## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi = 150, fig.width = 6, fig.height = 4.5 ) ## ----setup, message=FALSE----------------------------------------------------- library(smdi) library(gt) library(dplyr) library(here) library(knitr) ## ----fig-group_diagnostics, fig.cap = "Overview three group diagnostics", echo = FALSE---- include_graphics(here("vignettes", "smdi_diagnose_table.png")) ## ----fig-guidance, fig.cap = "Example of how `smdi` diagnostics can be applied to give insights into the likelihood of underlying missingness structures in a real-world database study.", echo = FALSE---- include_graphics(here("vignettes", "smdi_examples.png")) ## ----------------------------------------------------------------------------- smdi_data %>% glimpse() ## ----eval=FALSE--------------------------------------------------------------- # # dataset with simulated missingness # ?smdi::smdi_data() # # # complete dataset # ?smdi::smdi_data_complete() ## ----------------------------------------------------------------------------- smdi_data %>% smdi_summarize() ## ----------------------------------------------------------------------------- covars_missing <- smdi_summarize(data = smdi_data) %>% pull(covariate) smdi_data %>% smdi_vis(covar = covars_missing) ## ----------------------------------------------------------------------------- smdi_data %>% smdi_vis(covar = covars_missing, strata = "exposure") ## ----------------------------------------------------------------------------- smdi::gg_miss_upset(data = smdi_data) ## ----fig.width = 8, fig.height=6, fig.width = 10------------------------------ smdi::md.pattern(smdi_data[, c(covars_missing)], plot = FALSE) ## ----------------------------------------------------------------------------- asmd <- smdi_asmd(data = smdi_data) ## ----------------------------------------------------------------------------- asmd$egfr_cat$asmd_table1 ## ----------------------------------------------------------------------------- asmd$egfr_cat$asmd_plot ## ----------------------------------------------------------------------------- asmd$egfr_cat$asmd_aggregate ## ----------------------------------------------------------------------------- summary(asmd) ## ----------------------------------------------------------------------------- h0 <- smdi_hotelling(data = smdi_data) h0 ## ----------------------------------------------------------------------------- h0$ecog_cat ## ----------------------------------------------------------------------------- h0_global <- smdi_little(data = smdi_data) h0_global ## ----------------------------------------------------------------------------- auc <- smdi_rf(data = smdi_data) auc$ecog_cat$rf_table auc$ecog_cat$rf_plot ## ----eval=FALSE--------------------------------------------------------------- # ?smdi::smdi_outcome() ## ----------------------------------------------------------------------------- smdi_outcome( data = smdi_data, model = "cox", form_lhs = "Surv(eventtime, status)" ) ## ----------------------------------------------------------------------------- diagnostics <- smdi_diagnose( data = smdi_data, covar = NULL, # NULL includes all covariates with at least one NA model = "cox", form_lhs = "Surv(eventtime, status)" ) ## ----------------------------------------------------------------------------- diagnostics$smdi_tbl ## ----------------------------------------------------------------------------- diagnostics$p_little ## ----------------------------------------------------------------------------- library(gt) smdi_style_gt(diagnostics) ## ----eval = FALSE------------------------------------------------------------- # gtsave( # data = smdi_style_gt(diagnostics), # filename = "smdi_table.docx", # name of the final .docx file # path = "." # path where the file should be stored # )