
Package ‘sociome’
December 6, 2023

Type Package

Title Operationalizing Social Determinants of Health Data for
Researchers

Version 2.2.5

Maintainer Nik Krieger <nikkrieger@gmail.com>

Description Accesses raw data via API and calculates social
determinants of health measures for user-specified locations in the
US, returning them in tidyverse- and sf-compatible data frames.

License MIT + file LICENSE

BugReports https://github.com/ClevelandClinicQHS/sociome/issues

Depends R (>= 3.6.0)

Imports dplyr (>= 1.0.1), magrittr (>= 1.5), mice (>= 3.10.0.1),
psych, purrr (>= 0.3.4), rlang (>= 0.4.7), stringr (>= 1.4.0),
tidycensus (>= 1.0), tidyr (>= 1.1.0)

Suggests USpopcenters, cluster, geosphere, ggplot2 (>= 3.3.2), sf (>=
0.9-7), testthat (>= 2.3.2), tibble (>= 3.0.3), tigris (>=
1.0), units

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Nik Krieger [aut, cre],
Jarrod Dalton [aut],
Cindy Wang [aut],
Adam Perzynski [aut],
National Institutes of Health/National Institute on Aging [fnd] (The
development of this software package was supported by a research
grant from the National Institutes of Health/National Institute on
Aging, (Principal Investigators: Jarrod E. Dalton, PhD and Adam T.
Perzynski, PhD; Grant Number: 5R01AG055480-02). All of its contents
are solely the responsibility of the authors and do not necessarily
represent the official views of the NIH.)

1

https://github.com/ClevelandClinicQHS/sociome/issues

2 acs_age_sex_race_ethnicity_vars

Repository CRAN

Date/Publication 2023-12-06 12:10:02 UTC

R topics documented:
acs_age_sex_race_ethnicity_vars . 2
acs_vars . 3
append_dissimilarities . 4
calculate_adi . 5
census_api_key . 7
decennial_age_sex_race_ethnicity_vars . 7
decennial_vars . 8
get_adi . 8
get_areas_near_coordinates . 13
get_geoids . 16
lon_lat_from_area . 17
synthetic_population . 18

Index 22

acs_age_sex_race_ethnicity_vars

ACS variables for age, sex, race, and ethnicity

Description

A two-column data set of the American Community Survey variable names and their descriptions.
Contains counts of various subdivisions of the population based on age, sex, race, and ethnicity.

Usage

acs_age_sex_race_ethnicity_vars

Format

A tibble with 65 rows and 2 variables:

variable ACS variable name

description A description of who is present in the count

Details

These variable names have been consistent throughout the existence of the ACS from its beginning
through 2020.

This data set is used to support synthetic_population().

acs_vars 3

See Also

decennial_age_sex_race_ethnicity_vars

acs_vars ACS variable names for ADI and ADI-3 calculation

Description

A dataset of the ACS variable names used to calculate the Area Deprivation Index (ADI) and Berg
Indices (ADI-3).

Usage

acs_vars

Format

A [‘tibble‘][tibble::tibble] with 139 rows and 10 variables:

variable ACS variable name

description Brief description of the data the variable contains

set1 Logical, indicating the variables to be used when calculating ADI and ADI-3 using the 1- or
3-year estimates from 2011 and later or when using the 5-year estimates from 2012 or later

set2 Logical, indicating the variables to be used when calculating ADI and ADI-3 at the block
group level using the 2015 or 2016 estimates

set3 Logical, indicating the variables to be used when calculating ADI using the 2011 5-year esti-
mates

set4 Logical, indicating the variables to be used when calculating ADI and ADI-3 using the 2010
1- or 3-year estimates

set5 Logical, indicating the variables to be used when calculating ADI and ADI-3 using the 2010
5-year estimates

set6 Logical, indicating the variables to be used when calculating ADI and ADI-3 using the 2008
or 2009 1-year estimates

set7 Logical, indicating the variables to be used when calculating ACS estimates not previously
mentioned, including the 2009 5-year estimates

dec2010 Logical, indicating the variables to use in conjunction with the few actual 2010 decennial
census variables when running get_adi(year = 2010, dataset = "decennial")

Note that not all year/estimate combinations are currently supported by the census API and/or
tidycensus, and some may never be supported.

See Also

decennial_vars

4 append_dissimilarities

append_dissimilarities

Append list columns of Gower’s distances and sampling weights to a
data frame

Description

Runs cluster::daisy() on a data frame, breaks up the columns of the resulting dissimilarity into a
list, and adds this list to the data frame as a list column. In addition or instead, it adds a transformed
version of the dissimilarity list, which can be used as sampling weights.

Usage

append_dissimilarities(
data,
cols = dplyr::everything(),
dissimilarity_measure_name = "dissimilarities",
sampling_weight_name = "sampling_weights",
metric = "gower",
...

