Package 'survexp.fr'

March 26, 2025

Type Package Title Relative Survival, AER and SMR Based on French Death Rates Version 1.2 Date 2025-03-26 Maintainer Hugo Varet <varethugo@gmail.com> **Depends** R (>= 3.5.0), survival Imports WriteXLS, stats, graphics **Encoding** UTF-8 LazyData Yes Description It computes Relative survival, AER and SMR based on French death rates. **License** GPL (≥ 2) RoxygenNote 7.3.2 NeedsCompilation no Author Hugo Varet [aut, cre], Jean-Philippe Jais [aut] **Repository** CRAN Date/Publication 2025-03-26 12:00:02 UTC

Contents

Index

survexp.fr-package	2
AER	2
data.example	3
LR	
SMR	5
survexp.fr	6
survexp_plot	6
	9

1

survexp.fr-package Relative survival, AER and SMR based on French death rates

Description

Relative survival, AER and SMR based on French death rates

Author(s)

Jean-Philippe Jais and Hugo Varet

AER

Absolute Excess Risk (AER)

Description

Computes the AER, its confidence interval and its associated p-value

Usage

```
AER(
  futime,
  status,
  age,
  sex,
  entry_date,
  PY.stand = 10000,
  ratetable = survexp.fr::survexp.fr,
  alpha = 0.05
)
```

Arguments

futime	follow-up time of the subjects in days
status	0 if censored or 1 if dead at futime
age	age in days
sex	"male" or "female"
entry_date	entry date in the study
PY.stand	value to get the AER for stand person-years
ratetable	a table of event rates, such as survexp.fr or survexp.us
alpha	determines the confidence level (1-alpha) of the confidence interval

data.example

Details

The Absolute Excess Risk (AER) is defined as:

AER = O - E

where O is the observed number of deaths and E is the expected number based on the patients' characteristics (sex, age and entry date in the study). This function uses an additive Poisson model to compute the AER.

Value

A list containing the AER with the corresponding number of person-years (PY.stand argument), its confidence interval, its p-value, the observed number of deaths, the expected number of deaths and the observed number of person-years

Author(s)

Jean-Philippe Jais and Hugo Varet

References

N. Breslow and N. Day, Statistical methods in cancer research, Volume II - The design and analysis of cohort studies, World Health Organization, 1987

P. Dickman, A. Sloggett, M. Hills and T. Hakulinen, Regression models for relative survival, Statistics in Medicine, 2004

C. Elie, Y. De Rycke, J.-P. Jais and P. Landais, Appraising relative and excess mortality in populationbased studies of chronic diseases such as end-stage renal disease, Clinical Epidemiology, 2011

Examples

attach(data.example) AER(futime, status, age, sex, entry_date)

data.example

Example data to illustrate the functions

Description

Example data to illustrate the functions

Format

A data frame with 200 observations on the following 5 variables.

sex "male" or "female"

age age in days

entry_date entry date in the study

status status at follow-up time: 0 if alive, 1 if dead

futime follow-up time in days

Description

Log-Rank test between an observed and an expected survival curve

Usage

LR(futime, status, age, sex, entry_date, ratetable = survexp.fr::survexp.fr)

Arguments

futime	follow-up time of the subjects in days
status	0 if censored or 1 if dead at futime
age	age in days
sex	"male" or "female"
entry_date	entry date in the study
ratetable	a table of event rates, such as survexp.fr or survexp.us

Details

The Log-Rank is calculated as:

 $LR = (O - E)^2 / E$

where O is the observed number of deaths and E is the expected number based on the patients' characteristics (sex, age and entry date in the study). It follows a Khi-2 distribution with one degree of freedom, which allows to compute its p-value.

Value

A list containing the observed number of deaths, the expected number of deaths, the Log-Rank statistic and its p-value

Author(s)

Hugo Varet

References

R. Peto and J. Peto, Asymptotically Efficient Rank Invariant Test Procedures, Journal of the Royal Statistical Society, 1972

Examples

```
attach(data.example)
LR(futime, status, age, sex, entry_date)
```

LR

Description

Computes the SMR, its confidence interval and its associated p-value

Standardized Mortality Ratio (SMR)

Usage

```
SMR(
  futime,
  status,
  age,
  sex,
  entry_date,
  ratetable = survexp.fr::survexp.fr,
  alpha = 0.05
)
```

Arguments

futime	follow-up time of the subjects in days
status	0 if censored or 1 if dead at futime
age	age in days
sex	"male" or "female"
entry_date	entry date in the study
ratetable	a table of event rates, such as survexp.fr or survexp.us
alpha	determines the confidence level (1-alpha) of the confidence interval

Details

The SMR is estimated using two different methods.

