
texreg: Conversion of Statistical Model Output in R

to LATEX and HTML Tables

Philip Leifeld

University of Essex

Abstract

A recurrent task in applied statistics is the (mostly manual) preparation of model
output for inclusion in LATEX, Microsoft Word, or HTML documents – usually with more
than one model presented in a single table along with several goodness-of-fit statistics.
However, statistical models in R have diverse object structures and summary methods,
which makes this process cumbersome. This article first develops a set of guidelines for
converting statistical model output to LATEX and HTML tables, then assesses to what
extent existing packages meet these requirements, and finally presents the texreg package
as a solution that meets all of the criteria set out in the beginning. After providing various
usage examples, a blueprint for writing custom model extensions is proposed.

Keywords: reporting, table, coefficients, regression, R, LATEX, MS Word, HTML, Markdown.

This R package vignette is based on an article in the Journal of Statistical Software (Leifeld
2013). The contents of the article have not been modified, apart from the author affilia-
tion. However, the package has been updated with more arguments, model extensions, and
functions. The help pages contain details on any differences to the version documented here.

1. Typesetting R model output in LATEX and HTML

The primary purpose of the statistical programming language R (R Core Team 2013) is the
analysis of data with statistical models. One of the strengths of R is that users can implement
their own statistical models. While this flexibility leads to an increased availability of even
exotic models and shorter cycles between model development and implementation, there are
also downsides of this flexibility. In particular, there is no unified data structure of statistical
models and no unified way of representing model output, which makes it hard to re-use
coefficients and goodness-of-fit (GOF) statistics in other software packages, especially for the
purpose of publishing results.

Several generic functions were developed to provide unified accessor methods for coefficients
(the coef() function), GOF statistics (for example, AIC(), BIC(), logLik(), or deviance()),
a custom text representation of the fitted model (summary()), and other relevant pieces of
information (e.g., nobs() and formula()). Details are provided in Chapter 11 of Venables,
Smith, and R Core Team (2013). Nonetheless, many popular packages have only partially
implemented methods for these generics, and in some cases they do not even provide accessor
functions at all for their coefficients or GOF statistics. Even worse, the model summary
methods are usually structured in idiosyncratic ways and do not lend themselves to easy

2 texreg: Conversion of R Model Output to LATEX and HTML

parsing of coefficients and GOF statistics.

Modern scientific journals, on the other hand, often require nicely formatted and standardized
model output, usually in the form of coefficient tables for one or more models. In the majority
of applications, these tables show more than one model aligned next to each other with
partially overlapping coefficient names, standard errors in parentheses, and superscripted stars
indicating the significance of model terms. At the bottom of the table, summary statistics
like the number of observations are reported, and GOF measures like AIC or R2 are shown.
Due to the idiosyncratic way model output is currently represented in various classes in R,
designing these kinds of tables for a paper submission requires a substantial amount of time
and patience, especially if more than one model is involved and if there are many model terms.
Copying and pasting coefficients and standard errors one at a time often becomes the default
way of handling this task.

An important tool for typesetting academic papers in many academic fields is LATEX (Lamport
1986). In fact, R and LATEX are closely linked by the Sweave() command in the utils package
(R Core Team 2013), which allows the integration of R commands in LATEX documents and
their execution and evaluation at runtime (Leisch 2002). In spite of this, common approaches
for linking R model output and tables in LATEX include (1) copying and pasting individual
values after every change of the model, (2) custom user-written functions which convert a
specific model into a matrix, (3) the use of sophisticated table-management packages (see
next section), and (4) the inclusion of single models in the form of the model summary
instead of nicely aligned coefficient tables as a second best solution.

Popular alternatives for document preparation include Microsoft Word and the dynamic report
generation R package knitr (Xie 2013a,b,c). Both knitr and Microsoft Word accept HTML
input, and knitr additionally supports Markdown, a simplified HTML-like markup language.
These platforms face similar complications as LATEX and Sweave() regarding the preparation
of regression tables for multiple statistical models.

The ideal way to prepare R model output for LATEX and HTML tables would be a generic
function which would directly output LATEX or HTML tables and for which custom methods
for any model type could be written as extensions. While several attempts already exist (see
Section 3), all of them have limitations. This article introduces the texreg package (?), which
closes this gap and provides a unified framework for typesetting LATEX and HTML tables for
various statistical models in R. Package texreg is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=texreg.

The remainder of this article is structured as follows: Section 2 sets out a number of require-
ments which must be met. In the light of these requirements, Section 3 compares texreg to
other R packages and functions which were designed for similar purposes. Section 4 describes
the way how texreg works and how its functions and classes are related. After providing
several examples and illustrating the options of the texreg(), htmlreg(), and screenreg()

functions (Section 5), Section 6 describes how new extensions can be implemented.

2. Requirements

The design of the texreg package tries to accomplish six goals: it should be capable of dealing
with several models in a single table; it should be easily extensible by package writers and
users; it should provide options for using the available space in an optimal way; it should

http://CRAN.R-project.org/package=texreg

Philip Leifeld 3

take advantage of advanced layout capabilities in LATEX and HTML; it should take care of
journal- or model-specific habits or best practices; and it should find an optimal balance of
customizability and usability. These requirements are elaborated in the following paragraphs.

2.1. Managing multiple models

Quite often, almost-identical models are printed in order to show how an additional model
term alters the other coefficients and standard errors. There are, however, also cases where
different model types are applied to the same data. This implies that the package must
not only be able to merge the names of coefficients to guarantee comparability of coefficient
columns; it must also be able to deal with different model classes and accommodate different
kinds of GOF statistics in the same table.

Moreover, it must be possible to rename the model terms and GOF statistics. Custom coef-
ficient names not only make the output more easily comprehensibe by the readers; renaming
model terms is also mandatory for unifying terms between several models. For example, two
models based upon two different datasets may have different variable names for the same kind
of theoretical construct. This would result in two separate but complementary rows in the
coefficient table. It should be possible to rename coefficients and then conflate any two or
more complementary rows with identical labels.

Finally, it should be possible to assign custom names for the different models, instead of
the default “Model 1”, “Model 2”, etc. While it may be easy to rename them manually in
many applications, particularly Sweave() and knitr() require that no manual manipulation
is necessary.

2.2. Using generics to make texreg easily extensible

Different model classes have different ways how their coefficients and GOF statistics can be
accessed. Hardcoding these extraction rules into the functions of the texreg package would
inhibit customizability. The best way to make texreg extensible is to have a generic extract()

function which can be invoked on any kind of model, just like plot() or print() generics
in R. Any user—especially model class authors—would then be able to add custom methods
to the extract() function in order to make texreg learn how to cope with new models. For
example, an extract() method for ‘lm’ objects can be written to deal with linear models,
or an extract() method for ‘ergm’ objects can be written to make the generic extract()

function understand exponential random graph models. All the user has to do is write a
custom extract function for a specific model type and then register it as a method for the
generic extract() function. Section 6 provides details on how this can be accomplished.

