
Package ‘spatialrisk’
February 21, 2024

Type Package

Title Calculating Spatial Risk

Version 0.7.1

Maintainer Martin Haringa <mtharinga@gmail.com>

BugReports https://github.com/mharinga/spatialrisk/issues

Description Methods for spatial risk calculations. It offers an efficient approach to deter-
mine the sum of all observations within a
circle of a certain radius. This might be beneficial for insurers who are required (by a recent Eu-
ropean Commission regulation) to determine
the maximum value of insured fire risk policies of all buildings that are partly or fully lo-
cated within a circle of a radius of 200m. See
Church (1974) <doi:10.1007/BF01942293> for a description of the problem.

License GPL (>= 2)

URL https://github.com/mharinga/spatialrisk,

https://mharinga.github.io/spatialrisk/

LazyData true

LinkingTo Rcpp, RcppProgress

Imports classInt, colourvalues, data.table, dplyr, fs, GenSA,
geohashTools, ggplot2, leafem, leafgl, leaflet, methods, Rcpp,
RcppProgress, sf, tmap, units, viridis

Depends R (>= 3.3)

Encoding UTF-8

RoxygenNote 7.3.1

Suggests automap, gstat, knitr, mgcv, rmarkdown, testthat, vroom

NeedsCompilation yes

Author Martin Haringa [aut, cre]

Repository CRAN

Date/Publication 2024-02-21 12:50:02 UTC

1

https://github.com/mharinga/spatialrisk/issues
https://doi.org/10.1007/BF01942293
https://github.com/mharinga/spatialrisk
https://mharinga.github.io/spatialrisk/

2 choropleth

R topics documented:
choropleth . 2
choropleth_ggplot2 . 3
concentration . 4
Groningen . 5
haversine . 6
highest_concentration . 7
insurance . 9
interpolate_krige . 10
interpolate_spline . 11
knmi_historic_data . 13
knmi_stations . 14
neighborhood_gh_search . 15
nl_corop . 16
nl_gemeente . 17
nl_postcode2 . 17
nl_postcode3 . 18
nl_postcode4 . 19
nl_provincie . 20
plot.concentration . 20
plot.neighborhood . 21
plot_points . 22
points_in_circle . 23
points_to_polygon . 24

Index 26

choropleth Create choropleth map

Description

Takes an object produced by points_to_polygon(), and creates the corresponding choropleth
map. The given clustering is according to the Fisher-Jenks algorithm. This commonly used method
for choropleths seeks to reduce the variance within classes and maximize the variance between
classes.

Usage

choropleth(
sf_object,
value = "output",
id_name = "areaname",
mode = "plot",
n = 7,
legend_title = "Clustering",
palette = "viridis"

)

choropleth_ggplot2 3

Arguments

sf_object object of class sf

value column name to shade the polygons

id_name column name of ids to plot

mode choose between static (’plot’ is default) and interactive map (’view’)

n number of clusters (default is 7)

legend_title title of legend

palette palette name or a vector of colors. See tmaptools::palette_explorer() for the
named palettes. Use a "-" as prefix to reverse the palette. The default palette is
"viridis".

Value

tmap

Author(s)

Martin Haringa

Examples

test <- points_to_polygon(nl_provincie, insurance, sum(amount, na.rm = TRUE))
choropleth(test)
choropleth(test, id_name = "areaname", mode = "view")

choropleth_ggplot2 Map object of class sf using ggplot2

Description

Takes an object produced by choropleth_sf(), and creates the correspoding choropleth map.

Usage

choropleth_ggplot2(
sf_object,
value = output,
n = 7,
dig.lab = 2,
legend_title = "Class",
option = "D",
direction = 1

)

4 concentration

Arguments

sf_object object of class sf

value column to shade the polygons

n number of clusters (default is 7)

dig.lab number of digits in legend (default is 2)

legend_title title of legend

option a character string indicating the colormap option to use. Four options are avail-
able: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D",
the default option) and "cividis" (or "E").

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

Value

ggplot map

Author(s)

Martin Haringa

Examples

test <- points_to_polygon(nl_postcode2, insurance, sum(amount, na.rm = TRUE))
choropleth_ggplot2(test)

concentration Concentration risk

Description

The sum of all observations within a circle of a certain radius.

