Package ‘stabm’

December 8, 2020

Title Stability Measures for Feature Selection
Version 1.1.4
Description An implementation of many measures for the
 assessment of the stability of feature selection. Both simple measures
 and measures which take into account the similarities between features
 are available, see Bommert et al. (2017) <doi:10.1155/2017/7907163>.
License LGPL-3
BugReports https://github.com/bommert/stabm/issues
Depends R (>= 3.5.0)
Imports checkmate (>= 1.8.5), Matrix (>= 1.2-14), methods, stats,
 utils
Suggests cowplot (>= 0.9.2), ggdendro (>= 0.1-20), ggplot2 (>= 3.0.0),
 igraph (>= 1.2.1), knitr, rmarkdown, testthat (>= 2.0.0)
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Author Andrea Bommert [aut, cre] (<https://orcid.org/0000-0002-1005-9351>),
 Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>)
Maintainer Andrea Bommert <bommert@statistik.tu-dortmund.de>
Repository CRAN
Date/Publication 2020-12-08 15:00:02 UTC

R topics documented:

stabm-package ... 2
listStabilityMeasures ... 3
plotFeatures ... 3
stabilityDavis .. 4
stabilityDice ... 6
stabilityHamming .. 8
stabilityIntersectionCount 10
stabilityIntersectionGreedy 12
stabilityIntersectionMBM 15
stabilityIntersectionMean 17
stabilityJaccard .. 19
stabilityKappa ... 21
stabilityLustgarten .. 22
stabilityNogueira ... 24
stabilityNovovicova ... 25
stabilityOchiai ... 27
stabilityPhi ... 29
stabilitySechidis .. 31
stabilitySomol .. 33
stabilityUnadjusted ... 34
stabilityWald ... 36
stabilityYu ... 37
stabilityZucknick .. 39

Index 43

__stabl-package__

__stabl: Stability Measures for Feature Selection__

Description

An implementation of many measures for the assessment of the stability of feature selection. Both simple measures and measures which take into account the similarities between features are available, see Bommert et al. (2017) <doi:10.1155/2017/7907163>.

Author(s)

Maintainer: Andrea Bommert <bommert@statistik.tu-dortmund.de> (ORCID)

Authors:

- Michel Lang <michellang@gmail.com> (ORCID)

See Also

Useful links:

- https://bommert.github.io/stabl/
- https://github.com/bommert/stabm
- Report bugs at [https://github.com/bommert/stabl/issues](https://github.com/bommert/stabm/issues)
listStabilityMeasures
List All Available Stability Measures

Description

Lists all stability measures of package `stabm` and provides information about them.

Usage

```r
listStabilityMeasures()
```

Value

data.frame

For each stability measure, its name, the information, whether it is corrected for chance by definition, the information, whether it is adjusted for similar features, its minimal value and its maximal value are displayed.

Note

The given minimal values might only be reachable in some scenarios, e.g. if the feature sets have a certain size. The measures which are not corrected for chance by definition can be corrected for chance with `correction.for.chance`. This however changes the minimal value. For the adjusted stability measures, the minimal value depends on the similarity structure.

Examples

```r
listStabilityMeasures()
```

plotFeatures
Plot Selected Features

Description

Creates a heatmap of the features which are selected in at least one feature set. The sets are ordered according to average linkage hierarchical clustering based on the Manhattan distance. If `sim.mat` is given, the features are ordered according to average linkage hierarchical clustering based on `1-sim.mat`. Otherwise, the features are ordered in the same way as the feature sets.

Note that this function needs the packages `ggplot2`, `cowplot` and `ggdendro` installed.

Usage

```r
plotFeatures(features, sim.mat = NULL)
```
Arguments

features list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

sim.mat numeric matrix
Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of features are integerish vectors, then the feature numbering must correspond to the ordering of sim.mat. If the list elements of features are character vectors, then sim.mat must be named and the names of sim.mat must correspond to the entries in features.

Value

Object of class ggplot.

Examples

feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, ":-\)\)
plotFeatures(features = feats)
plotFeatures(features = feats, sim.mat = mat)

stabilityDavis Stability Measure Davis

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

stabilityDavis(
 features,
 p,
 correction.for.chance = "none",
 N = 10000,
 impute.na = NULL,
 penalty = 0
)
Arguments

features
list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p
numeric(1)
Total number of features in the datasets. Required, if correction_for_chance is set to "estimate" or "exact".

correction_for_chance
character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \((\text{score} - \text{expected})/(\text{maximum} - \text{expected})\). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", \(N\) random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features (\(p\)) and numbers of considered datasets (length(features)).