)

Arguments

data A data frame that has at least one row and at least one column.
cols <tidy-select> Columns of data on which to calculate dissimilarities.
dissimilarity_measure_name, sampling_weight_name

The names of the list columns that will be added to data. Cannot match the
names of the existing columns. Make one of them NULL if you don’t want it
added, but they can’t both be NULL.

metric, ... Passed to cluster::daisy(). Use ... at your own risk.

Details

All columns are fed to cluster::daisy() by default, but the user can select which ones using the
cols argument.

Once the full dissimilarity matrix is obtained, the columns are separated into a list via asplit() and
appended to data. Each element of the list is therefore a double vector with nrow(data) values.
For any given row, its dissimilarity vector represents the row’s dissimilarity to every row.

The optional/alternative "sampling weight" column is a transformed version of the dissimilarity
list: 1. All dissimilarity measures of 0 are replaced with the next smallest dissimilarity value in
the vector. In effect, this means that a row’s dissimilarity to itself (and any rows identical to it) is
replaced with the dissimilarity value of its next most similar row. (Exception: if all elements are 0,
all of them are replaced with 1). 2. Then the reciprocal of each element is taken so that larger values
represent greater similarity. 3. Each element is divided by the sum of the vector, which standardizes
the elements to add to 1.

Requires the package cluster to be installed.

calculate_adi 5

Value

A data frame, specifically the data argument with one or two more columns added to the end.

Examples

Running this on all mtcars columns
mtdissim <- append_dissimilarities(mtcars)

Therefore, these numbers represent the dissimilarity of each row to the
fifth row:
mtdissim$dissimilarities[[5]]

And these are the dissimilarities' corresponding sampling weights:
mtdissim$sampling_weights[[5]]

Now we run it on mtcars without the wt and qsec colums so that we purposely
end up with some duplicate rows (the first and second).
mtdissim_dup <- append_dissimilarities(mtcars, cols = !c(wt, qsec))

These represent each row's dissimilarity to its first row.
Since we specifically told it not to take wt and qsec into account, the
first two rows are identical. Therefore, both values are zero.
mtdissim_dup$dissimilarities[[1]]

Here are the corresponding sampling weights. Notice that the first two
rows' sampling weights are the same as the sampling weight of row 30, which
is the next most similar row.
mtdissim_dup$sampling_weights[[1]]

calculate_adi Calculate ADI and ADI-3 from census data.

Description

Calculate the Area Deprivation Index and Berg Indices (ADI-3) using decennial US census or Amer-
ican Community Survey (ACS) variables.

Usage

calculate_adi(data_raw, keep_indicators = FALSE, seed = NA)

Arguments

data_raw A data frame, tibble, or sf object ultimately obtained via tidycensus::get_acs()
or tidycensus::get_decennial(), having the data necessary to compute the
indicators of the ADI and ADI-3.
The columns of his data frame must be named according to the elements of the
variable column in acs_vars and/or decennial_vars.
The easiest way to obtain data like this is to run get_adi(raw_data_only =
TRUE).

6 calculate_adi

keep_indicators

Logical indicating whether or not to keep the component indicators of the ADI
and ADI-3 as well as the original census variables used to calculate them. De-
faults to FALSE.
See acs_vars and decennial_vars for basic descriptions of the raw census
variables.

seed Passed to the seed argument of mice::mice() when imputation is needed.

Details

The function get_adi() calls this function by default as its final step, but some users may want to
calculate ADI and ADI-3 values for different combinations of areas in a given data set. get_adi(raw_data_only
= TRUE) returns the raw census data used to calculate ADI and ADI-3. Users may select subsets of
such a data set and pipe them into calculate_adi().

This function discerns what kind of census data that data contains (ACS, or one of the decennial
censuses) by checking for the existence of key variables unique to each kind of data set.

Areas listed as having zero households are excluded from ADI and ADI-3 calculation. Their result-
ing ADIs and ADI-3s will be NA.

If calling this function directly (i.e., not via get_adi()) on a data set that contains median house-
hold income (B19013_001) and does not contain median family income (B19113_001), median
household income will be used in place of median family income, with a warning(). See the
"Missingness and imputation" section of get_adi().

Value

A tibble (or sf) with the same number of rows as data. Columns include GEOID, NAME, ADI,
Financial Strength, Economic_Hardship_and_Inequality, and Educational_Attainment.
Further columns containing the indicators and raw values will also be present if keep_indicators
= TRUE.

See Also

For more information, see get_adi(), especially the sections titled ADI and ADI-3 factor load-
ings and Missingness and imputation.