Usage

concentration(
sub,
full,
value,
lon_sub = lon,
lat_sub = lat,
lon_full = lon,
lat_full = lat,
radius = 200,
display_progress = TRUE

)

Groningen 5

Arguments

sub data.frame of locations to calculate concentration risk for (target points). sub
should include at least columns for longitude and latitude.

full data.frame to find the locations within radius r from locations in sub (reference
locations). full should include at least columns for longitude, latitude and value
of interest to summarize.

value column name with value of interest to summarize in full.

lon_sub column name in sub with longitude (lon is default).

lat_sub column name in sub with latitude (lat is default).

lon_full column name in full with longitude in full (lon is default).

lat_full column name in full with latitude in full (lat is default).

radius radius (in meters) (default is 200m).
display_progress

show progress bar (TRUE/FALSE). Defaults to TRUE.

Value

A data.frame equal to data.frame sub including an extra column concentration.

Author(s)

Martin Haringa

Examples

df <- data.frame(location = c("p1", "p2"), lon = c(6.561561, 6.561398),
lat = c(53.21369, 53.21326))

concentration(df, Groningen, value = amount, radius = 100)

Groningen Coordinates of houses in Groningen

Description

A dataset of postal codes and the corresponding spatial locations in terms of a latitude and a longi-
tude.

Usage

Groningen

6 haversine

Format

A data frame with 25000 rows and 8 variables:

street Name of street

number Number of house

letter Letter of house

suffix Suffix to number of house

postal_code Postal code of house

city The name of the city

lon Longitude (in degrees)

lat Latitude (in degrees)

amount Random value

Source

The BAG is the Dutch registry for Buildings and adresses (Basisregistratie adressen en gebouwen).

haversine Haversine great circle distance

Description

The shortest distance between two points (i.e., the ’great-circle-distance’ or ’as the crow flies’), ac-
cording to the ’haversine method’. This method assumes a spherical earth, ignoring ellipsoidal ef-
fects. Note that this version is implemented in C++. A quick benchmark to the version of geosphere
showed it to be a non-insignificant speed enhancement. The algorithm converges in one-twentieth
of the original time.

Usage

haversine(lat_from, lon_from, lat_to, lon_to, r = 6378137)

Arguments

lat_from Latitude of point.

lon_from Longitude of point.

lat_to Latitude of point.

lon_to Longitude of point.

r Radius of the earth; default = 6378137m

Details

The Haversine (’half-versed-sine’) formula was published by R.W. Sinnott in 1984, although it has
been known for much longer.

highest_concentration 7

Value

Vector of distances in the same unit as r (default in meters).

Author(s)

Martin Haringa

References

Sinnott, R.W, 1984. Virtues of the Haversine. Sky and Telescope 68(2): 159.

Examples

haversine(53.24007, 6.520386, 53.24054, 6.520386)

highest_concentration Highest concentration risk

Description

Find the centre coordinates of a circle with a fixed radius that maximizes the coverage of total
fire risk insured. ‘highest_concentration()‘ returns the coordinates (lon/lat) and the corresponding
concentration. The concentration is defined as the sum of all observations within a circle of a certain
radius. See concentration for determining concentration for pre-defined coordinates.

Usage

highest_concentration(
df,
value,
lon = lon,
lat = lat,
lowerbound = NULL,
radius = 200,
grid_distance = 25,
gh_precision = 6,
display_progress = TRUE

)

Arguments

df data.frame of locations, should at least include column for longitude, latitude
and sum insured

value column name with value of interest to summarize (e.g. sum insured)

lon column name with longitude (defaults to ‘lon‘)

8 highest_concentration

lat column name with latitude (defaults to ‘lat‘)

lowerbound set lower bound for outcome (defaults to NULL)

radius radius (in meters) (default is 200m)

grid_distance distance (in meters) for precision of concentration risk (default is 25m). ‘neigh-
borhood_search()‘ can be used to search for coordinates with even higher con-
centrations in the neighborhood of the highest concentrations.

gh_precision positive integer to define geohash precision. See details.
display_progress

show progress bar (TRUE/FALSE). Defaults to TRUE.

