
Package ‘secret’
October 14, 2022

Title Share Sensitive Information in R Packages

Version 1.1.0

Description Allow sharing sensitive information, for example passwords,
'API' keys, etc., in R packages, using public key cryptography.

License MIT + file LICENSE

LazyData true

URL https://github.com/gaborcsardi/secret#readme

BugReports https://github.com/gaborcsardi/secret/issues

RoxygenNote 7.1.0

Imports assertthat, openssl, rprojroot, curl, jsonlite

Suggests covr, mockery, testthat, knitr, rmarkdown, withr

Encoding UTF-8

VignetteBuilder knitr

NeedsCompilation no

Author Gábor Csárdi [aut, cre],
Andrie de Vries [aut]

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2020-05-07 13:00:02 UTC

R topics documented:
secret-package . 2
add_github_user . 3
add_secret . 4
add_travis_user . 6
add_user . 7
create_package_vault . 9
delete_secret . 11
delete_user . 12

1

https://github.com/gaborcsardi/secret#readme
https://github.com/gaborcsardi/secret/issues

2 secret-package

get_github_key . 13
get_secret . 13
get_travis_key . 15
list_owners . 16
list_secrets . 16
list_users . 17
local_key . 18
share_secret . 18
unshare_secret . 19
update_secret . 20

Index 21

secret-package Share Sensitive Information in R Packages.

Description

Allow sharing sensitive information, for example passwords, API keys, or other information in R
packages, using public key cryptography.

Details

A vault is a directory, typically inside an R package, that stores a number of secrets. Each secret is
shared among a group of users. Users are identified using their public keys.

The package implements the following operations:

• Vault:

– Creating a vault folder: create_vault()
– Creating a package vault: create_package_vault()

• User management:

– Adding a user: add_user(), add_github_user().
– Deleting a user: delete_user().
– Listing users: list_users().

• Keys:

– Reading local private key: local_key()

• Secrets:

– Adding a secret: add_secret().
– Retrieving a secret: get_secret().
– Updating a secret: update_secret().
– Deleting a secret: delete_secret().
– List secrets: list_secrets().
– Sharing a secret: share_secret(). Query or set the set of users that have access to a

secret.
– Unsharing a secret: unshare_secret()

add_github_user 3

Author(s)

Gábor Csárdi and Andrie de Vries

add_github_user Add a user via their GitHub username.

Description

On GitHub, a user can upload multiple keys. This function will download the first key by default,
but you can change this

Usage

add_github_user(github_user, email = NULL, vault = NULL, i = 1)

Arguments

github_user User name on GitHub.

email Email address of the github user. If NULL, constructs an email as github-<<github_user>>

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

i Integer, indicating which GitHub key to use (if more than one GitHub key ex-
ists).

See Also

add_travis_user()

Other user functions: add_travis_user(), add_user(), delete_user(), list_users()

Examples

Not run:
vault <- file.path(tempdir(), ".vault")
create_vault(vault)

add_github_user("hadley", vault = vault)
list_users(vault = vault)

4 add_secret

delete_user("github-hadley", vault = vault)

End(Not run)

add_secret Add a new secret to the vault.

Description

By default, the newly added secret is not shared with other users. See the users argument if you
want to change this. You can also use share_secret() later, to specify the users that have access
to the secret.

Usage

add_secret(name, value, users, vault = NULL)

Arguments

name Name of the secret, a string that can contain alphanumeric characters, under-
scores, dashes and dots.

value Value of the secret, an arbitrary R object that will be serialized using base::serialize().

users Email addresses of users that will have access to the secret. (See add_user())

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other secret functions: delete_secret(), get_secret(), list_owners(), list_secrets(),
local_key(), share_secret(), unshare_secret(), update_secret()

Examples

Not run:
The `secret` package contains some user keys for demonstration purposes.
In this example, Alice shares a secret with Bob using a vault.

add_secret 5

keys <- function(x){
file.path(system.file("user_keys", package = "secret"), x)

}
alice_public <- keys("alice.pub")
alice_private <- keys("alice.pem")
bob_public <- keys("bob.pub")
bob_private <- keys("bob.pem")
carl_private <- keys("carl.pem")

