steprf: Stepwise Predictive Variable Selection for Random Forest

An introduction to several novel predictive variable selection methods for random forest. They are based on various variable importance methods (i.e., averaged variable importance (AVI), and knowledge informed AVI (i.e., KIAVI, and KIAVI2)) and predictive accuracy in stepwise algorithms. For details of the variable selection methods, please see: Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019) <doi:10.3390/geosciences9040180>. Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, R., Radke, L., Howard, F., Nichol, S. (2017). <doi:10.13140/RG.2.2.27686.22085>.

Version: 1.0.2
Depends: R (≥ 4.0)
Imports: spm, randomForest, spm2, psy
Suggests: knitr, rmarkdown, lattice, reshape2
Published: 2022-06-29
DOI: 10.32614/CRAN.package.steprf
Author: Jin Li [aut, cre]
Maintainer: Jin Li <jinli68 at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: steprf results


Reference manual: steprf.pdf


Package source: steprf_1.0.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): steprf_1.0.2.tgz, r-oldrel (arm64): steprf_1.0.2.tgz, r-release (x86_64): steprf_1.0.2.tgz, r-oldrel (x86_64): steprf_1.0.2.tgz
Old sources: steprf archive

Reverse dependencies:

Reverse imports: stepgbm


Please use the canonical form to link to this page.