N
numeric(1)
Number of random feature sets to consider. Only relevant if correction_for_chance is set to "estimate".

impute.na
numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

penalty
numeric(1)
Penalty parameter, see Details.

Details

The stability measure is defined as (see Notation)

\[
\max \left\{ 0, \frac{1}{|V|} \sum_{j=1}^{p} h_j - \frac{\text{penalty}}{p} \cdot \text{median}\{|V_1|, \ldots, |V_m|\} \right\}.
\]

Value

numeric(1) Stability value.
Notation

For the definition of all stability measures in this package, the following notation is used: Let V_1, \ldots, V_m denote the sets of chosen features for the m datasets, i.e. `features` has length m and V_i is a set which contains the i-th entry of `features`. Furthermore, let h_j denote the number of sets that contain feature X_j so that h_j is the absolute frequency with which feature X_j is chosen. Analogously, let h_{ij} denote the number of sets that include both X_i and X_j. Also, let $q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|$ and $V = \bigcup_{i=1}^{m} V_i$.

References

See Also

`listStabilityMeasures`

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityDavis(features = feats, p = 10)
```

stabilityDice

Stability Measure Dice

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityDice(
  features,
  p = NULL,
  correction.for.chance = "none",
  N = 10000,
  impute.na = NULL
)
```
Arguments

features list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p numeric(1)
Total number of features in the datasets. Required, if correction.for.chance is set to "estimate" or "exact".

correction.for.chance character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \((score - expected)/(maximum - expected)\). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", \(N\) random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features (p) and numbers of considered datasets (length(\(features\))).

N numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{2|V_i \cap V_j|}{|V_i| + |V_j|}
\]

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is
chosen. Analogously, let h_{ij} denote the number of sets that include both X_i and X_j. Also, let $q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|$ and $V = \bigcup_{i=1}^{m} V_i$.

References

See Also

listStabilityMeasures

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityDice(features = feats)
```

stabilityHamming
Stability Measure Hamming

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityHamming(
  features,  
p,  
correction.for.chance = "none",  
N = 10000,  
impute.na = NULL
)
```
Arguments

features list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p numeric(1)
Total number of features in the datasets. Required, if correction.for.chance is set to "estimate" or "exact".

correction.for.chance character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \((\text{score} - \text{expected})/(\text{maximum} - \text{expected})\). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", \(N\) random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features \(p\) and numbers of considered datasets \(\text{length(}\text{features})\).

N numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j| + |V_i^c \cap V_j^c|}{p}.
\]

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is
chosen. Analogously, let h_{ij} denote the number of sets that include both X_i and X_j. Also, let $q = \sum_{j=1}^{p} h_{j} = \sum_{i=1}^{m} |V_i|$ and $V = \bigcup_{i=1}^{m} V_i$.

References

See Also

`listStabilityMeasures`

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityHamming(features = feats, p = 10)
```

stabilityIntersectionCount

Stability Measure Adjusted Intersection Count

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityIntersectionCount(
  features,
  sim.mat,
  threshold = 0.9,
  correction.for.chance = "estimate",
  N = 10000,
  impute.na = NULL
)
```
Arguments

features: list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

sim.mat: numeric matrix
Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of features are integerish vectors, then the feature numbering must correspond to the ordering of sim.mat. If the list elements of features are character vectors, then sim.mat must be named and the names of sim.mat must correspond to the entries in features.

threshold: numeric(1)
Threshold for indicating which features are similar and which are not. Two features are considered as similar, if and only if the corresponding entry of sim.mat is greater than or equal to threshold.

correction.for.chance: character(1)
How should the expected value of the stability score (see Details) be assessed? Options are "estimate", "exact" and "none". For "estimate", N random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features and numbers of considered datasets (length(features)). For "none", the transformation \((score − expected)/(maximum − expected)\) is not conducted, i.e. only score is used. This is not recommended.

N: numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na: numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{I(V_i, V_j) - E(I(V_i, V_j))}{\sqrt{|V_i| \cdot |V_j|}} - E(I(V_i, V_j))
\]

with

\[
I(V_i, V_j) = |V_i \cap V_j| + \min(C(V_i, V_j), C(V_j, V_i))
\]

and

\[
C(V_k, V_i) = |\{x \in V_k \setminus V_i : \exists y \in V_i \setminus V_k \text{ with Similarity}(x, y) \geq \text{threshold}\}|.
\]
Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m \) denote the sets of chosen features for the \(m \) datasets, i.e. \(\text{features} \) has length \(m \) and \(V_i \) is a set which contains the \(i \)-th entry of \(\text{features} \). Furthermore, let \(h_j \) denote the number of sets that contain feature \(X_j \) so that \(h_j \) is the absolute frequency with which feature \(X_j \) is chosen. Analogously, let \(h_{ij} \) denote the number of sets that include both \(X_i \) and \(X_j \). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i| \) and \(V = \bigcup_{i=1}^{m} V_i \).