2.3. Use available space efficiently

If a table has many model terms and if standard errors are printed in parentheses below
the coefficients, the table may become too large for a single page. For this reason, it should
be possible to print standard errors right beside the coefficients instead of aligning them
vertically. In texreg, this is achieved with the single.row argument.

If tables grow too large, other measures might prove useful: removing table margins, setting
the table in script size, or setting custom float positions (for LATEX tables). Very wide tables
should be rotated by 90 degrees using the sidewaystable environment in the LATEX package

4 texreg: Conversion of R Model Output to LATEX and HTML

rotating (Rahtz and Fairbairns 2008) in order to use the available space in an optimal way.
The user should also be able to set the table caption and label, decide whether the table
should be in a float environment (for LATEX tables), align the table horizontally on the page,
and set the position of the caption. The texreg package provides arguments to control all of
these aspects.

2.4. Beautiful and clean table layout

For LATEX tables, the LATEX package dcolumn (Carlisle 2001) provides facilities for aligning
numbers in table cells nicely, for example at their decimal separators. The booktabs package
(Fear 2005) can draw top, mid and bottom rules for tables and produces a cleaner layout than
the default horizontal lines. Both packages are supported by texreg and can be switched on
or off depending on the availability of the packages in the LATEX distribution.

For HTML tables, cascading style sheets (CSS) should be used to adjust the layout, and the
user should be able to decide whether CSS markup should be included in the file header or
inline.

2.5. Journal- or model-specific requirements

Academic journals may have different requirements regarding the number of digits to be
printed, the inclusion of superscripted stars indicating significance, or the removal of leading
zeroes. Similarly, there are best practices in different academic communities or for specific
model types. For example, it is common practice to attach three stars to coefficients with
p values f 0.001 and small centered dots to coefficients with p values between 0.05 and 0.1
in exponential random graph models, while less fine-grained significance levels are adopted
in many other communities (for example, three stars for p f 0.01, or only one star or bold
formatting for one single significance level). In yet other communities, journals or models,
p values or significance stars are not required or even deemed inappropriate (see the lme4

package by Bates, Maechler, Bolker, and Walker 2013).

2.6. Customizability and usability

Different users have different applications in mind. For this reason, a solution should be as
flexible as possible and offer customization via arguments. For example, inclusion of an HTML
table in a knitr Markdown document requires that only the table is printed without any header
or document type information, and that significance stars are escaped using backslashes.

In other situations, it may be important to (1) omit certain coefficients (like random or
fixed effects or thresholds), (2) reorder the coefficients in the model (e.g., because some
models put interaction effects at the end of the list of coefficients), or (3) replace coefficients,
standard errors, or p values by custom vectors, for example when heteroskedasticity-consistent
(“robust”) standard errors are used (Zeileis 2004).

Philip Leifeld 5

Argument t
e
x
r
e
g

h
t
m
l
r
e
g

s
c
r
e
e
n
r
e
g

Short description

l • • • Model or list of models
file • • • Divert output to a file
single.row • • • Print coefs and standard errors in the same row?
stars • • • Threshold levels for significance stars
custom.model.names • • • Set the names of the models
custom.coef.names • • • Replace the names of the model terms
custom.gof.names • • • Replace the names of the GOF statistics
custom.note • • • Replace the default significance legend
digits • • • Number of decimal places
leading.zero • • • Print leading zeroes?
symbol • • • Dot symbol denoting a fourth significance level
override.coef • • • Replace coefficients by custom vectors
override.se • • • Replace standard errors by custom vectors
override.pval • • • Replace p values by custom vectors
omit.coef • • • Remove rows using a regular expression
reorder.coef • • • Provide a custom order for the model terms
reorder.gof • • • Provide a custom order for the GOF statistics
return.string • • • Return the table as a character vector?
ci.force • • • Convert standard errors to confidence intervals
ci.level • • • Confidence level for CI conversion
ci.star • • • Print star when 0 is not contained in the CI
bold • • ◦ p value below which coefficients are bolded
center • • ◦ Horizontal alignment on the page
caption • • ◦ Set the caption of the table
caption.above • • ◦ Should the caption be placed above the table?
label • ◦ ◦ Set the label of the table
booktabs • ◦ ◦ Use the booktabs package (Fear 2005)?
dcolumn • ◦ ◦ Use the dcolumn package (Carlisle 2001)?
sideways • ◦ ◦ Use sidewaystable (Rahtz and Fairbairns 2008)?
use.packages • ◦ ◦ Print the \usepackage{} declarations?
table • ◦ ◦ Wrap tabular in a table environment?
no.margin • ◦ ◦ Remove margins between columns to save space
scriptsize • ◦ ◦ Use smaller font size to save space
float.pos • ◦ ◦ Specify floating position of the table
star.symbol ◦ • ◦ Change the significance symbol
inline.css ◦ • ◦ Use CSS in the text rather than the header
doctype ◦ • ◦ Include the DOCTYPE declaration?
html.tag ◦ • ◦ Include the <html> tag?
head.tag ◦ • ◦ Include the <head> tag?
body.tag ◦ • ◦ Include the <body> tag?

Continued on next page

6 texreg: Conversion of R Model Output to LATEX and HTML

Table 1 – continued from previous page

Argument t
e
x
r
e
g

h
t
m
l
r
e
g

s
c
r
e
e
n
r
e
g

Short description

column.spacing ◦ ◦ • Number of spaces between columns
outer.rule ◦ ◦ • Line type for the outer rule
inner.rule ◦ ◦ • Line type for the inner rule
... • • • Additional arguments for the extract functions

Table 1: Arguments of the texreg(), htmlreg() and screenreg() functions.

On the other hand, users should not be required to learn the meaning of all arguments before
they can typeset their first table. The default arguments should serve the needs of occasional
users. Moreover, adjusting tables based on a complex set of arguments should be facilitated
by printing tables to the R console before actually generating the LATEX or HTML output. If
this screen representation of the table is nicely formatted and aligned using spaces and rules,
it can also serve as an occasional replacement for the generic summary() method for easy
model comparison as part of the statistical modeling workflow.

The texreg package tries to balance these needs for customizability and usability by providing
many arguments for layout customization (see Table 1 for a list of arguments), using sensible
default values for occasional users, and providing a function for on-screen display of tables
for easy model comparison and layout adjustment.

3. Comparison with other packages

Beside texreg, several other packages were designed to convert R model output to LATEX or
HTML tables.