Examples

Not run:
Wrapped in \dontrun{} because these examples require a Census API key.

raw_census <- get_adi("state", year = 2017, raw_data_only = TRUE)

calculate_adi(raw_census)

calculate_adi(raw_census, keep_indicators = TRUE)

End(Not run)

census_api_key 7

census_api_key Census API Key installer

Description

See tidycensus::census_api_key().

decennial_age_sex_race_ethnicity_vars

Decennial Census variables for age, sex, race, and ethnicity

Description

A three-column data set of the Decennial Census variable names, their descriptions, and their de-
cennial census year. Contains counts of various subdivisions of the population based on age, sex,
race, and ethnicity.

Usage

decennial_age_sex_race_ethnicity_vars

Format

A tibble with 130 rows and 3 variables:

year The year of the decennial census with which the variable is associated.

variable ACS variable name

description A description of who is present in the count

Details

Currently, the 2000 and 2010 Decennial Census variables are available.

This data set is used to support synthetic_population().

See Also

acs_age_sex_race_ethnicity_vars

8 get_adi

decennial_vars Decennial census variable names for ADI calculation

Description

A dataset of the decennial census variable names used to calculate the Area Deprivation Index (ADI)
and the Berg Indices (ADI-3).

Usage

decennial_vars

Format

A tibble with 137 rows and 4 variables:

variable Decennial census variable name

sumfile The summary tape file of the decennial census variable

year The year of the decennial census variable

description Brief description of the data the variable contains

See Also

acs_vars

get_adi Get Area Deprivation Index (ADI) and Berg Indices (ADI-3)

Description

Returns the ADI and ADI-3 of user-specified areas.

Usage

get_adi(
geography,
state = NULL,
county = NULL,
geoid = NULL,
zcta = NULL,
year,
dataset = c("acs5", "acs3", "acs1", "decennial"),
geometry = FALSE,
keep_indicators = FALSE,
raw_data_only = FALSE,

get_adi 9

cache_tables = TRUE,
key = NULL,
seed = NA,
...

)

Arguments

geography A character string denoting the level of census geography whose ADIs and
ADI-3s you’d like to obtain. Must be one of c("state", "county", "tract",
"block group", "zcta"). Required.

state A character string specifying states whose ADI and ADI-3 data is desired. De-
faults to NULL. Can contain full state names, two-letter state abbreviations, or a
two-digit FIPS code/GEOID (must be a vector of strings, so use quotation marks
and leading zeros if necessary). Must be left as NULL if using the geoid or zcta
parameter.

county A vector of character strings specifying the counties whose ADI and ADI-3 data
you’re requesting. Defaults to NULL. If not NULL, the state parameter must
have a length of 1. County names and three-digit FIPS codes are accepted (must
contain strings, so use quotation marks and leading zeros if necessary). Must be
blank if using the geoid parameter.

geoid A character vector of GEOIDs (use quotation marks and leading zeros). Defaults
to NULL. Must be blank if state, county, or zcta is used. Can contain different
levels of geography (see details).

zcta A character vector of ZCTAs or the leading digit(s) of ZCTAs (use quotation
marks and leading zeros). Defaults to NULL. Must be blank if state, county, or
geoid is used.
Strings under 5 digits long will yield all ZCTAs that begin with those digits.
Requires that geography = "zcta". If geography = "zcta" and zcta = NULL,
all ZCTAs in the US will be used.

year Single integer specifying the year of US Census data to use.

dataset The data set used to calculate ADIs and ADI-3s. Must be one of c("acs5",
"acs3", "acs1", "decennial"), denoting the 5-, 3-, and 1-year ACS along
with the decennial census. Defaults to "acs5".
When dataset = "decennial", year must be in c(1990, 2000, 2010).
The 2010 decennial census did not include the long-form questionnaire used in
the 1990 and 2000 censuses, so this function uses the 5-year estimates from the
2010 ACS to supply the data not included in the 2010 decennial census. In fact,
the only 2010 decennial variables used are H003002, H014002, P020002, and
P020008.
Important: data are not always available depending on the level of geography
and data set chosen. See https://www.census.gov/programs-surveys/acs/
guidance/estimates.html.

geometry Logical value indicating whether or not shapefile data should be included in the
result, making the result an sf object instead of a plain tibble. Defaults to
FALSE.

https://www.census.gov/programs-surveys/acs/guidance/estimates.html
https://www.census.gov/programs-surveys/acs/guidance/estimates.html

10 get_adi

The shapefile data that is returned is somewhat customizable by passing certain
arguments along to the tidycensus functions via

keep_indicators

Logical value indicating whether or not the resulting tibble or sf object will
contain the socioeconomic measures used to calculate the ADI and ADI-3 val-
ues. Defaults to FALSE.
See acs_vars and decennial_vars for basic descriptions of the raw census
variables.

raw_data_only Logical, indicating whether or not to skip calculation of the ADI and ADI-3 and
only return the census variables. Defaults to FALSE.

cache_tables The plural version of the cache_table argument in tidycensus::get_acs()
or tidycensus::get_decennial(). (get_adi() calls the necessary tidycensus
function many times in order to return ADIs and ADI-3s, so many tables are
cached if TRUE). Defaults to TRUE.

key Your Census API key as a character string. Obtain one at http://api.census.
gov/data/key_signup.html. Defaults to NULL. Not necessary if you have al-
ready loaded your key with census_api_key().

seed Passed to calculate_adi().