References

See Also

listStabilityMeasures

Examples

feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilityIntersectionCount(features = feats, sim.mat = mat, N = 1000)

stabilityIntersectionGreedy

\textit{Stability Measure Adjusted Intersection Greedy}

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.
stabilityIntersectionGreedy

Usage

stabilityIntersectionGreedy(
 features,
 sim.mat,
 threshold = 0.9,
 correction.for.chance = "estimate",
 N = 10000,
 impute.na = NULL
)

Arguments

features list (length >= 2)
 Chosen features per dataset. Each element of the list contains the features for
 one dataset. The features must be given by their names (character) or indices
 (integerish).

sim.mat numeric matrix
 Similarity matrix which contains the similarity structure of all features based on
 all datasets. The similarity values must be in the range of [0, 1] where 0 indicates
 very low similarity and 1 indicates very high similarity. If the list elements of
 features are integerish vectors, then the feature numbering must correspond to
 the ordering of sim.mat. If the list elements of features are character vectors,
 then sim.mat must be named and the names of sim.mat must correspond to the
 entries in features.

threshold numeric(1)
 Threshold for indicating which features are similar and which are not. Two fea-
 tures are considered as similar, if and only if the corresponding entry of sim.mat
 is greater than or equal to threshold.

correction.for.chance character(1)
 How should the expected value of the stability score (see Details) be assessed?
 Options are "estimate", "exact" and "none". For "estimate", N random feature
 sets of the same sizes as the input feature sets (features) are generated. For
 "exact", all possible combinations of feature sets of the same sizes as the input
 feature sets are used. Computation is only feasible for very small numbers of
 features and numbers of considered datasets (length(features)). For "none",
 the transformation \((score - expected)/(maximum - expected)\) is not con-
 ducted, i.e. only score is used. This is not recommended.

N numeric(1)
 Number of random feature sets to consider. Only relevant if correction.for.chance
 is set to "estimate".

impute.na numeric(1)
 In some scenarios, the stability cannot be assessed based on all feature sets. E.g.
 if some of the feature sets are empty, the respective pairwise comparisons yield
 NA as result. With which value should these missing values be imputed? NULL
 means no imputation.
Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{I(V_i, V_j) - E(I(V_i, V_j))}{\sqrt{|V_i| \cdot |V_j| - E(I(V_i, V_j))}}
\]

with

\[
I(V_i, V_j) = |V_i \cap V_j| + \text{GMBM}(V_i \setminus V_j, V_j \setminus V_i).
\]

\text{GMBM}(V_i \setminus V_j, V_j \setminus V_i) denotes a greedy approximation of \text{MBM}(V_i \setminus V_j, V_j \setminus V_i), see \text{stabilityIntersectionMBM}.

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. \text{features} has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of \text{features}. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).

References

See Also

\text{listStabilityMeasures}

Examples

feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilityIntersectionGreedy(Features = feats, sim.mat = mat, N = 1000)
stabilityIntersectionMBM

Stability Measure Adjusted Intersection MBM

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityIntersectionMBM(
  features,
  sim.mat,
  threshold = 0.9,
  correction.for.chance = "estimate",
  N = 10000,
  impute.na = NULL
)
```

Arguments

- `features`
 list (length >= 2)
 Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- `sim.mat`
 numeric matrix
 Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of `features` are integerish vectors, then the feature numbering must correspond to the ordering of `sim.mat`. If the list elements of `features` are character vectors, then `sim.mat` must be named and the names of `sim.mat` must correspond to the entries in `features`.

- `threshold`
 numeric(1)
 Threshold for indicating which features are similar and which are not. Two features are considered as similar, if and only if the corresponding entry of `sim.mat` is greater than or equal to `threshold`.

- `correction.for.chance`
 character(1)
 How should the expected value of the stability score (see Details) be assessed?
Options are "estimate", "exact" and "none". N random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features and numbers of considered datasets (length(features)). For "none", the transformation \((\text{score} - \text{expected})/(\text{maximum} - \text{expected})\) is not conducted, i.e. only \text{score} is used. This is not recommended.

\(N\) numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

\(\text{impute.na}\) numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{I(V_i, V_j) - E(I(V_i, V_j))}{\sqrt{|V_i| \cdot |V_j|} - E(I(V_i, V_j))}
\]

with

\[I(V_i, V_j) = |V_i \cap V_j| + \text{MBM}(V_i \setminus V_j, V_j \setminus V_i).\]

\(\text{MBM}(V_i \setminus V_j, V_j \setminus V_i)\) denotes the size of the maximum bipartite matching based on the graph whose vertices are the features of \(V_i \setminus V_j\) on the one side and the features of \(V_j \setminus V_i\) on the other side. Vertices \(x\) and \(y\) are connected if and only if \(\text{Similarity}(x, y) \geq \text{threshold}\).

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).

References

stabilityIntersectionMean

See Also

listStabilityMeasures

Examples