Details

A recently European Commission regulation requires insurance companies to determine the maxi-
mum value of insured fire risk policies of all buildings that are partly or fully located within circle
of a radius of 200m (Commission Delegated Regulation (EU), 2015, Article 132). The problem can
be stated as: "find the centre coordinates of a circle with a fixed radius that maximizes the coverage
of total fire risk insured". This can be viewed as a particular instance of the Maximal Covering
Location Problem (MCLP) with fixed radius. See Gomes (2018) for a solution to the maximum
fire risk insured capital problem using a multi-start local search meta-heuristic. The computational
performance of highest_concentration() is investigated to overcome the long times the MCLP
algorithm is taking. highest_concentration() is written in C++, and for 500,000 buildings it
needs about 5-10 seconds to determine the maximum value of insured fire risk policies that are
partly or fully located within circle of a radius of 200m.

‘highest_concentration()‘ uses Gustavo Niemeyer’s wonderful and elegant geohash coordinate sys-
tem. Niemeyer’s Geohash method encodes latitude and longitude as binary string where each binary
value derived from a decision as to where the point lies in a bisected region of latitude or longitu-
dinal space. The first step is to convert all latitude/longitude coordinates into geohash-encoded
strings.

The length of the geohash (‘gh_precision‘) controls the ’zoom level’:

• precision 5 is 4.89 x 4.89km;

• precision 6 is 1.22km x 0.61km;

• precision 7 is 153m x 153m;

• precision 8 is 39m x 19m.

For a circle with a radius of 200m the precision of the geohash should be set equal to 6 (default).
Then the ‘value‘ column is aggregated (sum) per geohash (with a buffer of size ‘radius‘ around
each geohash, since the coordinates of the highest concentration can be near the edge of the geo-
hash). The geohashes with a aggregated value below the lowerbound are removed, where the lower-
bound is equal to the maximum of the ‘value‘ column. Then a grid is created, with a distance of
‘grid_distance‘ between the points. See example section for a illustration of the algorithm. As a last
step for each grid point the concentration is calculated.

Value

data.frame with coordinates (lon/lat) with the highest concentrations

insurance 9

Author(s)

Martin Haringa

References

Commission Delegated Regulation (EU) (2015). Solvency II Delegated Act 2015/35. Official Jour-
nal of the European Union, 58:124.

Gomes M.I., Afonso L.B., Chibeles-Martins N., Fradinho J.M. (2018). Multi-start Local Search
Procedure for the Maximum Fire Risk Insured Capital Problem. In: Lee J., Rinaldi G., Mahjoub
A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science, vol 10856.
Springer, Cham. <doi:10.1007/978-3-319-96151-4_19>

Examples

Not run:
Find highest concentration with a precision of a grid of 25 meters
hc1 <- highest_concentration(Groningen, amount, radius = 200,
grid_distance = 25)

Look for coordinates with even higher concentrations in the
neighborhood of the coordinates with the highest concentration
hc1_nghb <- neighborhood_gh_search(hc1, max.call = 7000)
print(hc1_nghb)

Create map with geohashes above the lowerbound
The highest concentration lies in one of the geohashes
plot(hc1)

Create map with highest concentration
plot(hc1_nghb)

End(Not run)

insurance Sum insured per postal code in the Netherlands

Description

A dataset of postal codes with their sum insured, population and the corresponding spatial locations
in terms of a latitude and a longitude.

Usage

insurance

10 interpolate_krige

Format

A data frame with 29,990 rows and 5 variables:

postcode 6-digit postal code

population_pc4 Population per 4-digit postal code

amount Sum insured

lon Longitude (in degrees) of the corresponding 6-digit postal code

lat Latitude (in degrees) of the corresponding 6-digit postal code

Author(s)

Martin Haringa

interpolate_krige Ordinary kriging

Description

Interpolation and smoothing on the sphere by means of ordinary kriging.