The xtable package (Dahl 2012) is able to typeset various matrices and data frames from R

as LATEX or HTML tables. It is very flexible and has its strengths particularly when it comes
to tables of summary statistics. However, it was not specifically designed for statistical model
output. Similarly, the mat2tex() command from the sfsmisc package (Maechler and others
2012) can export matrices to LATEX, and the tex.table() function in the cwhmisc package
(Hoffmann 2012) is able to export data frames as LATEX tables.

For several years, the outreg() function in the rockchalk package (Johnson 2012) has been
available for exporting multiple regression models to LATEX . However, the function remains
fairly basic and does not provide a great deal of layout options, generics, and custom model
types (in fact, only ‘lm’ and ‘glm’ objects).

The apsrtable package (Malecki 2012), the mtable() function from the memisc package
(Elff 2012), and the stargazer package (Hlavac 2013) are more advanced and can also merge
multiple models in a single table. apsrtable and memisc feature custom functions for the
extraction of coefficient and GOF information, and they are based on generics. In this regard,
both packages are somewhat similar to the texreg package. texreg, however, offers more

Philip Leifeld 7

straightforward ways of custom model implementation. This important feature is notably
absent from stargazer.

8 texreg: Conversion of R Model Output to LATEX and HTML

Class Package Description

‘aftreg’ eha Accelerated failure time regression
‘betareg’ betareg Beta regression for rates and proportions
‘brglm’ brglm Bias-reduced generalized linear models
‘btergm’ btergm Temporal exponential random graph models
‘clm’ ordinal Cumulative link models
‘clogit’ survival Conditional logistic regression
‘coeftest’ lmtest Wald tests of estimated coefficients
‘coxph’ survival Cox proportional hazard models
‘coxph.penal’ survival Cox proportional hazard with penalty splines
‘dynlm’ dynlm Time series regression
‘ergm’ ergm Exponential random graph models
‘gam’ mgcv Generalized additive models
‘gee’ gee Generalized estimation equation
‘glm’ stats Generalized linear models
‘[gl|l|nl]merMod’ lme4 (< 1.0) Generalized linear mixed models
‘gls’ nlme Generalized least squares
‘gmm’ gmm Generalized method of moments estimation
‘ivreg’ AER Instrumental-variable regression using 2SLS
‘hurdle’ pscl Hurdle regression models for count data
‘lm’ stats Ordinary least squares
‘lme’ nlme Linear mixed-effects models
‘lme4’ lme4 (g 1.0) Linear mixed-effects models
‘lmrob’ robustbase MM-type estimators for linear models
‘lnam’ sna Linear network autocorrelation models
‘lrm’ rms, Design Logistic regression models
‘maBina’ erer Marginal effects for binary response models
‘multinom’ nnet Multinomial log-linear models
‘negbin’ MASS Negative binomial generalized linear models
‘nlme’ nlme Nonlinear mixed-effects models
‘phreg’ eha Parametric proportional hazards regression
‘plm’ plm Linear models for panel data
‘pmg’ plm Linear panel models with heterogeneous coefficients
‘polr’ MASS Ordered logistic or probit regression
‘Relogit’ Zelig Rare events logistic regression
‘rem.dyad’ relevent Relational event models for dyadic data
‘rlm’ MASS Robust fitting of linear models
‘rq’ quantreg Quantile regression models
‘sclm’ ordinal Cumulative link models
‘sienaFit’ RSiena Stochastic actor-oriented models for networks
‘simex’ simex SIMEX algorithm for measurement error models
‘stergm’ tergm Temporal exponential random graph models
‘survreg’ survival Parametric survival regression models
‘survreg.penal’ survival Frailty survival models

Continued on next page

Philip Leifeld 9

Table 2 – continued from previous page

Class Package Description

‘svyglm’ survey Survey-weighted generalized linear models
‘systemfit’ systemfit Linear structural equations
‘texreg’ texreg For easy manipulation of texreg tables
‘tobit’ AER Tobit regression models for censored data
‘weibreg’ eha Weibull regression
‘zelig’ Zelig Zelig models (Owen, Imai, King, and Lau 2013)
‘zeroinfl’ pscl Zero-inflated regression models

Table 2: List of 52 supported model types (version 1.30).

The apsrtable package (version 0.8-8) has custom functions for ‘coxph’, ‘gee’, ‘glm’, ‘lm’,
‘lrm’, ‘negbxin,’ ‘svyglm’ and ‘tobit’ objects, but it does not feature any multilevel models
or network models. The memisc package (version 0.95-38) features ‘aftreg’, ‘betareg’, ‘clm’,
‘dynlm’, ‘glm’, ‘hurdle’, ‘ivreg’, ‘lm’, ‘lmer’, ‘mer’, ‘multinom’, ‘phreg’, ‘polr’, ‘tobit’,
‘simex’, ‘survreg’, ‘weibreg’, and ‘zeroinfl’ models but cannot handle any network models
and recent versions of lme4 multilevel models (Bates et al. 2013).

The stargazer package (version 3.0.1) has built-in functions for ‘betareg’, ‘clm’, ‘clogit’,
‘coxph’, ‘ergm’, ‘gam’, ‘gee’, ‘glm’, ‘glmerMod, ‘gls’, ‘hurdle’, ‘ivreg’, ‘lm’, ‘lmerMod, ‘lmrob’,
‘multinom’, ‘nlmerMod’, ‘plm, ‘pmg’, ‘polr’, ‘rlm’, ‘survreg’, ‘svyglm, ‘tobit’, and ‘zeroinfl’
objects as well as several Zelig adaptations (Owen et al. 2013), but it does not support custom
user extensions.

texreg (version 1.30), in contrast, can deal with all of the above model types (that is, the union
of all three packages, except for some Zelig models), is extensible, and offers additional built-
in functions for the following model classes: ‘brglm’, ‘btergm’,‘coxph.penal’, ‘gmm’, ‘lme’,
‘lme4’, ‘lnam’, ‘maBina’, ‘nlme’, ‘rem.dyad’, ‘rq’, ‘sclm’, ‘stergm’, ‘systemfit’, ‘texreg’ and
‘zelig’ (‘logit’ and ‘relogit’) objects. Table 2 gives an overview of currently implemented
model types.

texreg supports Microsoft Word, HTML, Markdown, and knitr whereas the other packages
(except for xtable) are restricted to LATEX output. apsrtable has an option for Sweave in-
tegration, which does not require any argument in texreg. In the memisc package and in
texreg, the booktabs and dcolumn LATEX packages for table layout (see Section 2.4) can be
used, which is not available in apsrtable (and only dcolumn is supported in stargazer).

While apsrtable and texreg allow for custom GOF measures, memisc and stargazer only
feature a set of hardcoded statistics. Apart from this, all packages presented here are signifi-
cantly less flexible than texreg regarding the utilization of space (Section 2.3), layout options
(Section 2.4), outlet- or model-specific requirements (Section 2.5), and customizability (Sec-
tion 2.6).