```r
feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilityIntersectionMBM(features = feats, sim.mat = mat, N = 1000)
```

stabilityIntersectionMean

Stability Measure Adjusted Intersection Mean

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityIntersectionMean(
  features,
  sim.mat,
  threshold = 0.9,
  correction.for.chance = "estimate",
  N = 10000,
  impute.na = NULL
)
```

Arguments

- **features**: list (length >= 2)

 Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- **sim.mat**: numeric matrix

 Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of `features` are integerish vectors, then the feature numbering must correspond to the ordering of `sim.mat`. If the list elements of `features` are character vectors, then `sim.mat` must be named and the names of `sim.mat` must correspond to the entries in `features`.
threshold numeric(1)
Threshold for indicating which features are similar and which are not. Two features are considered as similar, if and only if the corresponding entry of sim.mat is greater than or equal to threshold.

correction.for.chance character(1)
How should the expected value of the stability score (see Details) be assessed? Options are "estimate", "exact" and "none". For "estimate", N random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features and numbers of considered datasets (length(features)). For "none", the transformation \((score - expected)/(maximum - expected)\) is not conducted, i.e. only score is used. This is not recommended.

N numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details
The stability measure is defined as (see Notation)
\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{I(V_i, V_j) - E(I(V_i, V_j))}{\sqrt{|V_i| \cdot |V_j| - E(I(V_i, V_j))}}
\]
with
\[
I(V_i, V_j) = |V_i \cap V_j| + \min(C(V_i, V_j), C(V_j, V_i)),
\]
\[
C(V_k, V_i) = \sum_{x \in V_k \setminus V_i : |G^i_k| > 0} \frac{1}{|G^i_k|} \sum_{y \in G^i_k} \text{Similarity}(x, y)
\]
and
\[
G^i_k = \{ y \in V_i \setminus V_k : \text{Similarity}(x, y) \geq \text{threshold} \}.
\]

Value
numeric(1) Stability value.

Notation
For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{m} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).
stabilityJaccard

References

See Also

listStabilityMeasures

Examples

```r
feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilityIntersectionMean(features = feats, sim.mat = mat, N = 1000)
```

stabilityJaccard Stability Measure Jaccard

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityJaccard(
  features,
  p = NULL,
  correction.for.chance = "none",
  N = 10000,
  impute.na = NULL
)
```

Arguments

- **features** list (length >= 2)
 Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- **p** numeric(1)
 Total number of features in the datasets. Required, if correction.for.chance is set to "estimate" or "exact".
correction.for.chance
character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \(\frac{(score - expected)}{(maximum - expected)} \). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", \(N \) random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features (p) and numbers of considered datasets (length(features)).

\textbf{N} numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

\textbf{impute.na} numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

\textbf{Details}

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j|}{|V_i \cup V_j|}.
\]

\textbf{Value}
numeric(1) Stability value.

\textbf{Notation}

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m \) denote the sets of chosen features for the \(m \) datasets, i.e. features has length \(m \) and \(V_i \) is a set which contains the \(i \)-th entry of \texttt{features}. Furthermore, let \(h_j \) denote the number of sets that contain feature \(X_j \) so that \(h_j \) is the absolute frequency with which feature \(X_j \) is chosen. Analogously, let \(h_{ij} \) denote the number of sets that include both \(X_i \) and \(X_j \). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i| \) and \(V = \bigcup_{i=1}^{m} V_i \).

\textbf{References}

See Also

`listStabilityMeasures`

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityJaccard(features = feats)
```

stabilityKappa

Stability Measure Kappa

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityKappa(features, p, impute.na = NULL)
```

Arguments

- `features` list (length >= 2)
 Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- `p` numeric(1)
 Total number of features in the datasets.

- `impute.na` numeric(1)
 In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.
Details

The stability measure is defined as the average kappa coefficient between all pairs of feature sets. It can be rewritten as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j| - \frac{|V_i||V_j|}{p}}{\frac{|V_i|+|V_j|}{2} - \frac{|V_i||V_j|}{p}}
\]

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. \(features\) has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of \(features\). Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).

References

See Also

listStabilityMeasures

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityKappa(features = feats, p = 10)
```

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.
Usage

\texttt{stabilityLustgarten(features, p, impute.na = NULL)}

Arguments

- \texttt{features} \texttt{list (length >= 2)}
 Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- \texttt{p} \texttt{numeric(1)}
 Total number of features in the datasets.

