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secr-package Spatially Explicit Capture—Recapture Models
Description

Functions to estimate the density and size of a spatially distributed animal population sampled with
an array of passive detectors, such as traps, or by searching polygons or transects.

Details

Package: secr

Type: Package

Version: 4.6.6

Date: 2024-03-01

License: GNU General Public License Version 2 or later

Spatially explicit capture—recapture is a set of methods for studying marked animals distributed in
space. Data comprise the locations of detectors (traps, searched areas, etc. described in an object
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of class ‘traps’), and the detection histories of individually marked animals. Individual histories are
stored in an object of class ‘capthist’ that includes the relevant ‘traps’ object.

Models for population density (animals per hectare) and detection are defined in secr using sym-
bolic formula notation. Density models may include spatial or temporal trend. Possible predictors
for detection probability include both pre-defined variables (t, b, etc.) corresponding to ‘time’, ‘be-
haviour’ and other effects), and user-defined covariates of several kinds. Habitat is distinguished
from nonhabitat with an object of class ‘mask’.

Models are fitted in secr by maximizing either the full likelihood or the likelihood conditional on
the number of individuals observed (n). Conditional likelihood models are limited to homoge-
neous Poisson density, but allow continuous individual covariates for detection. A model fitted with
secr.fit is an object of class secr. Generic methods (plot, print, summary, etc.) are provided for
each object class.

A link at the bottom of each help page takes you to the help index. Several vignettes complement
the help pages:

General interest

secr-overview.pdf
secr-datainput.pdf
secr-version4.pdf
secr-manual.pdf
secr-tutorial.pdf
secr-habitatmasks.pdf
secr-spatialdata.pdf
secr-models.pdf
secr-troubleshooting.pdf

More specialised topics
secr-densitysurfaces.pdf
secr-finitemixtures.pdf
secr-markresight.pdf
secr-multisession.pdf
secr-noneuclidean.pdf

secr-parameterisations.pdf

secr-polygondetectors.pdf
secr-sound.pdf
secr-varyingeffort.pdf

general introduction

data formats and input functions

changes in secr 4.0

consolidated help pages

introductory tutorial

buffers and habitat masks

using spatial data

linear models in secr

problems with secr.fit, including speed issues

modelling density surfaces

mixture models for individual heterogeneity
mark-resight data and models

multi-session capthist objects and models
non-Euclidean distances

alternative parameterisations sigmak, a0
using polygon and transect detector types
analysing data from microphone arrays
variable effort in SECR models

The datasets captdata and ovenbird include examples of fitted models. For models fitted to other
datasets see secr-version4.pdf Appendix 2.

Add-on packages extend the capability of secr and are documented separately. secrlinear enables
the estimation of linear density (e.g., animals per km) for populations in linear habitats such as
stream networks (secrlinear-vignette.pdf). secrdesign enables the assessment of alternative study
designs by Monte Carlo simulation; scenarios may differ in detector (trap) layout, sampling inten-
sity, and other characteristics (secrdesign-vignette.pdf). ipsecr fits some awkward models (e.g., for
single-catch traps) by simulation and inverse prediction (ipsecr-vignette.pdf). openCR fits open
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population models, both non-spatial and spatial (openCR-vignette.pdf).

The analyses in secr extend those available in the software Density (see www.otago.ac.nz/density/
for the most recent version of Density). Help is available on the ‘DENSITY | secr’ forum at
www.phidot.org and the Google group secrgroup. Feedback on the software is also welcome, in-
cluding suggestions for additional documentation or new features consistent with the overall design.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References
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See Also

read.capthist, secr.fit, traps, capthist, mask
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Examples

## Not run:

## generate some data & plot
detectors <- make.grid (nx = 10, ny = 10, spacing = 20,
detector = "multi")
plot(detectors, label = TRUE, border = @, gridspace =
detections <- sim.capthist (detectors, noccasions = 5,
popn = list(D = 5, buffer = 100),
detectpar = list(gd = 0.2, sigma = 25))
session(detections) <- "Simulated data”
plot(detections, border = 20, tracks = TRUE, varycol = TRUE)

20)

## generate habitat mask
mask <- make.mask (detectors, buffer = 100, nx = 48)

## fit model and display results

secr.model <- secr.fit (detections, model = g@~b, mask = mask)
secr.model

## End(Not run)

addCovariates Add Covariates to Mask or Traps

Description

Tools to construct spatial covariates for existing mask or traps objects from a spatial data source.

Usage

addCovariates(object, spatialdata, columns = NULL, strict = FALSE, replace = FALSE)

Arguments
object mask, traps or popn object
spatialdata spatial data source (see Details)
columns character vector naming columns to include (all by default)
strict logical; if TRUE a check is performed for points in object that lie outside
spatialdata (mask data sources only)
replace logical; if TRUE then covariates with duplicate names are replaced; otherwise a

new column is added



addCovariates 9

Details

The goal is to obtain the value(s) of one or more spatial covariates for each point (i.e. row) in
object. The procedure depends on the data source spatialdata, which may be either a spatial
coverage (raster or polygon) or an object with covariate values at points (another mask or traps
object). In the first case, an overlay operation is performed to find the pixel or polygon matching
each point. In the second case, a search is conducted for the closest point in spatialdata.

If spatialdata is a character value then it is interpreted as the name of a polygon shape file (ex-
cluding ‘.shp’).

If spatialdata is a SpatialPolygonsDataFrame, SpatialGridDataFrame or ’sf” object from sf then
it will be used in an overlay operation as described.

If package terra has been installed then spatialdata may also be a RasterLayer from package
raster or SpatRaster from terra. If provided counts should be a single name that will be used for
the values (otherwise 'raster’ will be used).

If spatialdata is a mask or traps object then it is searched for the closest point to each point in
object, and covariates are drawn from the corresponding rows in covariates(spatialdata). By
default (strict = FALSE), values are returned even when the points lie outside any cell of the mask.

Value

An object of the same class as object with new or augmented covariates attribute. Column
names and types are derived from the input.

Warning

Use of a SpatialGridDataFrame for spatialdata is untested.