... Additional arguments to be passed onto tidycensus::get_acs() or tidycensus::get_decennial().
These must all be named. Must not match any of the tidycensus formal argu-
ments that sociome needs to set explicitly.
This may be found to be helpful when setting geometry = TRUE, since the tidycensus
functions pass ... onto the appropriate tigris function (namely, one of tigris::states(),
tigris::counties(), tigris::tracts(), tigris::block_groups(), or tigris::zctas(),
according to the the value of geography). This enables the user to somewhat
customize the shapefile data obtained.

Details

Returns a tibble or sf object of the Area Deprivation Indices (ADIs) and Berg Indices (ADI-3s)
of user-specified locations in the United States, utilizing US Census data. Locations that are listed
as having zero households are excluded from ADI and ADI-3 calculation: their ADI and ADI-3
values will be NA.

Value

If geometry = FALSE, (the default) a tibble. If geometry = TRUE is specified, an sf.

Reference area

The concept of "reference area" is important to understand when using this function. The
algorithm that produced the original ADIs employs factor analysis. As a result, the ADI is a relative
measure; the ADI of a particular location is dynamic, varying depending on which other locations
were supplied to the algorithm. In other words, ADI will vary depending on the reference area
you specify.
For example, the ADI of Orange County, California is x when calculated alongside all other counties
in California, but it is y when calculated alongside all counties in the US. The get_adi() function

http://api.census.gov/data/key_signup.html
http://api.census.gov/data/key_signup.html

get_adi 11

enables the user to define a reference area by feeding a vector of GEOIDs to its geoid parameter
(or alternatively for convenience, states and/or counties to state and county). The function then
gathers data from those specified locations and performs calculations using their data alone.

The Berg Indices (ADI-3) were developed with this principle of relativity in mind, and as such there
is no set of seminal ADI-3 values. Thus, the terms "Berg Indices" and "ADI-3" refer more nearly
to any values generated using the algorithm employed in this package.

Areas listed as having zero households are excluded from the reference area, and their ADI and
ADI-3 values will be NA.

The geoid parameter

Elements of geoid can represent different levels of geography, but they all must be either 2 digits
(for states), 5 digits (for counties), 11 digits (for tracts), or 12 digits (for block groups). It must
contain character strings, so use quotation marks as well as leading zeros where applicable.

ADI and ADI-3 factor loadings

The returned tibble or sf is of class adi, and it contains an attribute called loadings, which con-
tains a tibble of the PCA loadings of each factor. This is accessible through attr(name_of_tibble, "loadings").

Missingness and imputation

While this function allows flexibility in specifying reference areas (see the Reference area sec-
tion above), data from the US Census are masked for sparsely populated places, resulting in many
missing values.

Imputation is attempted via mice::mice(m = 1, maxit = 50, method = "pmm", seed = seed).
If imputation is unsuccessful, an error is thrown, but the dataset of indicators on which imputation
was unsuccessful is available via rlang::last_error()$adi_indicators and the raw census
data are available via rlang::last_error()$adi_raw_data. The former excludes areas with zero
households, but the latter includes them.

One of the indicators of both ADI and the Financial Strength component of ADI-3 is median family
income, but methodological issues with the 2015 and 2016 ACS have rendered this variable unavail-
able at the block group level for those years. When requested, this function will use median house-
hold income in its place, with a warning(). See https://www.census.gov/programs-surveys/
acs/technical-documentation/user-notes/2016-01.html.

API-related error handling

Depending on user input, this function may call its underlying functions (tidycensus::get_acs()
or tidycensus::get_decennial()) many times in order to accommodate their behavior. When
these calls are broken up by state or by state and county, a message is printed indicating the state or
state and county whose data is being pulled. These calls are wrapped in purrr::insistently(purrr::rate_delay(), quiet = FALSE),
meaning that they are attempted over and over until success, and tidycensus error messages are
printed as they occur.

https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2016-01.html
https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2016-01.html

12 get_adi

Warnings and disclaimers

Please note that this function calls data from US Census servers, so execution may take a long time
depending on the user’s internet connection and the amount of data requested.

For advanced users, if changing the dataset argument, be sure to know the advantages and limita-
tions of the 1-year and 3-year ACS estimates. See https://www.census.gov/programs-surveys/
acs/guidance/estimates.html for details.

Examples

Not run:
Wrapped in \dontrun{} because all these examples take >5 seconds
and require a Census API key.