4. Under the hood: How texreg works

The texreg package consists of three main functions:

10 texreg: Conversion of R Model Output to LATEX and HTML

extract
‘texreg’
objects

preprocess
‘texreg’
objects

merge models
and aggregate
matrices

post-
process
matrices

aggregate
and con-
flate table

typeset
final
table

Figure 1: Simplified flow diagram of a texreg(), htmlreg(), or screenreg() call.

1. texreg() for LATEX output;

2. htmlreg() for HTML, Markdown-compatible and Microsoft Word-compatible output;

3. screenreg() for text output to the R console.

There are various internal helper functions, which are called from each of these main functions
for purposes of pre- and postprocessing. Moreover, there is a class definition for ‘texreg’
objects, and a generic extract() function along with its methods for various statistical
models. Figure 1 illustrates the procedure following a call of one of the main functions.
Details about each step are provided below.

4.1. The generic extract() function and its methods

First, the user hands over a model object or a list of models to the texreg(), htmlreg() or
screenreg() function. This main function calls the generic extract() function in order to
retrieve all the relevant pieces of information from the models. The extract() function knows
how to cope with various model types (see Table 2) because it merely calls the appropriate
extract() method designed for the specific model type. For example, if the model is of
class ‘lm’, extract() calls the extract() method for ‘lm’ objects, etc. Custom extract()

methods can be easily added (see Section 6).

An extract() method aggregates various required pieces of information, like the coefficients,
their names, standard errors, p values, and several GOF measures. Which measures are used
depends on the specific extract() method. It is also possible to let the user decide: beside
the model argument, each extract method is allowed to have more arguments. For example,
the extract() method for ‘lme4’ objects, which are lme4 multilevel models (Bates et al.

2013), has Boolean options like include.variance, which turns on the inclusion of random
effect variances in the GOF block, and numeric arguments like conf.level, which sets the
confidence level for computation of profile or bootstrapped confidence intervals. When the
main function is called in the first place, the user can include these custom arguments to
finetune the behavior of the extract() methods.

Once the relevant data have been extracted from a model object, the extract() method
creates a ‘texreg’ object by calling the createTexreg() function and handing over the ex-
tracted data. The ‘texreg’ object or the list of ‘texreg’ objects is finally returned to the
main function.

4.2. ‘texreg’ objects: An S4 class

There is an S4 class definition for ‘texreg’ objects. Such an object contains four vectors for
the coefficients—the coefficient values (numeric), their names (character), standard errors
(numeric), and p values (numeric)—, and three vectors for the GOF statistics: the GOF

Philip Leifeld 11

values (numeric), their names (character), and dummy variables indicating whether it makes
sense for the GOF value to have several decimal places (logical); for example, one would
not want the number of observations to have any decimal places.

As some types of statistical models report confidence intervals rather than standard errors
and p values, the ‘texreg’ class definition can alternatively store lower and upper bounds
of confidence intervals instead of standard errors and p values. Which slots of the class are
used depends on the extract() method for the specific model. The texreg package checks
whether standard errors are present in the ‘texreg’ object and use either standard errors or
confidence intervals depending on availability.

The class contains validation rules which make sure that the four coefficient vectors all have
the same length and that the three GOF vectors also all have the same length. There are
several exceptions to this rule: the p values, the confidence intervals, and the decimal-place
vector are optional and may also have a length of zero.

The ‘texreg’ class definition was written to facilitate the handling of the relevant pieces of in-
formation. Handing over lists of ‘texreg’ objects between functions is more user-friendly than
handing over lists of nested lists of vectors. ‘texreg’ objects are created by the extract()

methods and handed over to the texreg function (see Section 4.1).

4.3. Preprocessing the ‘texreg’ objects

Once all ‘texreg’ objects have been returned to the texreg(), htmlreg() or screenreg()

function, they have to be preprocessed. This entails two steps: first, coefficients, standard
errors or p values must be replaced by user-defined numeric vectors (for example if robust stan-
dard errors have been manually computed). The arguments override.coef, override.se,
and override.pvalues serve to replace the coefficients, standard errors, and p values, re-
spectively. Second, LATEX -specific markup codes are replaced by their HTML or plain-text
equivalents if htmlreg() or screenreg() are called instead of texreg().

4.4. Matching the model terms

After preprocessing the ‘texreg’ objects, their contents are arranged in three separate matri-
ces: the coefficient block matrix consists of three columns for each model (coefficient, standard
error, and p value); the GOF block matrix consists of one column for each model and one row
for each GOF statistic and contains the GOF values; and the decimal matrix has the same
dimensions as the GOF block matrix and indicates for each GOF value whether it should have
decimal places (e.g., R2, AIC, etc.) or whether it is an integer (e.g., number of observations,
number of groups, etc.). All of these matrices are created by matching the names of the
coefficients or GOF names of the different models to avoid redundancy. The three matrices
are kept separate during the postprocessing stage and are then combined in a single table.

4.5. Postprocessing and rearranging of the matrices

During the postprocessing stage, the coefficient and GOF names are replaced by user-defined
names (using the custom.coef.names and custom.gof.names arguments), coefficient rows
are removed by applying regular expressions to the row names (using the omit.coef argu-
ment), and coefficients/standard errors and GOF statistics are reordered according to the
user’s wishes (following the reorder.coef and reorder.gof arguments).

12 texreg: Conversion of R Model Output to LATEX and HTML

Renaming the coefficients or GOF names may lead to duplicate entries. These duplicate rows
must be conflated. For example, there may be one row with the name “duration” (with the
duration variable only existing in the first model) and another row with the name “time”
(with the time variable only existing in the second model). After renaming both rows to
either of the two names, the two rows must be conflated such that there is only one row left
with the duration coefficient in the first cell and the time coefficient in the second cell.

Rearranging the matrix also entails checking for rows with duplicate names which are in fact
not complementary and rearranging them only by presenting the fullest rows first. Further-
more, there may be more than two duplicate rows with the same name and other complex
configurations which are handled by texreg. Finally, rearranged rows are reordered to ensure
that models appear as compact as possible in the table.

4.6. Aggregating the table and conflating columns

Before the data are aggregated in the final table, all coefficients, standard errors and GOF
values must be formatted according to the specifications of the user: they have to be rounded
(following the digits argument), leading zeroes must be removed if desired by the user (as
set by the leading.zero argument), and the numeric values are converted into character

strings.

The p value column of the coefficient block matrix is then used to add significance stars or
bold formatting depending on the stars, symbol, star.symbol, and bold arguments. In the
final table, the standard error and p value columns are removed, and the standard errors are
either inserted between the coefficient and the stars or in separate rows below the coefficients
(depending on the single.row argument).