Create vault

vault <- file.path(tempdir(), ".vault")
if (dir.exists(vault)) unlink(vault) # ensure vault is empty
create_vault(vault)

Add users with their public keys

add_user("alice", public_key = alice_public, vault = vault)
add_user("bob", public_key = bob_public, vault = vault)
list_users(vault = vault)

Share a secret

secret <- list(username = "user123", password = "Secret123!")

add_secret("secret", value = secret, users = c("alice", "bob"),
vault = vault)

list_secrets(vault = vault)

Alice and Bob can decrypt the secret with their private keys
Note that you would not normally have access to the private key
of any of your collaborators!

get_secret("secret", key = alice_private, vault = vault)
get_secret("secret", key = bob_private, vault = vault)

But Carl can't decrypt the secret

try(
get_secret("secret", key = carl_private, vault = vault)

)

Unshare the secret

unshare_secret("secret", users = "bob", vault = vault)
try(

get_secret("secret", key = bob_private, vault = vault)
)

Delete the secret

delete_secret("secret", vault = vault)

6 add_travis_user

list_secrets(vault)

Delete the users

delete_user("alice", vault = vault)
delete_user("bob", vault = vault)
list_users(vault)

End(Not run)

add_travis_user Add a user via their Travis repo.

Description

On Travis, every repo has a private/public key pair. This function adds a user and downloads the
public key from Travis.

Usage

add_travis_user(travis_repo, email, vault = NULL)

Arguments

travis_repo Name of Travis repository, usually in a format <<username>>/<<repo>>

email Email address of the user. This is used to identify users.

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.

• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,
that is used as a starting point.

• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other user functions: add_github_user(), add_user(), delete_user(), list_users()

add_user 7

Examples

Not run:
vault <- file.path(tempdir(), ".vault")
create_vault(vault)

add_travis_user("gaborcsardi/secret", vault = vault)
list_users(vault = vault)
delete_user("travis-gaborcsardi-secret", vault = vault)

End(Not run)

add_user Add a new user to the vault.

Description

By default the new user does not have access to any secrets. See add_secret() or share_secret()
to give them access.

Usage

add_user(email, public_key, vault = NULL)

Arguments

email Email address of the user. This is used to identify users.

public_key Public key of the user. This is used to encrypt the secrets for the different users.
It can be

• a string containing a PEM,
• a file name that points to a PEM file,
• a pubkey object created via the openssl package.

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other user functions: add_github_user(), add_travis_user(), delete_user(), list_users()

8 add_user

Examples

Not run:
The `secret` package contains some user keys for demonstration purposes.
In this example, Alice shares a secret with Bob using a vault.

keys <- function(x){
file.path(system.file("user_keys", package = "secret"), x)

}
alice_public <- keys("alice.pub")
alice_private <- keys("alice.pem")
bob_public <- keys("bob.pub")
bob_private <- keys("bob.pem")
carl_private <- keys("carl.pem")

Create vault

vault <- file.path(tempdir(), ".vault")
if (dir.exists(vault)) unlink(vault) # ensure vault is empty
create_vault(vault)

Add users with their public keys

add_user("alice", public_key = alice_public, vault = vault)
add_user("bob", public_key = bob_public, vault = vault)
list_users(vault = vault)

Share a secret

secret <- list(username = "user123", password = "Secret123!")

add_secret("secret", value = secret, users = c("alice", "bob"),
vault = vault)

list_secrets(vault = vault)

Alice and Bob can decrypt the secret with their private keys
Note that you would not normally have access to the private key
of any of your collaborators!

get_secret("secret", key = alice_private, vault = vault)
get_secret("secret", key = bob_private, vault = vault)

But Carl can't decrypt the secret

try(
get_secret("secret", key = carl_private, vault = vault)

)

Unshare the secret

unshare_secret("secret", users = "bob", vault = vault)
try(

create_package_vault 9

get_secret("secret", key = bob_private, vault = vault)
)

Delete the secret

delete_secret("secret", vault = vault)
list_secrets(vault)

Delete the users

delete_user("alice", vault = vault)
delete_user("bob", vault = vault)
list_users(vault)

End(Not run)

create_package_vault Create a vault, as a folder or in an R package.