ADI of all census tracts in Cuyahoga County, Ohio
get_adi(geography = "tract", year = 2017, state = "OH", county = "Cuyahoga")

ADI and ADI-3 of all counties in Connecticut, using the 2014 ACS1 survey.
Returns a warning because there are only 8 counties.
A minimum of 30 locations is recommended.
get_adi(geography = "county", state = "CT", year = 2014, dataset = "acs1")

Areas with zero households will have an ADI and ADI-3 of NA:
queens <-

get_adi(
"tract",
year = 2017,
state = "NY",
county = "Queens",
keep_indicators = TRUE,
geometry = TRUE

)
queens %>%

dplyr::as_tibble() %>%
dplyr::select(GEOID, NAME, ADI, households = B11005_001) %>%
dplyr::filter(is.na(ADI) | households == 0) %>%
print(n = Inf)

geoid argument allows for highly customized reference populations.
ADI of all census tracts in the GEOIDs stored in "delmarva" below:
Notice the mixing of state- ("10") and county-level GEOIDs (the others).
delmarva_geoids <- c("10", "51001", "51131", "24015", "24029", "24035",

"24011", "24041", "24019", "24045", "24039", "24047")
delmarva <-

get_adi(
geography = "tract",
geoid = delmarva_geoids,
dataset = "acs5",
year = 2009,
geometry = TRUE

)

https://www.census.gov/programs-surveys/acs/guidance/estimates.html
https://www.census.gov/programs-surveys/acs/guidance/estimates.html

get_areas_near_coordinates 13

Demonstration of geom_sf() integration:
require(ggplot2)

The na.value argument changes the fill of NA ADI areas.
delmarva %>% ggplot() + geom_sf(aes(fill = ADI), lwd = 0)

Setting direction = -1 makes the less deprived areas the lighter ones
The argument na.value changes the color of zero-household areas
queens %>%

ggplot() +
geom_sf(aes(fill = ADI), lwd = 0) +
scale_fill_viridis_c(na.value = "red", direction = -1)

Obtain factor loadings:
attr(queens, "loadings")

End(Not run)

get_areas_near_coordinates

Make a tibble of census areas closest to a user-specified center

Description

Returns a tibble containing the census areas whose centers of population are closest to some user-
specified center. To specify the center, the user can manually enter longitude/latitude coordinates
or use the helper function lon_lat_from_area() to automatically grab the longitude/latitude co-
ordinates of the center of population of an area. The cutoff point for how many areas will be return
depends on the function used.

Usage

areas_in_radius(
geography = c("state", "county", "tract", "block group"),
center = lon_lat_from_area(state = "DC"),
radius = 5,
units = "miles",
measure_from = "center of population",
year = 2020,
distance_fun = geosphere::distVincentyEllipsoid,
batch_size = 50L

)

closest_n_areas(
geography = c("state", "county", "tract", "block group"),
center = lon_lat_from_area(state = "DC"),
n = 50,
measure_from = "center of population",

14 get_areas_near_coordinates

year = 2020,
distance_fun = geosphere::distVincentyEllipsoid,
units = NULL,
batch_size = 50L

)

closest_population(
geography = c("state", "county", "tract", "block group"),
center = lon_lat_from_area(state = "DC"),
population = 1e+06,
measure_from = "center of population",
year = 2020,
distance_fun = geosphere::distVincentyEllipsoid,
units = NULL,
batch_size = 50L

)

Arguments

geography The type of census areas that the resulting table will contain. One of c("state",
"county", "tract", "block group").

center The longitude/latitude coordinates of the center of the circle. A double vector
of length 2 whose elements are finite numbers. Passed to the y argument of
geosphere::distm().
The first element is the longitude coordinate (positive for west, negative for
east). The second element is the latitude coordinate (positive for north, negative
for south).
The convenience function lon_lat_from_area() can be used to obtain the lon-
gitude/latitude coordinates of the center of population of a user-specified census
area.
Defaults to the center of population of the District of Columbia according to the
2020 decennial census.

radius A single, non-negative number specifying the radius of the circle. Defaults to 5.

units A single string specifying the units of the resulting distance column. If NULL,
the units package does not need to be installed, and units will be meters. Oth-
erwise, this will be passed to the value argument of units::set_units(mode
= "standard").
For areas_in_radius(), this also used for the units of radius.

measure_from Currently can only be "center of population", the default.

year Must be 2020, 2010, or 2000. Defaults to 2020.

distance_fun Passed to the fun argument of geosphere::distm(). Defaults to geosphere::distVincentyEllipsoid,
which results in the most accurate measurement but is also the slowest.

batch_size The number of distances calculated in each iterative call to geosphere::distm().
When the request is satisfied, these functions stop calculating distances in order
to prevent potentially hundreds of thousands of unnecessary calculations. De-
faults to 50.

get_areas_near_coordinates 15

n A single positive integer specifying how many of the areas closest to center
should be gathered. Defaults to 50.

population A single positive integer specifying the target total population of the areas re-
turned. See Details.