4.7. Typesetting the final table

The final table is eventually translated into LATEX or HTML code and either printed to the R

console or diverted to a file (depending on the file argument). All three functions, texreg(),
htmlreg() and screenreg(), have their own custom arguments for the layout of the table.
These specific options are listed and explained at the bottom of Table 1.

5. Examples

This section gives some practical examples. All data and model formulae were taken from
the help files of the respective models and their packages for the sake of replicability.

5.1. The screenreg() function

First, consider a simple linear model as created by the lm() function:

R> ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)

R> trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)

R> group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

R> weight <- c(ctl, trt)

R> m1 <- lm(weight ~ group)

R> m2 <- lm(weight ~ group - 1)

Philip Leifeld 13

The coefficients, standard errors, p values etc. of model 2 can be displayed as follows:

R> summary(m2)

Call:

lm(formula = weight ~ group - 1)

Residuals:

Min 1Q Median 3Q Max

-1.0710 -0.4938 0.0685 0.2462 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***

groupTrt 4.6610 0.2202 21.16 3.62e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798

F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

Next, load the texreg package. The output of the two models can be converted into a plain
text table using the following command. The text output is shown below the R code.

R> library("texreg")

R> screenreg(list(m1, m2))

=================================

Model 1 Model 2

(Intercept) 5.03 ***

(0.22)

groupTrt -0.37 4.66 ***

(0.31) (0.22)

groupCtl 5.03 ***

(0.22)

R^2 0.07 0.98

Adj. R^2 0.02 0.98

Num. obs. 20 20

=================================

*** p < 0.001, ** p < 0.01, * p < 0.05

An arbitrary number of models can be handed over to the texreg(), htmlreg() or
screenreg() function by enclosing them in a list. If only one model is converted, the
list wrapper is not needed.

14 texreg: Conversion of R Model Output to LATEX and HTML

Model 1 Model 2

(Intercept) 5.03∗∗∗

(0.22)
groupTrt −0.37 4.66∗∗∗

(0.31) (0.22)
groupCtl 5.03∗∗∗

(0.22)

R2 0.07 0.98
Adj. R2 0.02 0.98
Num. obs. 20 20
***p < 0.001, **p < 0.01, *p < 0.05

Table 3: Two linear models.

5.2. texreg(), table environments, and layout packages

The same table can be typeset in LATEX by exchanging screenreg() for texreg(). In the
following example, several additional arguments are demonstrated. The LATEX output code
is shown below the R code that generates the table. The resulting table is shown in Table 3.

R> texreg(list(m1, m2), dcolumn = TRUE, booktabs = TRUE,

+ use.packages = FALSE, label = "tab:3", caption = "Two linear models.",

+ float.pos = "h")

\begin{table}[h]

\begin{center}

\begin{tabular}{l D{.}{.}{2.5}@{} D{.}{.}{2.5}@{} }

\toprule

& \multicolumn{1}{c}{Model 1} & \multicolumn{1}{c}{Model 2} \\

\midrule

(Intercept) & 5.03^{***} & \\

& (0.22) & \\

groupTrt & -0.37 & 4.66^{***} \\

& (0.31) & (0.22) \\

groupCtl & & 5.03^{***} \\

& & (0.22) \\

\midrule

R2 & 0.07 & 0.98 \\

Adj. R2 & 0.02 & 0.98 \\

Num. obs. & 20 & 20 \\

\bottomrule

\multicolumn{3}{l}{\scriptsize{***$p < 0.001$,

**$p < 0.01$,

*$p < 0.05$}}

\end{tabular}

\caption{Two linear models.}

\label{tab:3}

Philip Leifeld 15

Model 1 Model 2

groupTrt −.371 4.661

(.311) (.220)
groupCtl 5.032

(.220)

R2 .073 .982
Adj. R2 .022 .980
Num. obs. 20 20

Coefficients with p < 0.05 in bold.

Table 4: Bolded coefficients, custom notes, three digits.

\end{center}

\end{table}

The caption, label, and float position of the table are set explicitly. The dcolumn package is
used to align coefficients at their decimal separators, and the booktabs package is employed
to create professional horizontal rules. These arguments can be omitted if the two packages
are not available (in this case, top, mid and bottom rules are replaced by conventional hori-
zontal rules, and numeric values are horizontally aligned at the center of the column). The
\usepackage{} declarations for the two packages are suppressed because the code has to be
processed by Sweave().

In order to omit the \begin{table} and \end{table} as well as the \begin{center} and
\end{center} code, the table and center arguments can be used. If table = FALSE and
center = FALSE are set, only the tabular environment is printed, not the table and center

environments. In effect, the resulting table would be printed in-line in the text. Another
reason for skipping the table environment could be to finetune the environment manually.

Alternatively, the argument sideways = TRUE can be used to rotate the table by 90 degrees
using the sidewaystable environment in the rotating package (Rahtz and Fairbairns 2008)
instead of the default table environment.

5.3. Custom names, omission of terms, and customization of coefficients

Another example demonstrates how the LATEX code can be saved in an object using the
return.string argument. The result is shown in Table 4.

R> mytable <- texreg(list(m1, m2), label = "tab:4",

+ caption = "Bolded coefficients, custom notes, three digits.",

+ float.pos = "h", return.string = TRUE, bold = 0.05, stars = 0,

+ custom.note = "Coefficients with $p < 0.05$ in \\textbf{bold}.",

+ digits = 3, leading.zero = FALSE, omit.coef = "Inter")

The table can be printed to the R console later using the cat() function.

The example presented above introduced several additional arguments: bold = 0.05 formats
all coefficients with p values < 0.05 in bold; stars = 0 means that only coefficients with
p values < 0 are decorated with a star, which effectively suppresses all significance stars
in the table because negative p values are not possible. Note that bold formatting cannot

16 texreg: Conversion of R Model Output to LATEX and HTML

OLS model GLS model

Intercept 5.03 (0.22)∗∗ 12.22 (0.66)∗∗

sin(2 · π · time) −2.77 (0.65)∗∗

cos(2 · π · time) −0.90 (0.70)
Control −0.37 (0.31)

R2 0.07
Num. obs. 20 308
AIC 1571.45
Log Likelihood −780.73
**p < 0.001, *p < 0.01

Table 5: Multiple model types, custom names, and single row.

be used in combination with the dcolumn argument, so decimal mark alignment is switched
off in Table 4. The booktabs argument was also left out to show the difference between
conventional horizontal lines in Table 4 and booktabs rules in Table 3. The custom.note =

"Coefficients with $p < 0.05$ in bold." argument changes the significance note below
the table. The digits = 3 argument sets three decimal places, leading.zero = FALSE

suppresses leading zeroes before the decimal separator, and omit.coef = "Inter" causes
all rows containing the regular expression “Inter” to be skipped from the output (here: the
“(Intercept)” term). Note that more complex regular expressions are possible; for example,
omit.coef = "(Trt)|(Ctl)" would remove all rows matching either “Trt” or “Ctl”.