See Also

make .mask, read.mask, read. traps

Examples

## In the Lake Station skink study (see ?skink), habitat covariates were
## measured only at trap sites. Here we extrapolate to a mask, taking
## values for each mask point from the nearest trap.

LSmask <- make.mask(LStraps, buffer = 30, type = "trapbuffer")
tempmask <- addCovariates(LSmask, LStraps)

## show first few lines

head(covariates(tempmask))
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addSightings Mark-resight Data

Description

Add sighting data on unmarked individuals and/or unidentified marked individuals to an existing
capthist object.

Usage

addSightings(capthist, unmarked = NULL, nonID = NULL, uncertain = NULL, verify = TRUE,

.
Arguments
capthist secr capthist object
unmarked matrix or list of matrices of sightings of unmarked animals, Tu, or file name (see
Details)
nonID matrix or list of matrices of unidentified sightings of marked animals, Tm, or
file name (see Details)
uncertain matrix or list of matrices of uncertain sightings, Tn, or file name (see Details)
verify logical; if TRUE then the resulting capthist object is checked with verify
other arguments passed to read. table
Details

The capthist object for mark-resight analysis comprises distinct marking and sighting occasions,
defined in the markocc attribute of traps(capthist). Add this attribute to traps(capthist)
with markocc before using *addSightings’. See also read. traps and read.capthist.

Mark-resight data may be binary (detector type ‘proximity’) or counts (detector types ‘count’, ’poly-
gon’ or ’transect’). The detector type is an attribute of traps(capthist). Values in unmarked and
nonID should be whole numbers, and may be greater than 1 even for binary proximity detectors
because multiple animals may be detected simultaneously at one place.

Arguments unmarked, nonID, uncertain provide data for attributes ‘“Tu’, “Tm’, “Tn’ respectively.
They may take several forms

* asingle integer, the sum of all counts*

¢ a matrix of the count on each occasion at each detector (dimensions K x S, where K is the num-
ber of detectors and S is the total number of occasions). Columns corresponding to marking
occasions should be all-zero.

* for multi-session data, a list with components as above
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* a character value with the name of a text file containing the data; the file will be read with
read.table. The ...argument allows some control over how the file is read. The data format
comprises at least S+1 columns. The first is a session identifier used to split the file when the
data span multiple sessions; it should be constant for a single-session capthist. The remaining
S columns contain the counts for occasions 1:S, one row per detector. Further columns may

be present; they are ignored at present.

* although this is convenient, the full matrix of counts provides more flexibility (e.g., when you

wish to subset by occasion), and enables modelling of variation across detectors and occasions.

Value

A capthist object with the same structure as the input, but with new sighting-related attributes Tu
(sightings of unmarked animals) and/or Tm (unidentified sightings of marked animals). Input val-

ues, including NULL, overwrite existing values.

Warning

*#* Mark-resight data formats and models are experimental and subject to change **

See Also

markocc, read.capthist, read. traps, sim.resight, Tm, Tu, Tn, secr-markresight.pdf

Examples

## construct capthist object MRCH from text files provided in
## 'extdata' folder, assigning attribute 'markocc' and add unmarked
## and marked sightings from respective textfiles

datadir <- system.file("extdata"”, package = "secr")
captfile <- paste@(datadir, '/MRCHcapt.txt')
trapfile <- paste@(datadir, '/MRCHtrap.txt')
Tufile <- paste@(datadir, '/Tu.txt')

Tmfile <- paste@(datadir, '/Tm.txt')

MRCH <- read.capthist(captfile, trapfile, detector = c("multi”,
rep("proximity"”,4)), markocc = c¢(1,0,0,0,0))
MRCH1 <- addSightings(MRCH, Tufile, Tmfile)

## alternatively (ignoring marked, not ID sightings)

MRCH <- read.capthist(captfile, trapfile, detector = c("multi”,
rep("proximity"”,4)), markocc = c¢(1,0,0,0,0))

Tu <- read.table(Tufile)[,-1] # drop session column

MRCH2 <- addSightings(MRCH, unmarked = Tu)

summary (MRCH2)


https://www.otago.ac.nz/density/pdfs/secr-markresight.pdf
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addTelemetry Combine Telemetry and Detection Data

Description

Animal locations determined by radiotelemetry can be used to augment capture—recapture data.
The procedure in secr is first to form a capthist object containing the telemetry data and then to
combine this with true capture—recapture data (e.g. detections from hair-snag DNA) in another
capthist object. secr. fit automatically detects the telemetry data in the new object.

Usage

addTelemetry (detectionCH, telemetryCH, type = c('concurrent', 'dependent’', 'independent'),
collapsetelemetry = TRUE, verify = TRUE)

xy2CH (CH, inflation = 1e-08)

telemetrytype (object) <- value

telemetrytype (object, ...)
Arguments
detectionCH single-session capthist object, detector type ‘single’, ‘multi’, “proximity’ or ‘count’
telemetryCH single-session capthist object, detector type ‘telemetryonly’
type character (see Details)
collapsetelemetry

logical; if TRUE then telemetry occasions are collapsed to one

verify logical; if TRUE then verify.capthist is called on the output
CH capthist object with telemetryxy attribute

inflation numeric tolerance for polygon

object secr traps object

value character telemetry type replacement value

other arguments

Details

It is assumed that a number of animals have been radiotagged, and their telemetry data (xy-coordinates)
have been input to telemetryCH, perhaps using read.capthist with detector = "telemetryonly”
and fmt = "XY", or with read. telemetry.

A new capthist object is built comprising all the detection histories in detectionCH, plus empty (all-
zero) histories for every telemetered animal not in detectionCH. Telemetry is associated with new
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sampling occasions and a new detector (nominally at the same point as the first in detectionCH).
The number of telemetry fixes of each animal is recorded in the relevant cell of the new capthist
object (CH[i, s, K+1] for animal i and occasion s if there were K detectors in detectionCH).

