow \exp$ and we get the exponential family. Let us find the domain where $1+(1-q)z>0$: \begin{itemize} \item If $q>1$, i.e. $1-q< 0$ then $$ 1+(1-q) z >0 \Leftrightarrow 1>-(1-q) z \Leftrightarrow \frac{-1}{1-q}>z $$ \item If $q<1$, i.e. $1-q> 0$ then $$ 1+(1-q) z >0 \Leftrightarrow 1>-(1-q) z \Leftrightarrow \frac{1}{1-q} 1-1/(alpha+1)=q \sigma = \alpha\kappa \systR \Leftrightarrow \systL \sigma = \alpha\kappa \\ -1/(\alpha+1) = 1-q \\ \systR \Leftrightarrow \systL \kappa = \sigma/\alpha \\ q = 1 + 1/(\alpha+1) \systR $$ Using the parametrization $(\alpha,\sigma)$, we get the following density and distribution function $$ f(x) = \frac{\alpha}{ \sigma}\left(1+ \frac{x}{\sigma}\right)_+^{-\alpha-1},~ F(x) = 1- \left(1+ \frac{x}{\sigma}\right)_+^{-\alpha} . $$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Bibiliography. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Bibliography} \noindent Naudt, J. (2007), {\it The q-exponential family in statistical physics}, Journal of Physics: Conference Series 201 (2010) 012003. \noindent Shalizi, C. (2007), {\it Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions}, \url{http://arxiv.org/abs/math/0701854v2}. \end{document}