Description

A vault is a folder that contains information about users and the secrets they share. You can create
a vault as either a standalone folder, or as part of a package.

Usage

create_package_vault(path = ".")

create_vault(path)

Arguments

path Path to the R package. A file or directory within the package is fine, too. If the
vault directory already exists, a message is given, and the function does nothing.

Details

A vault is a folder with a specific structure, containing two directories: users and secrets.

In users, each file contains a public key in PEM format. The name of the file is the identifier of the
key, an arbitrary name. We suggest that you use email addresses to identify public keys. See also
add_user().

In secrets, each secret is stored in its own directory. The directory of a secret contains

1. the secret, encrypted with its own AES key, and
2. the AES key, encrypted with the public keys of all users that have access to the secret, each in

its own file.

To add a secret, see add_secret()

10 create_package_vault

Value

The directory of the vault, invisibly.

Creating a package folder

When you create a vault in a package, this vault is stored in the inst/vault directory of the package
during development. At package install time, this folder is copied to the vault folder.

See Also

add_user(), add_secret()

Examples

Not run:
The `secret` package contains some user keys for demonstration purposes.
In this example, Alice shares a secret with Bob using a vault.

keys <- function(x){
file.path(system.file("user_keys", package = "secret"), x)

}
alice_public <- keys("alice.pub")
alice_private <- keys("alice.pem")
bob_public <- keys("bob.pub")
bob_private <- keys("bob.pem")
carl_private <- keys("carl.pem")

Create vault

vault <- file.path(tempdir(), ".vault")
if (dir.exists(vault)) unlink(vault) # ensure vault is empty
create_vault(vault)

Add users with their public keys

add_user("alice", public_key = alice_public, vault = vault)
add_user("bob", public_key = bob_public, vault = vault)
list_users(vault = vault)

Share a secret

secret <- list(username = "user123", password = "Secret123!")

add_secret("secret", value = secret, users = c("alice", "bob"),
vault = vault)

list_secrets(vault = vault)

Alice and Bob can decrypt the secret with their private keys
Note that you would not normally have access to the private key
of any of your collaborators!

delete_secret 11

get_secret("secret", key = alice_private, vault = vault)
get_secret("secret", key = bob_private, vault = vault)

But Carl can't decrypt the secret

try(
get_secret("secret", key = carl_private, vault = vault)

)

Unshare the secret

unshare_secret("secret", users = "bob", vault = vault)
try(

get_secret("secret", key = bob_private, vault = vault)
)

Delete the secret

delete_secret("secret", vault = vault)
list_secrets(vault)

Delete the users

delete_user("alice", vault = vault)
delete_user("bob", vault = vault)
list_users(vault)

End(Not run)

delete_secret Remove a secret from the vault.

Description

Remove a secret from the vault.

Usage

delete_secret(name, vault = NULL)

Arguments

name Name of the secret to delete.

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.

12 delete_user

• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,
that is used as a starting point.

• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other secret functions: add_secret(), get_secret(), list_owners(), list_secrets(), local_key(),
share_secret(), unshare_secret(), update_secret()

delete_user Delete a user.

Description

It also removes access of the user to all secrets, so if the user is re-added again, they will not have
access to any secrets.

Usage

delete_user(email, vault = NULL)

Arguments

email Email address of the user.

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other user functions: add_github_user(), add_travis_user(), add_user(), list_users()

get_github_key 13

get_github_key Get the SSH public key of a GitHub user

Description

Get the SSH public key of a GitHub user

Usage

get_github_key(github_user, i = 1)

Arguments

github_user GitHub username.
i Which key to get, in case the user has multiple keys. get_github_key() re-

trieves the first key by default.

Value

Character scalar.

get_secret Retrieve a secret from the vault.

Description

Retrieve a secret from the vault.