The new sampling occasion(s) are assigned the detector type ‘telemetry’ in the traps attribute of
the output capthist object, and the traps attribute telemetrytype is set to the value provided. The
telemetry type may be “independent” (no matching of individuals in captured and telemetered sam-
ples), “dependent” (telemetered animals are a subset of captured animals) or “concurrent” (histories
may be capture-only, telemetry-only or both capture and telemetry).

The telemetry locations are carried over from telemetryCH as attribute ‘xylist’ (each component of
xylist holds the coordinates of one animal; use telemetryxy to extract).

The default behaviour of ‘addTelemetry*‘ is to automatically collapse all telemetry occasions into
one. This is computationally more efficient than the alternative, but closes off some possible models.

xy2CH partly reverses addTelemetry: the location information in the telemetryxy attribute is con-
verted back to a capthist with detector type ‘telemetry’.

Value
A single-session capthist object with the same detector type as detectionCH, but possibly with
empty rows and an ‘telemetryxy’ attribute.

Note

Telemetry provides independent data on the location and presence of a sample of animals. These
animals may be missed in the main sampling that gives rise to detectionCH i.e., they may have
all-zero detection histories.

The ‘telemetry’ detector type is used for telemetry occasions in a combined dataset.

See Also

capthist, make.telemetry, read. telemetry, telemetryxy telemetered

Examples

## Not run:

# Generate some detection and telemetry data, combine them using
# addTelemetry, and perform analyses

# detectors
te <- make.telemetry()
tr <- make.grid(detector = "proximity")

# simulated population and 50% telemetry sample
totalpop <- sim.popn(tr, D = 20, buffer = 100)
tepop <- subset(totalpop, runif(nrow(totalpop)) < @.5)

# simulated detection histories and telemetry
# the original animalID (renumber = FALSE) are needed for matching
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trCH <- sim.capthist(tr, popn = totalpop, renumber = FALSE, detectfn = "HHN")
teCH <- sim.capthist(te, popn = tepop, renumber=FALSE, detectfn = "HHN",
detectpar = list(lambda® = 3, sigma = 25))

combinedCH <- addTelemetry(trCH, teCH)

# summarise and display

summary (combinedCH)

plot(combinedCH, border = 150)

ncapt <- apply(combinedCH,1,sum)
points(totalpoplrow.names(combinedCH)[ncapt==0]1,1, pch = 1)
points(totalpop[row.names(combinedCH)[ncapt>0],], pch = 16)

# for later comparison of precision we must fix the habitat mask

mask <- make.mask(tr, buffer = 100)

fit.tr <- secr.fit(trCH, mask = mask, CL = TRUE, detectfn = "HHN") ## trapping alone

fit.te <- secr.fit(teCH, mask = mask, CL = TRUE, start = log(20), ## telemetry alone
detectfn = "HHN")

fit2 <- secr.fit(combinedCH, mask = mask, CL = TRUE, ## combined
detectfn = "HHN")

# improved precision when focus on realised population
# (compare CVD)

derived(fit.tr, distribution = "binomial")
derived(fit2, distribution = "binomial")

# may also use CL = FALSE
secr.fit(combinedCH, CL = FALSE, detectfn = "HHN", trace = FALSE)

## End(Not run)

AIC.secr Compare SECR Models

Description

Terse report on the fit of one or more spatially explicit capture-recapture models. Models with
smaller values of AIC (Akaike’s Information Criterion) are preferred. Extraction ([) and logLik
methods are included.

Usage

## S3 method for class 'secr'

AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c("AICc","AIC"), chat = NULL)
## S3 method for class 'secrlist'
AIC(object, ..., sort = TRUE, k = 2, dmax = 1@, criterion = c("AICc","AIC"), chat = NULL)

## S3 method for class 'secr'
logLik(object, ...)
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secrlist(..., names = NULL)
## S3 method for class 'secrlist'
x[i]
Arguments
object secr object output from the function secr.fit, or a list of such objects with

class c("secrlist", "list")

other secr objects

sort logical for whether rows should be sorted by ascending AICc
k numeric, penalty per parameter to be used; always k = 2 in this method
dmax numeric, maximum AIC difference for inclusion in confidence set
criterion character, criterion to use for model comparison and weights
chat numeric optional variance inflation factor for quasi-AIC
names character vector of names (optional)
X secrlist
i indices
Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional). From version 4.1 a warning is issued if ALCcompatible reveals a problem.

AIC is given by

AIC = —2log(L(6)) + 2K

where K is the number of "beta" parameters estimated.

AIC with small sample adjustment is given by

2K (K +1)

AIC, = —2log(L(0)) + 2K )
Ce = —2log(L(0)) + 2K + ————

The sample size n is the number of individuals observed at least once (i.e. the number of rows in
capthist).
Model weights are calculated as
exp(—A;/2),
W = ==~
> exp(—Ai/2)

where A refers to differences in AIC or AICc depending on the argument ‘criterion’. AICc is widely
used, but AIC may be better (Fletcher 2018, p. 60).

Models for which delta > dmax are given a weight of zero and are excluded from the summation.
Model weights may be used to form model-averaged estimates of real or beta parameters with
modelAverage (see also Buckland et al. 1997, Burnham and Anderson 2002).

The argument k is included for consistency with the generic method AIC.
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secrlist forms a list of fitted models (an object of class ‘secrlist’) from the fitted models in ....
Arguments may include secrlists. If secr components are named the model names will be retained
unless ‘names’ is specified. (see Examples).

If chat (¢) is provided then quasi-AIC values are computed (secr >= 4.6.0):
QAIC = —2log(L(f))/é + 2K.

Value

A data frame with one row per model. By default, rows are sorted by ascending ’criterion’ (default
AICc).

model character string describing the fitted model

detectfn shape of detection function fitted (halfnormal vs hazard-rate)
npar number of parameters estimated

loglik maximized log likelihood

AIC Akaike’s Information Criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

And depending on criterion:

dAICc difference between AICc of this model and the one with smallest AICc
AICcwt AICc model weight

or

dAIC difference between AIC of this model and the one with smallest AIC
AICwt AIC model weight

loglLik. secr returns an object of class ‘logLik’ that has attribute df (degrees of freedom = number
of estimated parameters).