- \texttt{impute.na} \texttt{numeric(1)}
 In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m - 1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \min\{|V_i \cap V_j|, \frac{|V_i| \cdot |V_j|}{p}\} - \max\{0, |V_i| + |V_j| - p\}.
\]

Value

\texttt{numeric(1)} Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. \texttt{features} has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of \texttt{features}. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).

References

See Also

\texttt{listStabilityMeasures}
Examples

```r
features = list(1:3, 1:4, 1:5)
stabilityLustgarten(features = features, p = 10)
```

stabilityNogueira Stability Measure Nogueira

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityNogueira(features, p, impute.na = NULL)
```

Arguments

- `features`: list (length >= 2)
 Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).
- `p`: numeric(1)
 Total number of features in the datasets.
- `impute.na`: numeric(1)
 In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
1 - \frac{1}{p} \sum_{j=1}^{p} \frac{m}{m-1} \frac{m - h_j}{m} \left(1 - \frac{h_j}{m} \right) \left(1 - \frac{q}{m^p} \right).
\]

Value

`numeric(1)` Stability value.
Notation

For the definition of all stability measures in this package, the following notation is used: Let V_1, \ldots, V_m denote the sets of chosen features for the m datasets, i.e. features has length m and V_i is a set which contains the i-th entry of features. Furthermore, let h_j denote the number of sets that contain feature X_j so that h_j is the absolute frequency with which feature X_j is chosen. Analogously, let h_{ij} denote the number of sets that include both X_i and X_j. Also, let $q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|$ and $V = \bigcup_{i=1}^{m} V_i$.

References

See Also

listStabilityMeasures

Examples

feats = list(1:3, 1:4, 1:5)
stabilityNogueira(features = feats, p = 10)

stabilityNovovicova Stability Measure Novovičová

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

stabilityNovovicova(
 features,
 p = NULL,
 correction.for.chance = "none",
 N = 10000,
 impute.na = NULL
)
Arguments

features
list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p
numeric(1)
Total number of features in the datasets. Required, if correction.for.chance is set to "estimate" or "exact".

correction.for.chance
character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \(\frac{\text{score} - \text{expected}}{\text{maximum} - \text{expected}} \). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", \(N \) random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features (p) and numbers of considered datasets (length(features)).

N
numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na
numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{1}{q \log_2(m)} \sum_{j:X_j \in V} h_j \log_2(h_j).
\]

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m \) denote the sets of chosen features for the \(m \) datasets, i.e. features has length \(m \) and \(V_i \) is a set which contains the \(i \)-th entry of features. Furthermore, let \(h_j \) denote the number of sets that contain feature \(X_j \) so that \(h_j \) is the absolute frequency with which feature \(X_j \) is
chosen. Analogously, let h_{ij} denote the number of sets that include both X_i and X_j. Also, let $q = \sum_{j=1}^p h_j = \sum_{i=1}^m |V_i|$ and $V = \bigcup_{i=1}^m V_i$.

References

See Also

listStabilityMeasures

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityNovovicova(features = feats)
```

```
<table>
<thead>
<tr>
<th>stabilityOchial</th>
<th>Stability Measure Ochial</th>
</tr>
</thead>
</table>

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityOchial(
 features,
 p = NULL,
 correction.for.chance = "none",
 N = 10000,
 impute.na = NULL
)
```
Arguments

features: list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p: numeric(1)
Total number of features in the datasets. Required, if correction.for.chance is set to "estimate" or "exact".

correction.for.chance: character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \((score - expected)/(maximum - expected)\). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", \(N\) random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features (p) and numbers of considered datasets (length(features)).

N: numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na: numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j|}{\sqrt{|V_i| \cdot |V_j|}}.
\]

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is
chosen. Analogously, let $h_{ij}$ denote the number of sets that include both $X_i$ and $X_j$. Also, let

$q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|$ and $V = \bigcup_{i=1}^{m} V_i$.

References


See Also

`listStabilityMeasures`

Examples

feats = list(1:3, 1:4, 1:5)
stabilityOchiai(features = feats)

---

**stabilityPhi**

**Stability Measure Phi**

**Description**

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

**Usage**

`stabilityPhi(features, p, impute.na = NULL)`

**Arguments**

- **features**
  - list (length >= 2)
  - Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- **p**
  - numeric(1)
  - Total number of features in the datasets.
impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details
The stability measure is defined as the average phi coefficient between all pairs of feature sets. It can be rewritten as (see Notation)
\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j| - \frac{|V_i| |V_j|}{p}}{\sqrt{|V_i| (1 - \frac{|V_i|}{p}) |V_j| (1 - \frac{|V_j|}{p})}}.
\]

Value
numeric(1) Stability value.