Details

areas_in_radius() returns all areas whose centers of population are within the user-specified
radius around center.

closest_n_areas() returns the top n areas whose centers of population are closest areas to center.

Conceptually, closest_population() sequentially gathers the next closest area to center until
the total population of the areas meets or exceeds population.

Distances are determined with geosphere::distm().

Requires the packages USpopcenters and geosphere to be installed. Requires the units to be
installed unless units = NULL.

Centers of population are based on the decennial census data. Only states, counties, tracts, and block
groups are currently supported. See the documentation of the USpopcenters package and https://
www.census.gov/geographies/reference-files/time-series/geo/centers-population.html
for more information.

Value

A tibble with each of the columns found in the corresponding USpopcenters table, with two
columns appended:

geoid - all FIPS code columns combined with paste0().

distance - the number of units the area’s LONGITUDE/LATITUDE center of population is away from
the coordinates given in center.

See Also

lon_lat_from_area()

Examples

if (requireNamespace("USpopcenters", quietly = TRUE) &&
requireNamespace("geosphere", quietly = TRUE)) {

All states whose centers of population are within 300 kilometers of the
center of population of New York County, New York (i.e, Manhattan):
areas_in_radius(

geography = "state",
center = lon_lat_from_area(state = "NY", county = "New York"),
radius = 300,
units = "km"

)

The four census tracts whose centers of population are closest to the
Four Corners (distance column is in meters due to setting units = NULL):

https://www.census.gov/geographies/reference-files/time-series/geo/centers-population.html
https://www.census.gov/geographies/reference-files/time-series/geo/centers-population.html

16 get_geoids

closest_n_areas("tract", center = c(-109.0452, 36.9991), n = 4, units = NULL)

The counties closest to center of population of Kauai County, Hawaii whose
total population reaches 3 million people:
closest_population(

geography = "county",
center = lon_lat_from_area("15007"),
population = 3e6,
units = "barleycorns"

)

}

get_geoids Obtain GEOIDs of areas

Description

Returns a tibble or sf of GEOIDs, names, and decennial census population of user-specified
locations.

Usage

get_geoids(
geography,
state = NULL,
county = NULL,
geoid = NULL,
year = 2010,
geometry = FALSE,
cache_tables = TRUE,
key = NULL,
...

)

Arguments

geography A character string denoting the level of census geography whose GEOIDs you’d
like to obtain. Must be one of c("state", "county", "tract", "block group",
"block").
Note that block-level data cannot be obtained from 1990 and 2000 decennial
census data due to limitations in tidycensus::get_decennial(). Whereas
block-level 2010 decennial census data are available, block-level ADI and ADI-
3 cannot be calculated due to the removal of the long-form questionnaire from
the 2010 decennial census.

state, county, geoid, geometry, cache_tables, key

See the descriptions of the arguments in get_adi().

lon_lat_from_area 17

year Single integer specifying the year of US Census data to use. Defaults to 2010.
Based on this year, data from the most recent decennial census will be returned
(specifically, year <- floor(year / 10) * 10 is run).

... Additional arguments to be passed to tidycensus::get_decennial(). Use at
your own risk.

Details

This allows users to quickly obtain all GEOIDs in a specified location at a specific level of geogra-
phy without having to manually look them up somewhere else.

This facilitates calls to get_adi() that involve somewhat complicated reference areas.

Examples

Not run:
Wrapped in \dontrun{} because it requires a Census API key.

Get all tract GEOIDs for Manhattan
tracts <- get_geoids(geography = "tract", state = "New York", county = "New York")
tracts

Get all block GEOIDs for the fifth tract on that list
get_geoids(geography = "block", geoid = tracts$GEOID[5])

End(Not run)

lon_lat_from_area Grab the longitude/latitude of the center of population of a census area

Description

The user specifies a census area, and the function returns the longitude/latitude coordinates of the
area’s center of population according to the decennial census.

Usage

lon_lat_from_area(geoid = NULL, state = NULL, county = NULL, year = 2020)

Arguments

geoid A single string specifying the geoid of a census area. Must be 2, 5, 11, or 12
digits. Must be NULL if state is not NULL.

state A single string containing the FIPS code, two-letter abbreviation, or full state
name of a US state or the District of Columbia or Puerto Rico. Not case sensi-
tive. Must be NULL if geoid is not NULL.

18 synthetic_population

county A single string specifying the name of a county in state or the three- or five-
digit GEOID of a county in state. Not case sensitive. If entering a county
name, it must match the beginning of only one of the county names in state.
If entering a five-digit GEOID, it will throw an error if its first two digits do not
match the GEOID of state. Must be NULL if state is NULL.

year One of 2020, 2010, or 2000. Defaults to 2020.