The classic method is:

SMR = O/E

where O is the observed number of deaths and E is the expected number based on the patients' characteristics (sex, age and entry date in the study).

The SMR is also estimated performing a Poisson model where O is the dependant variable and E is an offset.

Value

A list containing the observed number of deaths, the expected number of deaths, the "classic" SMR (with its confidence interval and its p-value) and the SMR calculated by a Poisson model (with its confidence interval and its p-value)

SMR

Author(s)

Jean-Philippe Jais and Hugo Varet

References

N. Breslow and N. Day, Statistical methods in cancer research, Volume II - The design and analysis of cohort studies, World Health Organization, 1987

Examples

```
attach(data.example)
SMR(futime, status, age, sex, entry_date)
```

survexp.fr

French data for the expected survival and person years functions

Description

French data for the expected survival and person years functions

Details

Death rates are available from 1977 to 2022 for males and females aged from 0 to 99

Source

https://www.ined.fr/fichier/s_rubrique/193/fr_t68_2022.fr.xlsx

References

Institut national d'études démographiques

survexp_plot Observed Kaplan-Meier, expected and relative survival curves

Description

Displays the observed Kaplan-Meier, expected and relative survival curves

survexp_plot

Usage

```
survexp_plot(
  futime,
  status,
  age,
  sex,
  entry_date,
  ratetable = survexp.fr::survexp.fr,
 main = "Observed and expected survival",
 xlab = "Time (years)",
 ylab = "Survival",
  col.km = "black",
  1wd.km = 2,
 lty.km = 1,
  conf.int.km = TRUE,
  col.exp = "blue",
  lwd.exp = 2,
  lty.exp = 1,
 main.rel = "Relative survival",
 ylab.rel = "Relative survival",
  col.rel = "black",
  lwd.rel = 2,
  lty.rel = 1,
  times = seq(0, max(futime, na.rm = TRUE)/365.241, length = 6)[-1],
  alpha = 0.05,
  xscale = 365.241,
  . . .
)
```

Arguments

futime	follow-up time of the subjects in days
status	0 if censored or 1 if dead at futime
age	age in days
sex	"male" or "female"
entry_date	entry date in the study
ratetable	a table of event rates, such as survexp.fr or survexp.us
main	main title of the Kaplan-Meier and expected survivals plot
xlab	x-label of the plot
ylab	y-label of the plot
col.km	color of the observed survival curve
lwd.km	line width of the observed survival curve
lty.km	line type of the observed survival curve
conf.int.km	TRUE to display the confidence interval of the observed survival

col.exp	color of the expected survival curve
lwd.exp	line width of the expected survival curve
lty.exp	line type of the expected survival curve
main.rel	main title of the relative survival plot
ylab.rel	y-label of the relative survival plot
col.rel	color of the relative survival curve
lwd.rel	line width of the relative survival curve
lty.rel	line type of the relative survival curve
times	times to draw the confidence intervals of the relative survival
alpha	determines the confidence level (1-alpha) of the confidence intervals for the relative survival
xscale	see the xscale argument in plot.survfit
	other arguments to be passed in plot.survfit

Details

This function displays the observed and expected survivals, and the relative survival which is defined as:

 $r(t) = exp(-exp(\beta) \times t)$

where $exp(\beta)$ is the excess risk by time unit estimated by an additive Poisson model.

Value

A matrix containing the values of relative survivals and their confidence intervals for each time of times

Author(s)

Hugo Varet

References

M. Pohar and J. Stare, Making relative survival analysis relatively easy, Computers in Biology and Medicine, 2007

M. Pohar and J. Stare, Relative survival analysis in R, Computers Methods and Programs in Biomedicine, 2006

Examples

```
attach(data.example)
survexp_plot(futime, status, age, sex, entry_date)
```

Index