If the variance inflation factor ’chat’ is provided then outputs AIC, AICc etc. are replaced by the
corresponding quasi-AIC values labelled QAIC, QAICc etc.

Note

It is not be meaningful to compare models by AIC if they relate to different data (see ALCcompatible).
Specifically:
* an ‘secrlist’ generated and saved to file by mask. check may be supplied as the object argument
of AIC.secrlist, but the results are not informative

* models fitted by the conditional likelihood (CL = TRUE) and full likelihood (CL = FALSE) meth-
ods cannot be compared

* hybrid mixture models (using hcov argument of secr.fit) should not be compared with other
models

* grouped models (using groups argument of secr.fit) should not be compared with other models
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* multi-session models should not be compared with single-session models based on the same
data.

A likelihood-ratio test (LR. test) is a more direct way to compare two models.

The issue of goodness-of-fit and possible adjustment of AIC for overdispersion has yet to be ad-
dressed (cf QAIC in MARK).

From version 2.6.0 the user may select between AIC and AICc for comparing models, whereas
previously only AICc was used and AICc weights were reported as ‘AICwt’). There is evidence
that AIC may be better for model averaging even when samples are small sizes - Turek and Fletcher
(2012).

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603—-618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Fletcher, D. (2019) Model averaging. SpringerBriefs in Statistics. Berlin: Springer-Verlag.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297-307.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-
tics and data analysis 56, 2809-2815.

See Also

AICcompatible, modelAverage, AIC, secr.fit, print.secr, score.test,LR.test, deviance.secr

Examples

## Compare two models fitted previously
## secrdemo.@ is a null model
## secrdemo.b has a learned trap response

AIC(secrdemo.@, secrdemo.b)
## Form secrlist and pass to AIC.secr

temp <- secrlist(null = secrdemo.@, learnedresponse = secrdemo.b)
AIC(temp)
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AICcompatible Model Compatibility

Description

Determine whether models can be compared by AIC. Incompatibility may be due to difference in
the data or the specifications of the groups, hcov or binomN arguments to secr.fit,

Usage

## S3 method for class 'secr'

AICcompatible(object, ...)
## S3 method for class 'secrlist'
AICcompatible(object, ...)
Arguments
object secr object output from the function secr.fit, or a list of such objects with

class c("secrlist", "list")

other secr objects

Details

The capthist objects are checked for strict identity with the function identical.

All elements in the output must be TRUE for valid AIC comparison or model averaging using AIC
or AlCc.

Value

Named logical vector with elements ‘data’, ‘CL’, ‘groups’, ‘hcov’ and ‘binomN’.

See Also

AIC.secr, modelAverage

Examples

AICcompatible(secrdemo.@, secrdemo.CL)
## Not run:
## A common application of AICcompatible() is to determine

## the compatibility of models fitted with and without the
## fastproximity option.
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ovenCHp1 <- reduce(ovenCHp, by = 'all', outputdetector = 'count')

ob1 <- secr.fit(ovenCHp, buffer = 300, details = list(fastproximity = TRUE))

ob2 <- secr.fit(ovenCHp1, buffer = 300, details = list(fastproximity = FALSE))

ob3 <- secr.fit(ovenCHp1, buffer = 300, details = list(fastproximity = FALSE), binomN = 1)
AICcompatible(ob1,0b2)

AICcompatible(ob1,0b3)

## End(Not run)

as.data.frame Coerce capthist to Data Frame

Description

Method for generic as.data. frame function that partially reverses make.capthist.

Usage

## S3 method for class 'capthist'

as.data.frame(x, row.names = NULL, optional = FALSE, covariates = FALSE,
fmt = c("trapID”, "XY"), ...)

## S3 method for class 'traps'

as.data.frame(x, row.names = NULL, optional = FALSE, usage = FALSE,

covariates = FALSE, ...)
Arguments
X capthist object
row.names unused argument of generic function
optional unused argument of generic function
covariates logical or a character vector of covariates to export
fmt character string for capture format
usage logical; if TRUE then usage columns are appended if present
other arguments (not used)
Details

By default individual covariates are not exported. When exported they are repeated for each detec-
tion of an individual.
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Value

A data frame or list of data frames (in the case of a multisession input).
For capthist objects —

The core columns are (Session, ID, Occasion, TrapID) or (Session, ID, Occasion, x, y), depending
on the value of fmt. Additional columns for covariates and signal strength (detector ‘signal’) are
appended to the right.

For traps objects —

The core columns are (X, y). Usage columns are named ul, u2, ..., uS where S is the number of
occasions.

Examples

as.data.frame (captdata)
as.data.frame (traps(captdata))

as.mask Coerce traps object to mask

Description
This function is used primarily for plotting covariates, for which the plot.mask function has greater

functionality than plot.traps. It also generates pretty maps of grid cells.

Usage

as.mask(x)

Arguments

X an object of class traps’

Details

A mask derived by coercion with as.mask may behave unpredictably e.g., in secr.fit.

Value

If x is a single-session traps object —
an object of class c¢("mask", "data.frame")
If x is a multi-session traps object —

an object of class c("mask", "list"), for which each component is a single-session mask.
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See Also

make.mask, plot.mask, mask, traps

Examples

plot(as.mask(traps(captdata)), dots = FALSE, meshcol = "black”)
plot(traps(captdata), add = TRUE)

as.popn Coerce ppp object to popn

Description
This function converts a spatstat "ppp" object (Baddeley et al. 2015), making it easier to use the

simulation capability of spatstat in secr.

Usage

as.popn(x)

Arguments

X an object of class "ppp’

Details

Not all attributes are carried over.

Value

An object of class c("popn", "data.frame") with attribute "boundingbox". The attribute "Lambda"
(spatstat class "im") is also carried over if present (used for the intensity surface of LGCP simula-
tions).

References

Baddeley, A., Rubak, E., and Turner, R. 2015. Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, London. ISBN 9781482210200, https://www.routledge.com/Spatial-
Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200/.

See Also

sim.popn, popn
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autoini Initial Parameter Values for SECR

Description

Find plausible initial parameter values for secr.fit. A simple SECR model is fitted by a fast ad
hoc method.