Usage

interpolate_krige(
observations,
targets,
value,
lon_obs = lon,
lat_obs = lat,
lon_targets = lon,
lat_targets = lat

)

Arguments

observations data.frame of observations.

targets data.frame of locations to calculate the interpolated and smoothed values for
(target points).

value Column with values in observations.

lon_obs Column in observations with longitude (lon is default).

lat_obs Column in observations with latitude (lat is default).

lon_targets Column in targets with longitude (lon is default).

lat_targets Column in targets with latitude (lat is default).

interpolate_spline 11

Details

observations should include at least columns for longitude and latitude.

targets should include at least columns for longitude, latitude and value of interest to interpolate
and smooth.

Kriging can be considered as linear regression with spatially correlated residuals. Kriging is most
appropriate when it is known there is a spatially correlated distance or directional bias in the data.
It is often used in soil science and geology.

See splines on the sphere for interpolation and smoothing on the sphere by means of splines.

Value

Object equal to object targets including extra columns for the predicted value and the variance.

Author(s)

Martin Haringa

References

gstat::krige

Examples

Not run:
target <- sf::st_drop_geometry(nl_postcode3)
obs <- insurance %>% dplyr::sample_n(1000)
pop_df <- interpolate_krige(obs, target, population_pc4)
pop_sf <- left_join(nl_postcode3, pop_df)
choropleth(pop_sf, value = "population_pc4_pred", n = 13)
choropleth(pop_sf, value = "population_pc4_var", n = 13)

End(Not run)

interpolate_spline Splines on the sphere

Description

Spline interpolation and smoothing on the sphere.

12 interpolate_spline

Usage

interpolate_spline(
observations,
targets,
value,
lon_obs = lon,
lat_obs = lat,
lon_targets = lon,
lat_targets = lat,
k = 50

)

Arguments

observations data.frame of observations.
targets data.frame of locations to calculate the interpolated and smoothed values for

(target points).
value Column with values in observations.
lon_obs Column in observations with longitude (lon is default).
lat_obs Column in observations with latitude (lat is default).
lon_targets Column in targets with longitude (lon is default).
lat_targets Column in targets with latitude (lat is default).
k (default 50) is the basis dimension. For small data sets reduce k manually rather

than using default.

Details

observations should include at least columns for longitude and latitude.

targets should include at least columns for longitude, latitude and value of interest to interpolate
and smooth.

A smooth of the general type discussed in Duchon (1977) is used: the sphere is embedded in a 3D
Euclidean space, but smoothing employs a penalty based on second derivatives (so that locally as
the smoothing parameter tends to zero we recover a "normal" thin plate spline on the tangent space).
This is an unpublished suggestion of Jean Duchon.

See ordinary kriging for interpolation and smoothing on the sphere by means of kriging.

Value

Object equal to object targets including an extra column with predicted values.

Author(s)

Martin Haringa

References

Splines on the sphere

knmi_historic_data 13

Examples

Not run:
target <- sf::st_drop_geometry(nl_postcode3)
obs <- dplyr::sample_n(insurance, 1000)
pop_df <- interpolate_spline(obs, target, population_pc4, k = 20)
pop_sf <- left_join(nl_postcode3, pop_df)
choropleth(pop_sf, value = "population_pc4_pred", n = 13)

End(Not run)

knmi_historic_data Retrieve historic weather data for the Netherlands

Description

This function retrieves historic weather data collected by the official KNMI weather stations. See
spatialrisk::knmi_stations for a list of the official KNMI weather stations.

Usage

knmi_historic_data(startyear, endyear)

Arguments

startyear start year for historic weather data.

endyear end year for historic weather data.

Format

The returned data frame contains the following columns:

• station = ID of measurement station;

• date = Date;

• FH = Hourly mean wind speed (in 0.1 m/s);

• FX = Maximum wind gust (in 0.1 m/s) during the hourly division;

• DR = Precipitation duration (in 0.1 hour) during the hourly division;

• RH = Hourly precipitation amount (in 0.1 mm) (-1 for <0.05 mm);

• city = City where the measurement station is located;

• lon = Longitude of station (crs = 4326);

• lat = Latitude of station (crs = 4326).

Value

Data frame containing weather data and meta data for weather station locations.