Notation
For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).

References

See Also
listStabilityMeasures

Examples
```r
feats = list(1:3, 1:4, 1:5)
stabilityPhi(features = feats, p = 10)
```
stabilitySechidis

Stability Measure Sechidis

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

stabilitySechidis(features, sim.mat, threshold = 0.9, impute.na = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>features</td>
<td>list (length &gt;= 2) Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).</td>
</tr>
<tr>
<td>sim.mat</td>
<td>numeric matrix Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of features are integerish vectors, then the feature numbering must correspond to the ordering of sim.mat. If the list elements of features are character vectors, then sim.mat must be named and the names of sim.mat must correspond to the entries in features.</td>
</tr>
<tr>
<td>threshold</td>
<td>numeric(1) Threshold for indicating which features are similar and which are not. Two features are considered as similar, if and only if the corresponding entry of sim.mat is greater than or equal to threshold.</td>
</tr>
<tr>
<td>impute.na</td>
<td>numeric(1) In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.</td>
</tr>
</tbody>
</table>

Details

The stability measure is defined as

$$1 - \frac{\text{trace}(CS)}{\text{trace}(C\Sigma)}$$
with \((p \times p)\)-matrices

\[(S)_{ij} = \frac{m}{m-1} \left( \frac{h_{ij}}{m} - \frac{h_i h_j}{m m} \right)\]

and

\[(\Sigma)_{ii} = \frac{q}{mp} \left( 1 - \frac{q}{mp} \right), \]

\[(\Sigma)_{ij} = \frac{1}{m} \sum_{i=1}^{m} |V_i|^2 - \frac{q}{m} - \frac{q^2}{mp}, i \neq j.\]

The matrix \(C\) is created from matrix \(\text{sim.mat}\) by setting all values of \(\text{sim.mat}\) that are smaller than threshold to 0. If you want to \(C\) to be equal to \(\text{sim.mat}\), use \(\text{threshold} = 0\).

**Value**

numeric(1) Stability value.

**Notation**

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. \(\text{features}\) has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of \(\text{features}\). Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let

\[q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\]

and \(V = \bigcup_{i=1}^{m} V_i\).

**Note**

This stability measure is not corrected for chance. Unlike for the other stability measures in this R package, that are not corrected for chance, for \(\text{stabilitySechidis}\), no correction for chance can be applied. This is because for \(\text{stabilitySechidis}\), no finite upper bound is known at the moment, see \(\text{listStabilityMeasures}\).

**References**


**See Also**

\(\text{listStabilityMeasures}\)

**Examples**

```r
feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilitySechidis(features = feats, sim.mat = mat)
```
stabilitySomol  Stability Measure Somol

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

stabilitySomol(features, p, impute.na = NULL)

Arguments

features list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p numeric(1)
Total number of features in the datasets.

impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[
\frac{\left(\sum_{j=1}^{p} \frac{h_j}{q} \frac{h_j-1}{m-1}\right) - c_{\text{min}}}{c_{\text{max}} - c_{\text{min}}} \]

with

\[
c_{\text{min}} = \frac{q^2 - p(q - q \mod p) - (q \mod p)^2}{pq(m-1)},
\]

\[
c_{\text{max}} = \frac{(q \mod m)^2 + q(m-1) - (q \mod m) m}{q(m-1)}.
\]
stabilityUnadjusted

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \( V_1, \ldots, V_m \) denote the sets of chosen features for the \( m \) datasets, i.e. features has length \( m \) and \( V_i \) is a set which contains the \( i \)-th entry of features. Furthermore, let \( h_j \) denote the number of sets that contain feature \( X_j \) so that \( h_j \) is the absolute frequency with which feature \( X_j \) is chosen. Analogously, let \( h_{ij} \) denote the number of sets that include both \( X_i \) and \( X_j \). Also, let \( q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i| \) and \( V = \bigcup_{i=1}^{m} V_i \).