Details

Centers of population are based on the decennial census. Only states, counties, tracts, and block
groups are currently supported. See the documentation of the USpopcenters package and https://
www.census.gov/geographies/reference-files/time-series/geo/centers-population.html
for more information.

Requires the data package USpopcenters to be installed.

Value

A double vector of length 2. The first element is LONGITUDE (positive for east, negative for west).
The second element is LATITUDE (positive for north, negative for south).

See Also

areas_in_radius()

Examples

if (requireNamespace("USpopcenters", quietly = TRUE)) {

The center of population of Alaska
lon_lat_from_area(state = "alAskA")

The center of population of Cook County, Illinois.
lon_lat_from_area(state = "IL", county = "Cook")

The center of population of some tract in Manhattan
lon_lat_from_area(geoid = "36061021600")
}

synthetic_population Create a synthetic population simulating US Census areas

Description

Returns a data set of synthetic individuals based on user-specified US Census areas. The age, sex,
race, and ethnicity of each individual is probabilistic, based on the demographics of the areas as
reported in a user-specified US Census data set.

https://www.census.gov/geographies/reference-files/time-series/geo/centers-population.html
https://www.census.gov/geographies/reference-files/time-series/geo/centers-population.html

synthetic_population 19

Usage

synthetic_population(
geography,
state = NULL,
county = NULL,
geoid = NULL,
zcta = NULL,
year,
dataset = c("acs5", "acs3", "acs1", "decennial"),
geometry = FALSE,
cache_tables = TRUE,
max_age = 115,
rate = 0.25,
key = NULL,
seed = NULL,
...

)

Arguments

geography A character string denoting the level of US census geography at which you want
to create a synthetic population. Required.

state A character string specifying states whose population you want to synthesize.
Defaults to NULL. Can contain full state names, two-letter state abbreviations,
or a two-digit FIPS code/GEOID (must be a vector of strings, so use quotation
marks and leading zeros if necessary). Must be left as NULL if using the geoid
or zcta parameter.

county A vector of character strings specifying the counties whose population you want
to synthesize. Defaults to NULL. If not NULL, the state parameter must have
a length of 1. County names and three-digit FIPS codes are accepted (must
contain strings, so use quotation marks and leading zeros if necessary). Must be
blank if using the geoid parameter.

geoid A character vector of GEOIDs (use quotation marks and leading zeros). Defaults
to NULL. Must be blank if state, county, or zcta is used. Can contain different
levels of geography (see details).

zcta A character vector of ZCTAs or the leading digit(s) of ZCTAs (use quotation
marks and leading zeros). Defaults to NULL. Must be blank if state, county, or
geoid is used.
Strings under 5 digits long will yield all ZCTAs that begin with those digits.
Requires that geography = "zcta". If geography = "zcta" and zcta = NULL,
all ZCTAs in the US will be used.

year, dataset Specifies the US Census data set on which to base the demographic profile of
your synthetic population.
year must be a single integer specifying the year of US Census data to use.The
data set used to calculate ADIs and ADI-3s.

20 synthetic_population

dataset must be one of c("acs5", "acs3", "acs1", "decennial"), denot-
ing the 5-, 3-, and 1-year ACS along with the decennial census. Defaults to
"acs5".
When dataset = "decennial", year must be in c(1990, 2000, 2010).
Important: data are not always available depending on the level of geography
and data set chosen. See https://www.census.gov/programs-surveys/acs/
guidance/estimates.html.

geometry Logical value indicating whether or not shapefile data should be included in the
result, making the result an sf object instead of a plain tibble. Defaults to
FALSE.
The shapefile data that is returned is somewhat customizable by passing certain
arguments along to the tidycensus functions via

cache_tables The plural version of the cache_table argument in tidycensus::get_acs()
or tidycensus::get_decennial(). (get_adi() calls the necessary tidycensus
function many times in order to return ADIs and ADI-3s, so many tables are
cached if TRUE). Defaults to TRUE.

max_age A single integer representing the largest possible age that can appear in the data
set. Simulated age values exceeding this value will be top-coded to this value.
Defaults to 115. See details.

rate A single number, passed to stats::rexp() when synthesizing the ages of the
highest age bracket. Defaults to 0.25. See details.

key Your Census API key as a character string. Obtain one at http://api.census.
gov/data/key_signup.html. Defaults to NULL. Not necessary if you have al-
ready loaded your key with census_api_key().

seed Passed onto set.seed(), which is called before probabilistically synthesizing
the age values with sample().

... Additional arguments to be passed onto tidycensus::get_acs() or tidycensus::get_decennial().
These must all be named. Must not match any of the tidycensus formal argu-
ments that sociome needs to set explicitly.
This may be found to be helpful when setting geometry = TRUE, since the tidycensus
functions pass ... onto the appropriate tigris function (namely, one of tigris::states(),
tigris::counties(), tigris::tracts(), tigris::block_groups(), or tigris::zctas(),
according to the the value of geography). This enables the user to somewhat
customize the shapefile data obtained.

