## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=FALSE--------------------------------------------------------------- p <- c("`mraster`", "`sraster`", "`access`", "`existing`", "`plot`") d <- c("Metric raster(s)", "Stratified raster", "Linear vectors representing access routes", "Existing sample units", "Visually displays raster and samples") df <- data.frame(Parameter = p, Description = d) knitr::kable(df, align = "c") ## ----warning=F,message=F------------------------------------------------------ library(sgsR) library(terra) library(sf) #--- Load mraster from internal data ---# r <- system.file("extdata", "mraster.tif", package = "sgsR") #--- load mraster using the terra package ---# mraster <- terra::rast(r) ## ----warning=F,message=F------------------------------------------------------ #--- apply kmeans algorithm to metrics raster ---# sraster <- strat_quantiles( mraster = mraster$zq90, # use mraster as input for sampling nStrata = 4, # algorithm will produce 4 strata plot = TRUE ) # algorithm will plot output ## ----warning=F,message=F------------------------------------------------------ #--- apply stratified sampling ---# existing <- sample_strat( sraster = sraster, # use mraster as input for sampling nSamp = 200, # request 200 samples be taken mindist = 100, # define that samples must be 100 m apart plot = TRUE ) # algorithm will plot output ## ----warning=F,message=F------------------------------------------------------ a <- system.file("extdata", "access.shp", package = "sgsR") #--- load the access vector using the sf package ---# access <- sf::st_read(a) ## ----warning=F,message=F------------------------------------------------------ terra::plot(mraster$zq90) terra::plot(access, add = TRUE, col = "black") ## ----pipe, eval= FALSE-------------------------------------------------------- # #--- non piped ---# # sraster <- strat_quantiles( # mraster = mraster$zq90, # use mraster as input for sampling # nStrata = 4 # ) # algorithm will produce 4 strata # # existing <- sample_strat( # sraster = sraster, # use mraster as input for sampling # nSamp = 200, # request 200 samples be taken # mindist = 100 # ) # define that samples must be 100 m apart # # extract_metrics( # mraster = mraster, # existing = existing # ) # # #--- piped ---# # strat_quantiles(mraster = mraster$zq90, nStrata = 4) %>% # sample_strat(., nSamp = 200, mindist = 100) %>% # extract_metrics(mraster = mraster, existing = .)