Usage

autoini(capthist, mask, detectfn = @, thin = 0.2, tol = 0.001,
binomN = 1, adjustg@d = TRUE, adjustsigma = 1.2, ignoreusage = FALSE,
ncores = NULL)

Arguments
capthist capthist object
mask mask object compatible with the detector layout in capthist
detectfn integer code or character string for shape of detection function 0 = halfnormal
thin proportion of points to retain in mask
tol numeric absolute tolerance for numerical root finding
binomN integer code for distribution of counts (see secr.fit)
adjustgo logical for whether to adjust g0 for usage (effort) and binomN
adjustsigma numeric scalar applied to RPSV(capthist, CC = TRUE)
ignoreusage logical for whether to discard usage information from traps(capthist)
ncores integer number of threads to be used for parallel processing
Details

Plausible starting values are needed to avoid numerical problems when fitting SECR models. Actual
models to be fitted will usually have more than the three basic parameters output by autoini;
other initial values can usually be set to zero for secr.fit. If the algorithm encounters problems
obtaining a value for g0, the default value of 0.1 is returned.

Only the halfnormal detection function is currently available in autoini (cf other options in e.g.
detectfn and sim.capthist).

autoini implements a modified version of the algorithm proposed by Efford et al. (2004). In
outline, the algorithm is
1. Find value of sigma that predicts the 2-D dispersion of individual locations (see RPSV).

2. Find value of g0 that, with sigma, predicts the observed mean number of captures per individ-
ual (by algorithm of Efford et al. (2009, Appendix 2))

3. Compute the effective sampling area from g0, sigma, using thinned mask (see esa)

4. Compute D = n/esa(g0, sigma), where n is the number of individuals detected
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Here ‘find’ means solve numerically for zero difference between the observed and predicted values,
using uniroot.

Halfnormal sigma is estimated with RPSV(capthist, CC = TRUE). The factor adjustsigma is ap-
plied as a crude correction for truncation of movements at the edge of the detector array.

If RPSV cannot be computed the algorithm tries to use observed mean recapture distance d. Com-
putation of d fails if there no recaptures, and all returned values are NA.

If the mask has more than 100 points then a proportion 1-thin of points are discarded at random to
speed execution.

The argument tol is passed to uniroot. It may be a vector of two values, the first for g0 and the
second for sigma.

If traps(capthist) has a usage attribute (defining effort on each occasion at each detector) then
the value of g0 is divided by the mean of the non-zero elements of usage. This adjustment is not
precise.

If adjustg® is TRUE then an adjustment is made to g0 depending on the value of binomN. For
Poisson counts (binomN = @) the adjustment is linear on effort (adjusted.g0 = g0 / usage). Otherwise,
the adjustment is on the hazard scale (adjusted.g0 = 1 — (1 — g0) ~ (1 / (usage x binomN))). An
arithmetic average is taken over all non-zero usage values (i.e. over used detectors and times). If
usage is not specified it is taken to be 1.0.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Value

A list of parameter values :

D Density (animals per hectare)

g0 Magnitude (intercept) of detection function

sigma Spatial scale of detection function (m)
Note

autoini always uses the Euclidean distance between detectors and mask points.

113

You may get this message from secr.fit: “’autoini’ failed to find g0; setting initial g0 = 0.1”. If the
fitted model looks OK (reasonable estimates, non-missing SE) there is no reason to worry about the
starting values. If you get this message and model fitting fails then supply your own values in the
start argument of secr.fit.

References

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture—
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217-228.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676-2682.

See Also

capthist, mask, secr.fit, dbar
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Examples

## Not run:

demotraps <- make.grid()

demomask <- make.mask(demotraps)

demoCH <- sim.capthist (demotraps, popn = list(D = 5, buffer = 100), seed = 321)
autoini (demoCH, demomask)

## End(Not run)

binCovariate Add Binned Covariate

Description

Forms a new covariate, replacing values of an old covariate by the central value of equal-width bins.

Usage

binCovariate(object, covname, width)

Arguments
object secr object with covariates attribute (capthist, traps, mask)
covhame character name of covariate
width numeric bin width

Details

The name of the new covariate is paste@(covname, width).
Fails if covariate not found or is not numeric or there is already a covariate with the new name.

Multi-session objects are handled appropriately.

Value

Object of the same class as the input with new covariate.

See Also

covariates, skink
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Examples

# bin values of skink snout-vent length (mm)
infraCH <- binCovariate (infraCH, 'SVL', 5)
table(covariates(infraCHL[1]1])$SVL5)

# bin values of trap covariate 'HtBrack' (height of bracken, cm)
traps(infraCH) <- binCovariate(traps(infraCH), "HtBrack"”, 20)
table(covariates(traps(infraCH)[[1]])$HtBrack20)

BUGS Convert Data To Or From BUGS Format

Description

Convert data between ‘capthist” and BUGS input format.

Usage

read.DA(DAlist, detector = "polygonX", units = 1, session = 1,
Y = "Y", xcoord = "U1", ycoord = "U2", xmin = "X1",
xmax = "Xu", ymin = "Y1", ymax = "Yu", buffer = "delta"”,
verify = TRUE)

write.DA(capthist, buffer, nzeros = 200, units = 1)

Arguments
DAlist list containing data in BUGS format
detector character value for detector type: ‘polygon’ or ‘polygonX’
units numeric for scaling output coordinates
session numeric or character label used in output
Y character, name of binary detection history matrix (animals x occasions)
xcoord character, name of matrix of x-coordinates for each detection in Y
ycoord character, name of matrix of y-coordinates for each detection in Y
xmin character, name of coordinate of state space boundary
Xmax character, name of coordinate of state space boundary
ymin character, name of coordinate of state space boundary
ymax character, name of coordinate of state space boundary
buffer see Details
verify logical if TRUE then the resulting capthist object is checked with verify
capthist capthist object

nzeros level of data augmentation (all-zero detection histories)
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Details
Data for OpenBUGS or WinBUGS called from R using the package R2ZWinBUGS (Sturtz et al.
2005) take the form of an R list.