5.4. Multiple model types, single.row, and custom names

Another example shows how texreg can deal with multiple kinds of models in the same table.
The following code shows how ordinary least squares (OLS) and generalized least squares
(GLS) models are matched in a single output table. The output is shown in Table 5.

R> library("nlme")

R> m3 <- gls(follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time), Ovary,

+ correlation = corAR1(form = ~ 1 | Mare))

R> table <- texreg(list(m1, m3), custom.coef.names = c(

+ "Intercept",

+ "Control",

+ "$\\sin(2 \\cdot \\pi \\cdot \\mbox{time})$",

+ "$\\cos(2 \\cdot \\pi \\cdot \\mbox{time})$"),

+ custom.model.names = c("OLS model", "GLS model"),

+ reorder.coef = c(1, 3, 4, 2),

+ caption = "Multiple model types, custom names, and single row.",

+ label = "tab:5", stars = c(0.01, 0.001), dcolumn = TRUE,

+ booktabs = TRUE, use.packages = FALSE, single.row = TRUE,

+ include.adjrs = FALSE, include.bic = FALSE)

Several interesting things can be noted. First, the custom.coef.names argument was used to
relabel the coefficient rows. If there were repetitions of coefficient names in the

Philip Leifeld 17

custom.coef.names vector, texreg would try to conflate rows with identical names. In
the case shown here, the two models are only matched on the intercept and the number
of observations because all other rows have unique names.

Second, the custom names include LATEX code. Within the code, in-line math code is allowed.
LATEX commands have to be marked by an additional backslash as an escape character, e.g.,
\\pi instead of \pi. Text within math blocks can be included in \mbox{} commands.

Third, custom names were also provided for the models. Using the custom.model.names

argument, the default “Model 1”, “Model 2” etc. are replaced by “OLS model” and “GLS
model” in this case.

Fourth, the order of the coefficients was changed using the reorder.coef argument. The
“Control” term was moved to the last position in the table.

Fifth, two significance levels (and, accordingly, a maximum of two stars) are used in the table.
The stars argument takes at most four values, and when four values are specified, the lowest
significance level (usually 0.05 f p < 0.1) is denoted by the character specified in the symbol

argument (by default a centered dot).

Sixth, the single.row argument causes the table to consume less vertical and more horizontal
space because the standard errors are inserted right after the coefficients.

And seventh, the include.adjrs and include.bic arguments suppress the inclusion of the
adjusted R2 and BIC GOF statistics. These are model-specific arguments, which are defined in
the extract() methods for ‘lm’ and ‘gls’. More information about model-specific arguments
can be found on the help page of the generic extract() function.

5.5. An example with robust standard errors

A common task in econometrics is to report robust—i.e., (Eicker-)Huber-White-corrected,
or heteroskedasticity-consistent—standard errors using the sandwich (Zeileis 2004, 2006) and
lmtest (Zeileis and Hothorn 2002) packages. The following code shows how this can be
accomplished in combination with the texreg package. The resulting table is not reported
here.

R> library("sandwich")

R> library("lmtest")

R> hc <- vcovHC(m2)

R> ct <- coeftest(m2, vcov = hc)

R> se <- ct[, 2]

R> pval <- ct[, 4]

R> texreg(m2, override.se = se, override.pvalues = pval)

The standard errors and p values are first extracted from the hc matrix and then handed over
to the texreg() function using the override.se and override.pvalues arguments.

5.6. htmlreg(), Microsoft Word, knitr, and Markdown

The following examples show how the htmlreg() function can be used. The output code for
these examples is not reported here.

The output of any texreg(), htmlreg() or screenreg() call can be written directly to a file

18 texreg: Conversion of R Model Output to LATEX and HTML

Model 1 Model 2 Model 3

(Intercept) 5.03 (0.22)∗∗∗
5.03 [4.60; 5.46]∗

groupTrt −0.37 (0.31) −0.37 [−0.98; 0.24] 4.66 [4.23; 5.09]∗

groupCtl 5.03 [4.60; 5.46]∗

***p < 0.001, **p < 0.01, *p < 0.05 (or 0 outside the confidence interval).

Table 6: Enforcing confidence intervals.

by adding the file argument. This is especially handy because HTML files can be read by
Microsoft Word if a “.doc” file extension is added.

If the table is exported to a file, it is advisable to include the full header information of
the HTML file to make sure that Microsoft Word or other programs can parse the file. An
example:

R> htmlreg(list(m1, m2, m3), file = "mytable.doc", inline.css = FALSE,

+ doctype = TRUE, html.tag = TRUE, head.tag = TRUE, body.tag = TRUE)

The doctype argument adds the document type declaration to the first line of the HTML
document. The inline.css = FALSE argument causes the function to write cascading style
sheets (the table formatting code) into the <head> tag rather than into the table code. The
head.tag argument actually adds such a <head> tag to the document. Similarly, the body.tag

argument wraps the table in a <body> tag, and the html.tag argument encloses both—the
<head> and the <body> tag—in an <html> tag. In other words, these arguments create a
whole HTML document rather than merely the table code. The resulting file can be read by
Microsoft Word because the HTML file has a “.doc” extension.

The htmlreg() function also works well with the knitr package for dynamic report generation
(Xie 2013c). The default arguments are compatible with knitr and HTML. In addition to
HTML, knitr is also compatible with Markdown, a simplified markup language. texreg can
work with Markdown as well, but an additional argument should be provided to make it work:

R> htmlreg(list(m1, m2, m3), star.symbol = "*", center = TRUE)

The star.symbol = "*" argument makes sure that Markdown does not interpret the sig-
nificance stars as special Markdown syntax. The additional (and optional) center = TRUE

argument centers the table horizontally on the page.

5.7. Confidence intervals instead of standard errors

Most model types implemented in texreg report standard errors and p values. However, some
model types report confidence intervals by default. The btergm package (?) and the lme4

package (Bates et al. 2013) are two examples. If confidence intervals are preferred to standard
errors but they are not available by default, the ci.force argument allows conversion of
standard errors to confidence intervals. The ci.force.level argument determines at which
confidence level the interval should be computed.