14 knmi_stations

Author(s)

Martin Haringa

Examples

Not run:
knmi_historic_data(2015, 2019)

End(Not run)

knmi_stations KNMI stations

Description

A data frame containing the IDs and meta-data on the official KNMI weather stations.

Usage

knmi_stations

Format

A data frame with 50 rows and 7 variables:

station ID of the station (209-391)

city City where the station is located

lon Longitude of station (crs = 4326)

lat Latitude of the station (crs = 4326)

altitude Altitude of the station (in meters)

X X coordinate of the station (crs = 32631)

Y Y coordinate of the station (crs = 32631)

Author(s)

Martin Haringa

neighborhood_gh_search 15

neighborhood_gh_search

Search for coordinates with higher concentrations within geohash

Description

highest_concentration returns the highest concentration within a portfolio based on grid points.
However, higher concentrations can be found within two grid points. ‘neighborhood_gh_search()‘
looks for even higher concentrations in the neighborhood of the grid points with the highest con-
centrations. This optimization is done by means of Simulated Annealing.

Usage

neighborhood_gh_search(
hc,
highest_geohash = 1,
max.call = 1000,
verbose = TRUE,
seed = 1

)

Arguments

hc object of class ‘concentration‘ obtained from ‘highest_concentration()‘
highest_geohash

the number of geohashes the searching algorithm is applied to. Defaults to 1
(i.e. algorithm is only applied to the geohash with the highest concentration).

max.call maximum number of calls to the concentration function (i.e. the number of
coordinates in the neighborhood of the highest concentration). Defaults to 1000.

verbose show messages from the algorithm (TRUE/FALSE). Defaults to FALSE.

seed set seed

Value

data.frame

Author(s)

Martin Haringa

Examples

Not run:
Find highest concentration with a precision of a grid of 25 meters
hc1 <- highest_concentration(Groningen, amount, radius = 200,
grid_distance = 25)

16 nl_corop

Increase the number of calls for more extensive search
hc1_nghb <- neighborhood_gh_search(hc1, max.call = 7000, highest_geohash = 1)
hc2_nghb <- neighborhood_gh_search(hc1, max.call = 7000, highest_geohash = 2)
plot(hc1_nghb)
plot(hc2_nghb)

End(Not run)

nl_corop Object of class sf for COROP regions in the Netherlands

Description

An object of class sf (simple feature) for COROP regions in the Netherlands.

Usage

nl_corop

Format

A simple feature object with 40 rows and 5 variables:

corop_nr corop number

areaname corop name

geometry geometry object of COROP region

lon longitude of the corop centroid

lat latitude of the corop centroid

Details

A COROP region is a regional area within the Netherlands. These regions are used for analyti-
cal purposes by, among others, Statistics Netherlands. The Dutch abbreviation stands for Coordi-
natiecommissie Regionaal Onderzoeksprogramma, literally the Coordination Commission Regional
Research Programme.

Author(s)

Martin Haringa

nl_gemeente 17

nl_gemeente Object of class sf for municipalities in the Netherlands

Description

An object of class sf (simple feature) for municipalities (Dutch: gemeentes) in the Netherlands in
the year 2021.

Usage

nl_gemeente

Format

A simple feature object with 380 rows and 6 variables:

id id of gemeente
code code of gemeente
areaname name of gemeente
lon longitude of the gemeente centroid
lat latitude of the gemeente centroid
geometry geometry object of gemeente

Author(s)

Martin Haringa

nl_postcode2 Object of class sf for 2-digit postcode regions in the Netherlands

Description

An object of class sf (simple feature) for 2-digit postal codes (Dutch: postcode) regions in the
Netherlands.

Usage

nl_postcode2

Format

A simple feature object with 90 rows and 4 variables:

areaname 2-digit postal code
geometry geometry object of postal code
lon longitude of the 2-digit postal code centroid
lat latitude of the 2-digit postal code centroid

18 nl_postcode3

Details

Postal codes in the Netherlands, known as postcodes, are alphanumeric, consisting of four digits
followed by two uppercase letters. The first two digits indicate a city and a region, the second two
digits and the two letters indicate a range of house numbers, usually on the same street.