These functions are limited at present to binary data from a square quadrat such as used by Royle
and Young (2008). Marques et al. (2011) provide an R function create.data() for generating
simulated datasets of this sort (see sim.capthist for equivalent functionality).

When reading BUGS data —

The character values Y, xcoord, ycoord, xmin etc. are used to locate the data within DAlist,
allowing for variation in the input names.

The number of sampling occasions is taken from the number of columns in Y. Each value in Y should
be 0 or 1. Coordinates may be missing

A numeric value for buffer is the distance (in the original units) by which the limits X1, Xu etc.
should be shrunk to give the actual plot limits. If buffer is character then a component of DAlist
contains the required numeric value.

Coordinates in the output will be multiplied by the scalar units.

Augmentation rows corresponding to ‘all-zero’ detection histories in Y, xcoord, and ycoord are
discarded.

When writing BUGS data —

Null (all-zero) detection histories are added to the matrix of detection histories Y, and missing (NA)
rows are added to the coordinate matrices xcoord and ycoord.

Coordinates in the output will be divided by the scalar units.

Value

For read.DA, an object of class ‘capthist’.

For write.DA, a list with the components

Xl left edge of state space

Xu right edge of state space

Y1 bottom edge of state space

Yu top edge of state space

delta buffer between edge of state space and quadrat
nind number of animals observed

nzeros number of added all-zero detection histories

T number of sampling occasions

Y binary matrix of detection histories (dim = c(nind+nzeros, T))
Ul matrix of x-coordinates, dimensioned as Y

U2 matrix of y-coordinates, dimensioned as Y

Ul and U2 are ‘NA’ where animal was not detected.
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References

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture—
recapture data: Comment. Ecology 92, 526-528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture—recapture data. Ecol-
ogy 89, 2281-2289.

Sturtz, S., Ligges, U. and Gelman, A. (2005) R2WinBUGS: a package for running WinBUGS from
R. Journal of Statistical Software 12, 1-16.

See Also

hornedlizardCH, verify, capthist

Examples

write.DA (hornedlizardCH, buffer = 100, units = 100)

## In this example, the input uses X1, Xu etc.

## for the limits of the plot itself, so buffer = 0.

## Input is in hundreds of metres.

## First, obtain the list lzdata

olddir <- setwd (system.file("extdata”, package="secr"))

source ("lizarddata.R")

setwd(olddir)

str(lzdata)

## Now convert to capthist

tempcapt <- read.DA(lzdata, Y = "H", xcoord = "X",
ycoord = "Y", buffer = @, units = 100)

## Not run:
plot(tempcapt)

secr.fit(tempcapt, trace = FALSE)
## etc.

## End(Not run)

capthist Spatial Capture History Object

Description

A capthist object encapsulates all data needed by secr. fit, except for the optional habitat mask.
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Details

An object of class capthist holds spatial capture histories, detector (trap) locations, individual
covariates and other data needed for a spatially explicit capture-recapture analysis with secr.fit.

A capthist is primarily an array of values with dim(capthist) = c(nc, noccasions, ntraps) where nc
is the number of detected individuals. Values maybe binary ({1, 0, 1}) or integer depending on the
detector type.

Deaths during the experiment are represented as negative values.

Ancillary data are retained as attributes of a capthist object as follows:

* traps — object of class traps (required)

* session — session identifier (required)

* covariates — dataframe of individual covariates (optional)

* cutval — threshold of signal strength for detection (‘signal’ only)

* signalframe — signal strength values etc., one row per detection (‘signal’ only)

¢ detectedX'Y — dataframe of coordinates for location within polygon (‘polygon’-like detectors
only)

* xylist — coordinates of telemetered animals

* Tu — detectors x occasions matrix of sightings of unmarked animals

* Tm — detectors x occasions matrix of sightings of marked but unidentified animals

e Tn — detectors x occasions matrix of sightings with unknown mark status
read.capthist is adequate for most data input. Alternatively, the parts of a capthist object can
be assembled with the function make.capthist. Use sim.capthist for Monte Carlo simulation

(simple models only). Methods are provided to display and manipulate capthist objects (print,
summary, plot, rbind, subset, reduce) and to extract and replace attributes (covariates, traps, xy).

A multi-session capthist object is a list in which each component is a capthist for a single ses-
sion. The list maybe derived directly from multi-session input in Density format, or by combining
existing capthist objects with MS. capthist.

Note

Early versions of secr (before 3.0) used an individual x occasion matrix for data from single-catch
and multi-catch traps, instead of a 3-D array. Entries in the matrix corresponded to trap numbers.
The function updateCH converts the old format.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics 64, 377-385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255-269.
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See Also

traps, secr.fit, read.capthist, make.capthist, sim.capthist, subset.capthist, rbind.capthist,
MS.capthist, reduce.capthist, mask

capthist.parts Dissect Spatial Capture History Object

Description

Extract parts of an object of class ‘capthist’.

Usage
animalID(object, names = TRUE, sortorder = c("snk", "ksn"))
occasion(object, sortorder = c("snk", "ksn"))
trap(object, names = TRUE, sortorder = c("snk", "ksn"))
alive(object, sortorder = c("snk", "ksn"))
alongtransect(object, tol = 0.01)
xy (object)

xy(object) <- value
telemetryxy(object, includeNULL = FALSE)
telemetryxy(object) <- value

telemetered(object)
Arguments
object a ‘capthist’ object
names if FALSE the values returned are numeric indices rather than names
sortorder character code for sort order (see Details)
tol tolerance for snapping to transect line (m)
value replacement value (see Details)

includeNULL logical; if TRUE a NULL component is included for untelemetered animals

Details

These functions extract data on detections, ignoring occasions when an animal was not detected.
By default, detections are ordered by occasion, animallD and trap (sortorder = "snk"). The al-
ternative is to order by trap, occasion and animallD (sortorder = "ksn"). (‘n’, ‘s’ and ‘k’ are the
indices used internally for animals, occasions and traps respectively).