A star is added to estimates where the confidence interval does not contain the value given by
ci.test (to remove significance stars, ci.test = NULL can be set). When the bold argument

Philip Leifeld 19

is used in conjunction with confidence intervals, bold values greater than 0 cause texreg to
print estimates in bold where the ci.test value is outside the confidence interval, regardless
of the actual value of the bold argument (see Table 6):

R> texreg(list(m1, m1, m2), ci.force = c(FALSE, TRUE, TRUE), ci.test = 0,

+ ci.force.level = 0.95, bold = 0.05, float.pos = "h",

+ caption = "Enforcing confidence intervals.",

+ booktabs = TRUE, use.packages = FALSE, single.row = TRUE)

6. Writing extensions for new models

The previous examples have demonstrated how the texreg package can be used to convert
statistical model output into plain-text, LATEX, HTML, and Markdown tables. Yet, this only
works with model types known to texreg. Accordingly, this section shows how methods for
new model types can be devised and registered.

6.1. Simple extensions

A custom extract function can be easily implemented. For any model type, there exists a
function which extracts the relevant information from a model. For example, the extract()

method for ‘lm’ objects provides coefficients and GOF statistics for ‘lm’ objects, the extract()

Arguments Description

coef.names The names of the independent variables or coefficients.
coef The actual coefficients. These values must be in the same order as the

coef.names.
se (optional) The standard errors, which will later be put in parentheses.

These values must be in the same order as the coef.names.
pvalues (optional) The p values. They are used to add significance stars. These

values must be in the same order as the coef.names.
ci.low (optional) Lower bounds of the confidence intervals. An alternative to the

se slot.
ci.up (optional) Upper bounds of the confidence intervals. An alternative to the

se slot.
gof.names The names of some GOF statistics to be added to the table. For example,

the extract() method for ‘lm’ objects extracts R2, Adj. R2 and Num.
obs.

gof A vector of GOF statistics to be added to the table. These values must
be in the same order as the gof.names.

gof.decimal (optional) A vector of logical (Boolean) values indicating for every GOF
value whether the value should have decimal places in the output table.
This is useful to avoid decimal places for the number of observations and
similar count variables.

Table 7: Arguments of the createTexreg() function.

20 texreg: Conversion of R Model Output to LATEX and HTML

method for ‘ergm’ objects provides this information for ‘ergm’ objects, etc.

To get an overview of the model type one is interested in, it is recommended to fit a model and
examine the resulting object using the str(model) command, the summary(model) command,
the summary(model)$coef command, and related approaches.

Any new extract function should retrieve the data shown in Table 7 from a statistical model.
Note that pvalues and gof.decimal are optional and can be omitted. Either the se slot or
the ci.low and ci.up slots must contain values.

Once these data have been located and extracted, a ‘texreg’ object can be created and
returned to the texreg() function. The following code provides a simple example for ‘lm’
objects:

R> extract.lm <- function(model) {

+ s <- summary(model)

+ names <- rownames(s$coef)

+ co <- s$coef[, 1]

+ se <- s$coef[, 2]

+ pval <- s$coef[, 4]

+

+ rs <- s$r.squared

+ adj <- s$adj.r.squared

+ n <- nobs(model)

+

+ gof <- c(rs, adj, n)

+ gof.names <- c("R2", "Adj.\\ R2", "Num.\\ obs.")

+

+ tr <- createTexreg(

+ coef.names = names,

+ coef = co,

+ se = se,

+ pvalues = pval,

+ gof.names = gof.names,

+ gof = gof

+)

+ return(tr)

+ }

First, the names of the model terms, the coefficient values, the standard errors, and the
p values are extracted from the model or its summary (they can be computed if not available).

Second, various summary statistics and GOF measures are extracted from the model object
(in this case: R2, Adj. R2 and Num. obs.) and saved in a numeric vector.

Third, the names of these statistics should be defined in a character vector. All vectors so
far should have the same length.

Fourth, a new ‘texreg’ object should be created, with the information extracted before in-
cluded as arguments.

Fifth, the ‘texreg’ object must be returned. This is necessary for the texreg() function to
continue processing the model.

Philip Leifeld 21

After writing a custom function, the function has to be registered as a method for the generic
extract() function. In the above example, this can be achieved with the following code:

R> setMethod("extract", signature = className("lm", "stats"),

+ definition = extract.lm)

Assume, for instance, that an extension for ‘clogit’ objects called extract.clogit() is
written. The clogit() function (and the corresponding class definition) can be found in
the survival package (Therneau and Grambsch 2000; Therneau 2012). Then the code above
should be changed as follows:

R> setMethod("extract", signature = className("clogit", "survival"),

+ definition = extract.clogit)

After executing the definition of the function and the adjusted setMethod() command, texreg

can be used with ‘clogit’ models.

6.2. A complete example

The following code shows the complete extract.lm() function as included in the texreg

package.

R> extract.lm <- function(model, include.rsquared = TRUE,

+ include.adjrs = TRUE, include.nobs = TRUE, ...) {

+

+ s <- summary(model, ...)

+ names <- rownames(s$coef)

+ co <- s$coef[, 1]

+ se <- s$coef[, 2]

+ pval <- s$coef[, 4]

+

+ gof <- numeric()

+ gof.names <- character()

+ gof.decimal <- logical()

+ if (include.rsquared == TRUE) {

+ rs <- s$r.squared

+ gof <- c(gof, rs)

+ gof.names <- c(gof.names, "R2")

+ gof.decimal <- c(gof.decimal, TRUE)

+ }

+ if (include.adjrs == TRUE) {

+ adj <- s$adj.r.squared

+ gof <- c(gof, adj)

+ gof.names <- c(gof.names, "Adj.\\ R2")

+ gof.decimal <- c(gof.decimal, TRUE)

+ }

+ if (include.nobs == TRUE) {

+ n <- nobs(model)

22 texreg: Conversion of R Model Output to LATEX and HTML

+ gof <- c(gof, n)

+ gof.names <- c(gof.names, "Num.\\ obs.")

+ gof.decimal <- c(gof.decimal, FALSE)

+ }

+

+ tr <- createTexreg(

+ coef.names = names,

+ coef = co,

+ se = se,

+ pvalues = pval,

+ gof.names = gof.names,

+ gof = gof,

+ gof.decimal = gof.decimal

+)

+ return(tr)

+ }

R> setMethod("extract", signature = className("lm", "stats"),

+ definition = extract.lm)

In addition to the simple example code shown above, this function has several arguments,
which can be used to include or exclude various GOF or summary statistics. Additional argu-
ments can also be used in other contexts. For example, the user can decide whether random
effect variances should be included in texreg tables of ‘mer’ objects (from the lme4 package,
see Bates et al. 2013) by setting the include.variance argument. Similarly, the output of
‘stergm’ models (Hunter, Handcock, Butts, Goodreau, and Morris 2008; Handcock, Hunter,
Butts, Goodreau, Krivitsky, and Morris 2012) or ‘hurdle’ or ‘zeroinfl’ models (Zeileis,
Kleiber, and Jackman 2008) can be typeset in two columns using the beside argument.