Usage

get_secret(name, key = local_key(), vault = NULL)

Arguments

name Name of the secret.
key The private RSA key to use. It defaults to the current user’s default key.
vault Vault location (starting point to find the vault). To create a vault, use create_vault()

or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

14 get_secret

See Also

Other secret functions: add_secret(), delete_secret(), list_owners(), list_secrets(),
local_key(), share_secret(), unshare_secret(), update_secret()

Examples

Not run:
The `secret` package contains some user keys for demonstration purposes.
In this example, Alice shares a secret with Bob using a vault.

keys <- function(x){
file.path(system.file("user_keys", package = "secret"), x)

}
alice_public <- keys("alice.pub")
alice_private <- keys("alice.pem")
bob_public <- keys("bob.pub")
bob_private <- keys("bob.pem")
carl_private <- keys("carl.pem")

Create vault

vault <- file.path(tempdir(), ".vault")
if (dir.exists(vault)) unlink(vault) # ensure vault is empty
create_vault(vault)

Add users with their public keys

add_user("alice", public_key = alice_public, vault = vault)
add_user("bob", public_key = bob_public, vault = vault)
list_users(vault = vault)

Share a secret

secret <- list(username = "user123", password = "Secret123!")

add_secret("secret", value = secret, users = c("alice", "bob"),
vault = vault)

list_secrets(vault = vault)

Alice and Bob can decrypt the secret with their private keys
Note that you would not normally have access to the private key
of any of your collaborators!

get_secret("secret", key = alice_private, vault = vault)
get_secret("secret", key = bob_private, vault = vault)

But Carl can't decrypt the secret

try(
get_secret("secret", key = carl_private, vault = vault)

)

get_travis_key 15

Unshare the secret

unshare_secret("secret", users = "bob", vault = vault)
try(

get_secret("secret", key = bob_private, vault = vault)
)

Delete the secret

delete_secret("secret", vault = vault)
list_secrets(vault)

Delete the users

delete_user("alice", vault = vault)
delete_user("bob", vault = vault)
list_users(vault)

End(Not run)

get_travis_key Retrieve the public key of a Travis CI repository

Description

Retrieve the public key of a Travis CI repository

Usage

get_travis_key(travis_repo)

Arguments

travis_repo The repository slug, e.g. gaborcsardi/secret.

Value

Character scalar, the key. If the repository does not exist, or it is not user in Travis CI, an HTTP 404
error is thrown.

16 list_secrets

list_owners List users that have access to a secret

Description

List users that have access to a secret

Usage

list_owners(name, vault = NULL)

Arguments

name Name of the secret, a string that can contain alphanumeric characters, under-
scores, dashes and dots.

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other secret functions: add_secret(), delete_secret(), get_secret(), list_secrets(), local_key(),
share_secret(), unshare_secret(), update_secret()

list_secrets List all secrets.

Description

Returns a data frame with secrets and emails that these are shared with. The emails are in a list-
column, each element of the email column is a character vector.

Usage

list_secrets(vault = NULL)

list_users 17

Arguments

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

Value

data.frame

See Also

Other secret functions: add_secret(), delete_secret(), get_secret(), list_owners(), local_key(),
share_secret(), unshare_secret(), update_secret()

list_users List users

Description

List users

Usage

list_users(vault = NULL)

Arguments

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

18 share_secret

See Also

Other user functions: add_github_user(), add_travis_user(), add_user(), delete_user()

local_key Read local secret key.

Description

Reads a local secret key from disk. The location of this file can be specified in the USER_KEY
environment variable. If this environment variable does not exist, then attempts to read the key
from:

• ~/.ssh/id_rsa, and
• ~/.ssh/id_rsa.pem.

Usage

local_key()

Details

The location of the key is defined by:

Sys.getenv("USER_KEY")

To use a local in a different location, set an environment variable:

Sys.setenv(USER_KEY = "path/to/private/key")

See Also

Other secret functions: add_secret(), delete_secret(), get_secret(), list_owners(), list_secrets(),
share_secret(), unshare_secret(), update_secret()

share_secret Share a secret among some users.

Description

Use this function to extend the set of users that have access to a secret. The calling user must have
access to the secret as well.

Usage

share_secret(name, users, key = local_key(), vault = NULL)

unshare_secret 19

Arguments

name Name of the secret, a string that can contain alphanumeric characters, under-
scores, dashes and dots.

users addresses of users that will have access to the secret. (See add_user()).

key Private key that has access to the secret. (I.e. its corresponding public key is
among the vault users.)