References


See Also

listStabilityMeasures

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilitySomol(features = feats, p = 10)
```

### stabilityUnadjusted

**Stability Measure Unadjusted**

**Description**

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

**Usage**

```r
stabilityUnadjusted(features, p, impute.na = NULL)
```
Arguments

features  list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

p  numeric(1)
Total number of features in the datasets.

impute.na  numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

The stability measure is defined as (see Notation)

\[ \frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j|}{\sqrt{|V_i| \cdot |V_j|}} - \frac{|V_i| \cdot |V_j|}{p} \]

This is what `stabilityIntersectionMBM`, `stabilityIntersectionGreedy`, `stabilityIntersectionCount` and `stabilityIntersectionMean` become, when there are no similar features.

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \( V_1, \ldots, V_m \) denote the sets of chosen features for the \( m \) datasets, i.e. features has length \( m \) and \( V_i \) is a set which contains the \( i \)-th entry of features. Furthermore, let \( h_j \) denote the number of sets that contain feature \( X_j \) so that \( h_j \) is the absolute frequency with which feature \( X_j \) is chosen. Analogously, let \( h_{ij} \) denote the number of sets that include both \( X_i \) and \( X_j \). Also, let \( q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i| \) and \( V = \bigcup_{i=1}^{m} V_i \).

References


See Also

listStabilityMeasures
Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityUnadjusted(features = feats, p = 10)
```

### stabilityWald

**Stability Measure Wald**

**Description**

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

**Usage**

```r
stabilityWald(features, p, impute.na = NULL)
```

**Arguments**

- `features` list (length >= 2)
  Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

- `p` numeric(1)
  Total number of features in the datasets.

- `impute.na` numeric(1)
  In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

**Details**

The stability measure is defined as (see Notation)

\[
2 \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{|V_i \cap V_j|}{\min\{|V_i|, |V_j|\}} - \frac{|V_i||V_j|}{p} \left| \frac{|V_i|}{|V_j|} - \frac{|V_j|}{|V_i|} \right|.
\]

**Value**

numeric(1) Stability value.
Notation

For the definition of all stability measures in this package, the following notation is used: Let \( V_1, \ldots, V_m \) denote the sets of chosen features for the \( m \) datasets, i.e. \( \text{features} \) has length \( m \) and \( V_i \) is a set which contains the \( i \)-th entry of \( \text{features} \). Furthermore, let \( h_j \) denote the number of sets that contain feature \( X_j \) so that \( h_j \) is the absolute frequency with which feature \( X_j \) is chosen. Analogously, let \( h_{ij} \) denote the number of sets that include both \( X_i \) and \( X_j \). Also, let \( q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i| \) and \( V = \bigcup_{i=1}^{m} V_i \).

References


See Also

\( \text{listStabilityMeasures} \)

Examples

```r
feats = list(1:3, 1:4, 1:5)
stabilityWald(features = feats, p = 10)
```

Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

```r
stabilityYu(
 features,
 sim.mat,
 threshold = 0.9,
 correction.for.chance = "estimate",
 N = 10000,
 impute.na = NULL
)
```
Arguments

features list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

sim.mat numeric matrix
Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of features are integerish vectors, then the feature numbering must correspond to the ordering of sim.mat. If the list elements of features are character vectors, then sim.mat must be named and the names of sim.mat must correspond to the entries in features.

threshold numeric(1)
Threshold for indicating which features are similar and which are not. Two features are considered as similar, if and only if the corresponding entry of sim.mat is greater than or equal to threshold.

correction.for.chance character(1)
How should the expected value of the stability score (see Details) be assessed? Options are "estimate", "exact" and "none". For "estimate", N random feature sets of the same sizes as the input feature sets (features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features and numbers of considered datasets (length(features)). For "none", the transformation \((score – expected)/(maximum – expected)\) is not conducted, i.e. only \(score\) is used. This is not recommended.

N numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details

Let \(O_{ij}\) denote the number of features in \(V_i\) that are not shared with \(V_j\) but that have a highly similar feature in \(V_j\):

\[
O_{ij} = |\{x \in (V_i \setminus V_j) : \exists y \in (V_j \setminus V_i) \text{ with } \text{Similarity}(x, y) \geq \text{threshold}\}|.
\]

Then the stability measure is defined as (see Notation)

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \frac{I(V_i, V_j) - E(I(V_i, V_j))}{|V_i| + |V_j|} - E(I(V_i, V_j))
\]
with

\[ I(V_i, V_j) = |V_i \cap V_j| + \frac{O_{ij} + O_{ji}}{2}. \]

Note that this definition slightly differs from its original in order to make it suitable for arbitrary datasets and similarity measures and applicable in situations with \(|V_i| \neq |V_j|\).

Value

numeric(1) Stability value.

Notation

For the definition of all stability measures in this package, the following notation is used: Let \(V_1, \ldots, V_m\) denote the sets of chosen features for the \(m\) datasets, i.e. features has length \(m\) and \(V_i\) is a set which contains the \(i\)-th entry of features. Furthermore, let \(h_j\) denote the number of sets that contain feature \(X_j\) so that \(h_j\) is the absolute frequency with which feature \(X_j\) is chosen. Analogously, let \(h_{ij}\) denote the number of sets that include both \(X_i\) and \(X_j\). Also, let \(q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i|\) and \(V = \bigcup_{i=1}^{m} V_i\).