Details

Returns a tibble or sf object where each row represents a synthetic person. Each person has an
age, sex, race, and ethnicity. The probability of what each person’s age/sex/race/ethnicity will be
is equal to the proportions in their census area as reported in the user-specified US Census data set
(e.g., 2010 Decennial Census or 2017 ACS 5-year estimates). The number of rows in the data set
will equal the number of people living in the user-specified US Census areas, as reported in the
same US Census data set.

Value

If geometry = FALSE, (the default) a tibble. If geometry = TRUE is specified, an sf.

https://www.census.gov/programs-surveys/acs/guidance/estimates.html
https://www.census.gov/programs-surveys/acs/guidance/estimates.html
http://api.census.gov/data/key_signup.html
http://api.census.gov/data/key_signup.html

synthetic_population 21

Synthesizing ages from US Census Data

US Census data provides counts of the number of people in different age brackets of varying widths.
The age_lo and age_hi columns in the output depict the age bracket of each individual in the
synthetic population. There is also an age column that probabilistically generates a non-whole-
number age within the age bracket. A uniform distribution (via stats::runif()) guides this age
generation for all age brackets except the highest age bracket ("age 85 and over" in the extant
ACS and Decennial Census data). An exponential distribution (via stats::rexp()) guides the age
generation for this highest age bracket, and the user can specify rate to customize the exponential
distribution that is used.

Examples

Not run:
Wrapped in \dontrun{} because all these examples take >5 seconds
and require a Census API key.

Synthetic population for Utah, using the 2019 ACS 5-year estimates:
synthetic_population(geography = "state", state = "UT", year = 2019)

Same, but make it so that survival past age 85 is highly unlikely
(via rate = 10), and so that 87 is the maximum possible age
synthetic_population(

geography = "state",
state = "UT",
year = 2019,
max_age = 87,
rate = 10

)

Synthetic population of the Delmarva Peninsula at the census tract level,
using 2000 Decennial Census data
synthetic_population(

geography = "tract",
geoid =
This two-digit GEOID is the state of Delaware.
c("10",

These five-digit GEOIDs are specific counties in Virginia and Maryland
"51001", "51131", "24015", "24029", "24035", "24011", "24041", "24019",
"24045", "24039", "24047"),

year = 2000,
dataset = "decennial"

)

End(Not run)

Index

∗ datasets
acs_age_sex_race_ethnicity_vars, 2
acs_vars, 3
decennial_age_sex_race_ethnicity_vars,

7
decennial_vars, 8

acs_age_sex_race_ethnicity_vars, 2, 7
acs_vars, 3, 5, 6, 8, 10
append_dissimilarities, 4
areas_in_radius

(get_areas_near_coordinates),
13

areas_in_radius(), 18
asplit(), 4
attr, 11

calculate_adi, 5
calculate_adi(), 10
census_api_key, 7
census_api_key(), 10, 20
closest_n_areas

(get_areas_near_coordinates),
13

closest_population
(get_areas_near_coordinates),
13

cluster::daisy(), 4

decennial_age_sex_race_ethnicity_vars,
3, 7

decennial_vars, 3, 5, 6, 8, 10
double, 4, 18

floor, 17

geosphere::distm(), 14, 15
geosphere::distVincentyEllipsoid, 14
get_adi, 3, 5, 6, 8
get_adi(), 6, 16, 17
get_areas_near_coordinates, 13

get_geoids, 16

lon_lat_from_area, 17
lon_lat_from_area(), 13–15

mice::mice, 11
mice::mice(), 6

nrow, 4

paste0(), 15
purrr::insistently, 11
purrr::rate_delay(), 11

rlang::last_error(), 11

sample(), 20
set.seed(), 20
sf, 5, 6, 9–11, 16, 20
stats::rexp(), 20, 21
stats::runif(), 21
synthetic_population, 2, 7, 18

tibble, 2, 5–11, 13, 15, 16, 20
tidycensus::census_api_key(), 7
tidycensus::get_acs(), 5, 10, 11, 20
tidycensus::get_decennial(), 5, 10, 11,

16, 17, 20
tigris::block_groups(), 10, 20
tigris::counties(), 10, 20
tigris::states(), 10, 20
tigris::tracts(), 10, 20
tigris::zctas(), 10, 20

units::set_units, 14

22

	acs_age_sex_race_ethnicity_vars
	acs_vars
	append_dissimilarities
	calculate_adi
	census_api_key
	decennial_age_sex_race_ethnicity_vars
	decennial_vars
	get_adi
	get_areas_near_coordinates
	get_geoids
	lon_lat_from_area
	synthetic_population
	Index