For historical reasons, "ksn" is used for locations within polygons and similar (xy).

trap returns polygon or transect numbers if traps(object) has detector type ‘polygon’ or ‘tran-
sect’.
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chat

alongtransect returns the distance of each detection from the start of the transect with which it is
associated.

Replacement values must precisely match object in number of detections and in their order. xy<-
expects a dataframe of x and y coordinates for points of detection within a ‘polygon’ or ‘transect’
detector. telemetryxy<- expects a list of dataframes, one per telemetered animal.

Value

For animallID and trap a vector of numeric or character values, one per detection.
For alive a vector of logical values, one per detection.

For occasion, a vector of numeric values, one per detection.

For xy, a dataframe with one row per detection and columns ‘x’ and ‘y’.

If object has multiple sessions, the result is a list with one component per session.

See Also

capthist, polyID, signalmatrix

Examples

## ‘captdata' is a demonstration dataset
animalID(captdata)

temp <- sim.capthist(popn = list(D = 1), make.grid(detector
= "count"))

cbind(ID = as.numeric(animalID(temp)), occ = occasion(temp),
trap = trap(temp))

chat Overdispersion of Activity Centres

Description

Activity centres may be clumped (overdispersed) relative to a Poisson distribution, the model used
in secr. fit (Borchers and Efford 2008). This can cause the sampling variance of density estimates
to be understated. One solution currently under investigation is to apply a variance inflation factor,
a measure of overdispersion, based on the number of individuals detected at each detector (Bischof
et al. 2020).

Functions described here compute the observed (nk) or expected (Enk) number of individuals de-
tected at each detector and use that to compute Fletcher’s ¢ estimate of overdispersion for use as a
variance inflation factor.

Enk uses exact formulae for *multi’, ’proximity’ and ’count’ detector types. Other types may be
simulated by setting a positive value for 'nrepl’, which should be large (e.g., nrepl = 10000).
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adjustVarD adjusts the SE and confidence limits of density estimates using Fletcher’s ¢. The
implementation is limited to simple detection models (see Warnings).

See Cooch and White (2022) for an introduction to measurement of overdispersion in capture—
recapture. The focus here is on overdispersion of activity centres relative to a Poisson distribution,
rather than on non-independence in the spatial detection process.

Usage

nk(capthist)

Enk(D, mask, traps, detectfn = @, detectpar = list(gd = 0.2,
sigma = 25, z = 1), noccasions = NULL, binomN = NULL,
userdist = NULL, ncores = NULL, nrepl = NULL)

chat.nk(object, nsim = NULL, ...)

adjustVarD(object, chatmin = 1, alpha = 0.05, chat = NULL)

Arguments
capthist secr capthist object
D numeric density, either scalar or vector of length nrow(mask)
mask single-session habitat mask
traps traps object
detectfn integer code for detection function q.v.
detectpar a named list giving a value for each parameter of detection function
noccasions number of sampling intervals (occasions)
binomN integer code for discrete distribution (see secr.fit)
userdist user-defined distance function or matrix (see userdist)
ncores integer number of threads
nrepl integer number of replicates for E(nk) by simulation (optional)
object fitted secr model or dataframe (see Warnings for restrictions)
nsim integer number of c-hat values to simulate (optional)

other arguments passed to Fletcher.chat (verbose, type)

chatmin minimum value of Fletcher’s ¢
alpha alpha level for confidence intervals

chat numeric chat (optional)
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Details

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

The environment variable RCPP_PARALLEL_NUM_THREADS determines the number of paral-
lel threads. It is set to the value of ncores, unless that is NULL (see setNumThreads).

A conventional variance inflation factor due to Wedderburn (1974) is éx = X?/(K — p) where K
is the number of detectors, p is the number of estimated parameters, and

X2 = "(nk — E(ny))?*/E(ng).

k
Fletcher’s ¢ is an improvement on ¢x that is less affected by small expected counts. It is defined by
é=cx/(1+3),

where 5 = ), s /K and s, = (ny, — E(ng))/E(ng).

chat.nk may be used to simulate ¢ values under the given model (set nsim > 0). The ... argument
may include 'ncores = x’ (x>1) to specify parallel processing of simulations - the speed up is large
on unix-like machines for which the cluster type of makeCluster is "FORK" rather than "PSOCK".
If "ncores’ is not provided then the value returned by setNumThreads() is used.

No adjustment is made by adjustVarD when ¢ is less than the minimum. adjustVarD by default
computes Fletcher’s ‘chat’ using chat. nk, but a value may be provided.

If chat has been computed separately and provided in the argument of that name, adjustVarD also
accepts a single dataframe as the argument ‘object’; the dataframe should have row ‘D’ and columns
‘link’, ‘estimate’, ‘SE.estimate’ as in the output from predict.secr.

Value

For nk, a vector of observed counts, one for each detector in traps(capthist).
For Enk, a vector of expected counts, one for each detector in traps.

For chat . nk, usually a list comprising —

expected.nk expected number at each detector

nk observed number at each detector

stats vector of summary statistics: mean(expected.nk), var(expected.nk), mean(nk),
var(nk), nu (=df), X2/nu

chat ¢ (Fletcher or Wedderburn depending on ‘type’)

There are two variations —

If ‘verbose = FALSE’ then only the numeric value of ¢ is returned (a vector of 2 values if ‘type =
"both”’).

If chat.nk is called with ‘nsim > 0’ then the output is a list comprising —

type from input
nsim from input

sim.chat vector of simulated ¢
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chat ¢ (Fletcher or Wedderburn depending on ‘type’)

p probability of observing ¢ as large as this (from rank of chat among sim.chat)

For adjustVarD, a dataframe with one row for each session, based on predict.secr orderived. secr,
with extra column ‘c-hat’.

Warning

These functions are experimental in secr 4.6, and do not work with polygon-like and single-catch
detectors. No allowance is made for modelled variation in detection parameters with respect to
occasion, detector or animal; this includes mixture models (e.g., g0~h2).

Versions before 4.5.11 did not correctly compute expected counts for multi-catch detectors.

Furthermore, we doubt that the adjustment actually solves the problem of overdispersion (Efford
and Fletcher unpubl.).