Author(s)

Martin Haringa

nl_postcode3 Object of class sf for 3-digit postcode regions in the Netherlands

Description

An object of class sf (simple feature) for 3-digit postal codes (Dutch: postcode) regions in the
Netherlands.

Usage

nl_postcode3

Format

A simple feature object with 799 rows and 3 variables:

areaname 3-digit postal code

geometry geometry object of postal code

lon longitude of the 3-digit postal code centroid

lat latitude of the 3-digit postal code centroid

Details

Postal codes in the Netherlands, known as postcodes, are alphanumeric, consisting of four digits
followed by two uppercase letters. The first two digits indicate a city and a region, the second two
digits and the two letters indicate a range of house numbers, usually on the same street.

Author(s)

Martin Haringa

nl_postcode4 19

nl_postcode4 Object of class sf for 4-digit postcode regions in the Netherlands

Description

An object of class sf (simple feature) for 4-digit postal codes (Dutch: postcode) regions in the
Netherlands.

Usage

nl_postcode4

Format

A simple feature object with 4053 rows and 7 variables:

pc4 4-digit postal code

areaname name of corresponding 4-digit postal code

city name of city

biggest_20cities pc4 is in one of the following twenty (biggest) cities in the Netherlands: Ams-
terdam, Rotterdam, ’s-Gravenhage, Utrecht, Eindhoven, Tilburg, Groningen, Almere, Breda,
Nijmegen, Enschede, Apeldoorn, Haarlem, Amersfoort, Arnhem, ’s-Hertogenbosch, Zoeter-
meer, Zwolle, Maastricht, Leiden.

geometry geometry object of postal code

lon longitude of the 4-digit postal code centroid

lat latitude of the 4-digit postal code centroid

Details

Postal codes in the Netherlands, known as postcodes, are alphanumeric, consisting of four digits
followed by two uppercase letters. The first two digits indicate a city and a region, the second two
digits and the two letters indicate a range of house numbers, usually on the same street.

Author(s)

Martin Haringa

20 plot.concentration

nl_provincie Object of class sf for provinces in the Netherlands

Description

An object of class sf (simple feature) for provinces (Dutch: provincies) in the Netherlands.

Usage

nl_provincie

Format

A simple feature object with 12 rows and 4 variables:

areaname province name

geometry geometry object of province

lon longitude of the province centroid

lat latitude of the province centroid

Author(s)

Martin Haringa

plot.concentration Automatically create a plot for objects obtained from high-
est_concentration()

Description

Takes an object produced by ‘highest_concentration()‘, and creates an interactive map.

Usage

S3 method for class 'concentration'
plot(
x,
grid_points = TRUE,
legend_title = NULL,
palette = "viridis",
legend_position = "bottomleft",
providers = c("CartoDB.Positron", "nlmaps.luchtfoto"),
...

)

plot.neighborhood 21

Arguments

x object of class ‘concentration‘ obtained from ‘highest_concentration()‘

grid_points show grid points (TRUE), or objects (FALSE)

legend_title title of legend

palette palette for grid points (defaults to "viridis")

legend_position

legend position for grid points legend (defaults to "bottomleft")

providers providers to show. See ‘leaflet::providers‘ for a list.

... additional arguments affecting the interactive map produced

Value

Interactive view of geohashes with highest concentrations

Author(s)

Martin Haringa

plot.neighborhood Automatically create a plot for objects obtained from neighbor-
hood_gh_search()

Description

Takes an object produced by ‘neighborhood_gh_search()‘, and creates an interactive map.

Usage

S3 method for class 'neighborhood'
plot(
x,
buffer = 0,
legend_title = NULL,
palette = "viridis",
legend_position = "bottomleft",
palette_circle = "YlOrRd",
legend_position_circle = "bottomright",
legend_title_circle = "Highest concentration",
providers = c("CartoDB.Positron", "nlmaps.luchtfoto"),
...

)

22 plot_points

Arguments

x object neighborhood object produced by ‘neighborhood_gh_search()‘

buffer numeric value, show objects within buffer (in meters) from circle (defaults to 0)

legend_title title of legend

palette palette for points (defaults to "viridis")
legend_position

legend position for points legend (defaults to "bottomleft")

palette_circle palette for circles (default to "YlOrRd")
legend_position_circle

legend position for circles legend (defaults to "bottomright")
legend_title_circle

title of legend for circles

providers providers to show. See ‘leaflet::providers‘ for a list.