New extract functions and methods can be easily used locally. Once they work well, submis-
sion of new extract functions to the online forum of texreg is encouraged.

Existing functions can also be manipulated and overwritten locally in order to change the
GOF statistics block.

Acknowledgments

The author would like to thank Oleg Badunenko, Tom Carsey, S. Q. Chang, Skyler Cranmer,
Sebastian Daza, Christopher Gandrud, Lena Koerber, Johannes Kutsam, Fabrice Le Lec,
Florian Oswald, Markus Riester, Francesco Sarracino, Matthieu Stigler, Sebastian Ugbaje,
Gábor Uhrin, Antoine Vernet, Yanghao Wang, and Yihui Xie for their valuable input and
ideas.

References

Bates D, Maechler M, Bolker B, Walker S (2013). lme4: Linear mixed-effects models using

Eigen and S4. R package version 1.0-4, URL http://CRAN.R-project.org/package=lme4.

http://CRAN.R-project.org/package=lme4

Philip Leifeld 23

Carlisle D (2001). The dcolumn Package. LATEX package version 1.06, URL http://www.

CTAN.org/pkg/dcolumn/.

Dahl DB (2012). xtable: Export Tables to LATEX or HTML. R package version 1.7-0, URL
http://CRAN.R-project.org/package=xtable.

Elff M (2012). memisc: Tools for Management of Survey Data, Graphics, Programming,

Statistics, and Simulation. R package version 0.95-38, URL http://CRAN.R-project.

org/package=memisc.

Fear S (2005). booktabs: Publication Quality Tables in LATEX. LATEX package version 1.61803,
URL http://www.CTAN.org/pkg/booktabs/.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Morris M (2012). ergm:

Fit, Simulate and Diagnose Exponential-Family Models for Networks. R package version
3.0-999, URL http://CRAN.R-project.org/package=ergm.

Hlavac M (2013). stargazer: LATEX Code for Well-Formatted Regression and Summary

Statistics Tables. R package version 3.0.1, URL http://CRAN.R-project.org/package=

stargazer.

Hoffmann CW (2012). cwhmisc: Miscellaneous Functions for Maths, Plotting, Printing,

Statistics, Strings, and Tools. R package version 3.0, URL http://CRAN.R-project.org/

package=cwhmisc.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). “ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical

Software, 24(3), 1–29. URL http://www.jstatsoft.org/v24/i03/.

Johnson PE (2012). rockchalk: Regression Estimation and Presentation. R package version
1.6.2, URL http://CRAN.R-project.org/package=rockchalk.

Lamport L (1986). LATEX User’s Guide and Document Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Leifeld P (2013). “texreg: Conversion of Statistical Model Output in R to LATEX and HTML
Tables.” Journal of Statistical Software, 55(8), 1–24. URL http://www.jstatsoft.org/

v55/i08/.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational

Statistics, pp. 575–580. Physica-Verlag, Heidelberg.

Maechler M, others (2012). sfsmisc: Utilities from Seminar für Statistik ETH Zurich. R

package version 1.0-21, URL http://CRAN.R-project.org/package=sfsmisc.

Malecki M (2012). apsrtable: Model-Output Formatter for Social Science. R package version
0.8-8, URL http://CRAN.R-project.org/package=apsrtable.

Owen M, Imai K, King G, Lau O (2013). Zelig: Everyone’s Statistical Software. R package
version 4.1-3, URL http://CRAN.R-project.org/package=Zelig.

http://www.CTAN.org/pkg/dcolumn/
http://www.CTAN.org/pkg/dcolumn/
http://CRAN.R-project.org/package=xtable
http://CRAN.R-project.org/package=memisc
http://CRAN.R-project.org/package=memisc
http://www.CTAN.org/pkg/booktabs/
http://CRAN.R-project.org/package=ergm
http://CRAN.R-project.org/package=stargazer
http://CRAN.R-project.org/package=stargazer
http://CRAN.R-project.org/package=cwhmisc
http://CRAN.R-project.org/package=cwhmisc
http://www.jstatsoft.org/v24/i03/
http://CRAN.R-project.org/package=rockchalk
http://www.jstatsoft.org/v55/i08/
http://www.jstatsoft.org/v55/i08/
http://CRAN.R-project.org/package=sfsmisc
http://CRAN.R-project.org/package=apsrtable
http://CRAN.R-project.org/package=Zelig

24 texreg: Conversion of R Model Output to LATEX and HTML

Rahtz S, Fairbairns R (2008). rotating: A Package for Rotated Objects in LATEX. LATEX
package version 2.16b, URL http://www.CTAN.org/pkg/rotating.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Therneau T (2012). survival: A Package for Survival Analysis in S. R package version
2.36-14, URL http://CRAN.R-project.org/package=survival.

Therneau TM, Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model.
Springer-Verlag, New York.

Venables WN, Smith DM, R Core Team (2013). An Introduction to R. Notes on R: A Pro-

gramming Environment for Data Analysis and Graphics. URL http://CRAN.R-project.

org/doc/manuals/R-intro.html.

Xie Y (2013a). Dynamic Documents with R and knitr. Chapman and Hall/CRC.

Xie Y (2013b). “knitr: A Comprehensive Tool for Reproducible Research in R.” In V Stodden,
F Leisch, RD Peng (eds.), Implementing Reproducible Computational Research. Chapman
and Hall/CRC.

Xie Y (2013c). knitr: A General-Purpose Package for Dynamic Report Generation in R. R

package version 1.1, URL http://CRAN.R-project.org/package=knitr.

Zeileis A (2004). “Econometric Computing with HC and HAC Covariance Matrix Estimators.”
Journal of Statistical Software, 11(10), 1–17. URL http://www.jstatsoft.org/v11/i10/.

Zeileis A (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statis-

tical Software, 16(9), 1–16. URL http://www.jstatsoft.org/v16/i09/.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7–10. URL http://CRAN.R-project.org/doc/Rnews/.

Zeileis A, Kleiber C, Jackman S (2008). “Regression Models for Count Data in R.” Journal

of Statistical Software, 27(8), 1–25. URL http://www.jstatsoft.org/v27/i08/.

Affiliation:

Philip Leifeld
Department of Government
University of Essex
Wivenhoe Park
Colchester, CO4 6BW
United Kingdom
E-mail: philip.leifeld@essex.ac.uk

URL: http://www.philipleifeld.com

http://www.CTAN.org/pkg/rotating
http://www.R-project.org/
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/doc/manuals/R-intro.html
http://CRAN.R-project.org/doc/manuals/R-intro.html
http://CRAN.R-project.org/package=knitr
http://www.jstatsoft.org/v11/i10/
http://www.jstatsoft.org/v16/i09/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v27/i08/
mailto:philip.leifeld@essex.ac.uk
http://www.philipleifeld.com