References


See Also

listStabilityMeasures

Examples

feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilityYu(features = feats, sim.mat = mat, N = 1000)
Description

The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.

Usage

stabilityZucknick(
  features,
  sim.mat,
  threshold = 0.9,
  correction.for.chance = "none",
  N = 10000,
  impute.na = NULL
)

Arguments

features list (length >= 2)
Chosen features per dataset. Each element of the list contains the features for one dataset. The features must be given by their names (character) or indices (integerish).

sim.mat numeric matrix
Similarity matrix which contains the similarity structure of all features based on all datasets. The similarity values must be in the range of [0, 1] where 0 indicates very low similarity and 1 indicates very high similarity. If the list elements of features are integerish vectors, then the feature numbering must correspond to the ordering of sim.mat. If the list elements of features are character vectors, then sim.mat must be named and the names of sim.mat must correspond to the entries in features.

threshold numeric(1)
Threshold for indicating which features are similar and which are not. Two features are considered as similar, if and only if the corresponding entry of sim.mat is greater than or equal to threshold.

correction.for.chance character(1)
Should a correction for chance be applied? Correction for chance means that if features are chosen at random, the expected value must be independent of the number of chosen features. To correct for chance, the original score is transformed by \((\text{score} - \text{expected}) / (\text{maximum} - \text{expected})\). For stability measures whose score is the average value of pairwise scores, this transformation is done for all components individually. Options are "none", "estimate" and "exact". For "none", no correction is performed, i.e. the original score is used. For "estimate", N random feature sets of the same sizes as the input feature sets
(features) are generated. For "exact", all possible combinations of feature sets of the same sizes as the input feature sets are used. Computation is only feasible for very small numbers of features (p) and numbers of considered datasets (length(features)).

N numeric(1)
Number of random feature sets to consider. Only relevant if correction.for.chance is set to "estimate".

impute.na numeric(1)
In some scenarios, the stability cannot be assessed based on all feature sets. E.g. if some of the feature sets are empty, the respective pairwise comparisons yield NA as result. With which value should these missing values be imputed? NULL means no imputation.

Details
The stability measure is defined as

\[
\frac{2}{m(m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \left| V_i \cap V_j \right| + C(V_i, V_j) + C(V_j, V_i) \left| V_i \cup V_j \right|
\]

with

\[
C(V_k, V_l) = \left| \frac{1}{|V_l|} \sum_{(x,y) \in V_k \times (V_l \setminus V_k) \text{ with } \text{Similarity}(x, y) \geq \text{threshold}} \text{Similarity}(x, y) \right|
\]

Note that this definition slightly differs from its original in order to make it suitable for arbitrary similarity measures.

Value
numeric(1) Stability value.

Notation
For the definition of all stability measures in this package, the following notation is used: Let \( V_1, \ldots, V_m \) denote the sets of chosen features for the \( m \) datasets, i.e. features has length \( m \) and \( V_i \) is a set which contains the \( i \)-th entry of features. Furthermore, let \( h_j \) denote the number of sets that contain feature \( X_j \) so that \( h_j \) is the absolute frequency with which feature \( X_j \) is chosen. Analogously, let \( h_{ij} \) denote the number of sets that include both \( X_i \) and \( X_j \). Also, let

\[
q = \sum_{j=1}^{p} h_j = \sum_{i=1}^{m} |V_i| \quad \text{and} \quad V = \bigcup_{i=1}^{m} V_i.
\]

References

See Also

listStabilityMeasures

Examples

feats = list(1:3, 1:4, 1:5)
mat = 0.92 ^ abs(outer(1:10, 1:10, "-"))
stabilityZucknick(features = feats, sim.mat = mat)
Index

listStabilityMeasures, 3, 6, 8, 10, 12, 14,
    17, 19, 21–23, 25, 27, 29, 30, 32, 34,
    35, 37, 39, 42

plotFeatures, 3

stabilityDavis, 4
stabilityDice, 6
stabilityHamming, 8
stabilityIntersectionCount, 10, 35
stabilityIntersectionGreedy, 12, 35
stabilityIntersectionMBM, 14, 15, 35
stabilityIntersectionMean, 17, 35
stabilityJaccard, 19
stabilityKappa, 21
stabilityLustgarten, 22
stabilityNogueira, 24
stabilityNovovicova, 25
stabilityOchiai, 27
stabilityPhi, 29
stabilitySechidis, 31
stabilitySomol, 33
stabilityUnadjusted, 34
stabilityWald, 36
stabilityYu, 37
stabilityZucknick, 39
stabm (stabm-package), 2
stabm-package, 2