... additional arguments affecting the interactive map produced

Value

Interactive view of highest concentration on map

Author(s)

Martin Haringa

plot_points Create map with points

Description

Create map for data.frame with points.

Usage

plot_points(
df,
value,
lon = lon,
lat = lat,
palette = "viridis",
legend_position = "bottomleft",
crs = 4326,
providers = c("CartoDB.Positron", "nlmaps.luchtfoto")

)

points_in_circle 23

Arguments

df data.framw with column for lon and lat

value column in df

lon column with lon

lat column with lat

palette color palette

legend_position

position for legend (default is "bottomleft")

crs crs (default is 4326)

providers providers to show. See ‘leaflet::providers‘ for a list.

Value

leaflet map

Examples

Not run:
plot_points(Groningen, value = amount)

End(Not run)

points_in_circle Points in circle

Description

Find all observations in a data.frame within a circle of a certain radius.

Usage

points_in_circle(
data,
lon_center,
lat_center,
lon = lon,
lat = lat,
radius = 200

)

24 points_to_polygon

Arguments

data data.frame with at least columns for longitude and latitude.

lon_center numeric value referencing to the longitude of the center of the circle

lat_center numeric value referencing to the latitude of the center of the circle

lon column name in data with longitudes (lon is default).

lat column name in data with latitudes (lat is default).

radius radius (in meters) (defaults to 200m).

Value

data.frame. Column distance_m gives the distance to the center of the circle (in meters).

Author(s)

Martin Haringa

Examples

points_in_circle(Groningen, lon_center = 6.571561, lat_center = 53.21326,
radius = 60)

points_to_polygon Aggregate attributes of coordinates to area level

Description

A data.frame containing coordinates (in terms of longitude and latitude) is joined to the polygon
level. Then arithmetic operations on the attributes of the coordinates are applied to obtain aggre-
gated values for each polygon.

Usage

points_to_polygon(sf_map, df, oper, crs = 4326, outside_print = FALSE)

Arguments

sf_map object of class sf

df data.frame containing coordinates (column names should be ’lon’ and ’lat’)

oper an arithmetic operation on the polygon level

crs coordinate reference system: integer with the EPSG code, or character with
proj4string

outside_print print points that are not within a polygon (default is FALSE).

points_to_polygon 25

Value

an object of class sf

Author(s)

Martin Haringa

Examples

points_to_polygon(nl_postcode2, insurance, sum(amount, na.rm = TRUE))
Not run:
shp_read <- sf::st_read("~/path/to/file.shp")
points_to_polygon(shp_read, insurance, sum(amount, na.rm = TRUE))

End(Not run)

Index

∗ datasets
Groningen, 5
insurance, 9
knmi_stations, 14
nl_corop, 16
nl_gemeente, 17
nl_postcode2, 17
nl_postcode3, 18
nl_postcode4, 19
nl_provincie, 20

choropleth, 2
choropleth_ggplot2, 3
concentration, 4, 7

Groningen, 5
gstat::krige, 11

haversine, 6
highest_concentration, 7, 15

insurance, 9
interpolate_krige, 10
interpolate_spline, 11

knmi_historic_data, 13
knmi_stations, 14

neighborhood_gh_search, 15
nl_corop, 16
nl_gemeente, 17
nl_postcode2, 17
nl_postcode3, 18
nl_postcode4, 19
nl_provincie, 20

plot.concentration, 20
plot.neighborhood, 21
plot_points, 22
points_in_circle, 23
points_to_polygon, 24

26

	choropleth
	choropleth_ggplot2
	concentration
	Groningen
	haversine
	highest_concentration
	insurance
	interpolate_krige
	interpolate_spline
	knmi_historic_data
	knmi_stations
	neighborhood_gh_search
	nl_corop
	nl_gemeente
	nl_postcode2
	nl_postcode3
	nl_postcode4
	nl_provincie
	plot.concentration
	plot.neighborhood
	plot_points
	points_in_circle
	points_to_polygon
	Index