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

unshare_secret(), list_owners() to list users that have access to a secret.

Other secret functions: add_secret(), delete_secret(), get_secret(), list_owners(), list_secrets(),
local_key(), unshare_secret(), update_secret()

unshare_secret Unshare a secret among some users.

Description

Use this function to restrict the set of users that have access to a secret. Note that users may still
have access to the secret, through version control history, or if they have a copy of the project. They
will not have access to future values of the secret, though.

Usage

unshare_secret(name, users, vault = NULL)

Arguments

name Name of the secret, a string that can contain alphanumeric characters, under-
scores, dashes and dots.

users Email addresses of users that will have access to the secret. (See add_user())

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

20 update_secret

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

share_secret()

Other secret functions: add_secret(), delete_secret(), get_secret(), list_owners(), list_secrets(),
local_key(), share_secret(), update_secret()

update_secret Update a secret in the vault.

Description

Update a secret in the vault.

Usage

update_secret(name, value, key = local_key(), vault = NULL)

Arguments

name Name of the secret.

value Value of the secret, an arbitrary R object that will be serialized using base::serialize().

key The private RSA key to use. It defaults to the current user’s default key.

vault Vault location (starting point to find the vault). To create a vault, use create_vault()
or create_package_vault(). If this is NULL, then secret tries to find the vault
automatically:

• If the secret.vault option is set to path, that is used as the starting point.
• Otherwise, if the R_SECRET_VAULT environment variable is set to a path,

that is used as a starting point.
• Otherwise the current working directory is used as the starting point.

If the starting point is a vault, that is used. Otherwise, if the starting point is in a
package tree, the inst/vault folder is used within the package. If no vault can
be found, an error is thrown.

See Also

Other secret functions: add_secret(), delete_secret(), get_secret(), list_owners(), list_secrets(),
local_key(), share_secret(), unshare_secret()

Index

∗ package
secret-package, 2

∗ secret functions
add_secret, 4
delete_secret, 11
get_secret, 13
list_owners, 16
list_secrets, 16
local_key, 18
share_secret, 18
unshare_secret, 19
update_secret, 20

∗ user functions
add_github_user, 3
add_travis_user, 6
add_user, 7
delete_user, 12
list_users, 17

add_github_user, 3, 6, 7, 12, 18
add_github_user(), 2
add_secret, 4, 12, 14, 16–20
add_secret(), 2, 7, 9, 10
add_travis_user, 3, 6, 7, 12, 18
add_travis_user(), 3
add_user, 3, 6, 7, 12, 18
add_user(), 2, 4, 9, 10, 19

base::serialize(), 4, 20

create_package_vault, 9
create_package_vault(), 2–4, 6, 7, 11–13,

16, 17, 19, 20
create_vault (create_package_vault), 9
create_vault(), 2–4, 6, 7, 11–13, 16, 17, 19,

20

delete_secret, 4, 11, 14, 16–20
delete_secret(), 2
delete_user, 3, 6, 7, 12, 18

delete_user(), 2

get_github_key, 13
get_secret, 4, 12, 13, 16–20
get_secret(), 2
get_travis_key, 15

list_owners, 4, 12, 14, 16, 17–20
list_owners(), 19
list_secrets, 4, 12, 14, 16, 16, 18–20
list_secrets(), 2
list_users, 3, 6, 7, 12, 17
list_users(), 2
local_key, 4, 12, 14, 16, 17, 18, 19, 20
local_key(), 2

secret (secret-package), 2
secret-package, 2
share_secret, 4, 12, 14, 16–18, 18, 20
share_secret(), 2, 4, 7, 20

unshare_secret, 4, 12, 14, 16–19, 19, 20
unshare_secret(), 2, 19
update_secret, 4, 12, 14, 16–20, 20
update_secret(), 2

21

	secret-package
	add_github_user
	add_secret
	add_travis_user
	add_user
	create_package_vault
	delete_secret
	delete_user
	get_github_key
	get_secret
	get_travis_key
	list_owners
	list_secrets
	list_users
	local_key
	share_secret
	unshare_secret
	update_secret
	Index