References

Bischof, R., P. Dupont, C. Milleret, J. Chipperfield, and J. A. Royle. 2020. Consequences of
ignoring group association in spatial capture-recapture analysis. Wildlife Biology w1lb.00649. DOI
10.2981/wlb.00649

Cooch, E. and White, G. (eds) (2022) Program MARK: A Gentle Introduction. 22nd edition. Avail-
able online at http://www.phidot.org/software/mark/docs/book/.

Fletcher, D. (2012) Estimating overdispersion when fitting a generalized linear model to sparse data.
Biometrika 99, 230-237.

Wedderburn, R. W. M. (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-
Newton method. Biometrika 61, 439-47.
See Also

secr, make.mask, Detection functions, Fletcher.chat

Examples

temptrap <- make.grid()

msk <- make.mask(temptrap)

## expected number of individuals per detector (multi-catch)

Enk (D = 5, msk, temptrap, detectpar = list(g@ = 0.2, sigma = 25),
noccasions = 5)

# useful plotting function for simulated chat (nsim>@)

plotchat <- function(chat, head = '', breaks = seq(@.5,2.5,0.05)) {
hist(chat$sim.chat, xlim = range(breaks), main = head, xlab = 'c-hat',
breaks = breaks, cex.main = 1, yaxs = 'i')

abline(v = chat$chat, lwd = 1.5, col = 'blue')
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circular Circular Probability

Description

Functions to answer the question "what radius is expected to include proportion p of points from a
circular bivariate distribution corresponding to a given detection function", and the reverse. These
functions may be used to relate the scale parameter(s) of a detection function (e.g., o) to home-
range area (specifically, the area within an activity contour for the corresponding simple home-range
model) (see Note).

WARNING: the default behaviour of these functions changed in version 2.6.0. Integration is now
performed on the cumulative hazard (exposure) scale for all functions unless hazard = FALSE. Re-
sults will differ.

Usage

circular.r (p = 0.95, detectfn = @0, sigma = 1, detectpar = NULL, hazard
= TRUE, upper = Inf, ...)

circular.p (r = 1, detectfn = @, sigma = 1, detectpar = NULL, hazard

= TRUE, upper = Inf, ...)
Arguments
p vector of probability levels for which radius is required
r vector of radii for which probability level is required
detectfn integer code or character string for shape of detection function 0 = halfnormal,
2 = exponential etc. — see detectfn for other codes
sigma spatial scale parameter of detection function
detectpar named list of detection function parameters
hazard logical; if TRUE the transformation —log(1— g(d)) is applied before integration
upper numeric upper limit of integration
other arguments passed to integrate
Details

circular.r is the quantile function of the specified circular bivariate distribution (analogous to
gnorm, for example). The quantity calculated by circular.r is sometimes called ‘circular error
probable’ (see Note).

For detection functions with two parameters (intercept and scale) it is enough to provide sigma.
Otherwise, detectpar should be a named list including parameter values for the requested detection
function (g0 may be omitted, and order does not matter).
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Detection functions in secr are expressed in terms of the decline in probability of detection with
distance g(d), and both circular.r and circular.p integrate this function by default. Rather
than integrating g(d) itself, it may be more appropriate to integrate g(d) transformed to a hazard i.e.
1 —log(—g(d)). This is selected with hazard = TRUE.

Integration may also fail with the message “roundoff error is detected in the extrapolation table”.
Setting upper to a large number less than infinity sometimes corrects this.

Value

Vector of values for the required radii or probabilities.

Note

The term ‘circular error probable’ has a military origin. It is commonly used for GPS accuracy
with the default probability level set to 0.5 (i.e. half of locations are further than CEP from the
true location). A circular bivariate normal distriubution is commonly assumed for the circular error
probable; this is equivalent to setting detectfn = "halfnormal”.

Closed-form expressions are used for the normal and uniform cases; in the circular bivariate normal
case, the relationship is » = o1/—2In(1 — p). Otherwise, the probability is computed numerically
by integrating the radial distribution. Numerical integration is not foolproof, so check suspicious or
extreme values.

When circular.r is used with the default sigma = 1, the result may be interpreted as the factor by
which sigma needs to be inflated to include the desired proportion of activity (e.g., 2.45 sigma for
95% of points from a circular bivariate normal distribution fitted on the hazard scale (detectfn = 14)
OR 2.24 sigma on the probability scale (detectfn = 0)).

References

Calhoun, J. B. and Casby, J. U. (1958) Calculation of home range and density of small mammals.
Public Health Monograph No. 55. United States Government Printing Office.

Johnson, R. A. and Wichern, D. W. (1982) Applied multivariate statistical analysis. Prentice-Hall,
Englewood Cliffs, New Jersey, USA.

See Also

detectfn, detectfnplot

Examples

## Calhoun and Casby (1958) p 3.
## give p = 0.3940, 0.8645, 0.9888
circular.p(1:3, hazard = FALSE)

## halfnormal, hazard-rate and exponential
circular.r

circular.r (detectfn = "HR", detectpar = list(sigma =1, z = 4))
circular.r (detectfn = "EX")
circular.r (detectfn = "HHN")
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circular.r (detectfn = "HHR", detectpar = list(sigma =1, z = 4))
circular.r (detectfn "HEX")

plot(seq(@, 5, 0.05), circular.p(r = seq(@, 5, 0.05)),
type = "1", xlab = "Radius (multiples of sigma)"”, ylab = "Probability")
lines(seq(@, 5, 0.05), circular.p(r = seq(@, 5, 0.05), detectfn = 2),
type = "1", col = "red")
lines(seq(@, 5, 0.05), circular.p(r = seq(@, 5, 0.05), detectfn =1,
detectpar = list(sigma = 1,z = 4)), type = "1", col = "blue")
abline (h = 0.95, 1ty = 2)

legend (2.8, 0.3, legend = c("halfnormal”,"hazard-rate, z = 4", "exponential”),
col = c("black”,"blue”,"red"), 1ty = rep(1,3))

## in this example, a more interesting comparison would use
## sigma = 0.58 for the exponential curve.

clone Replicate Rows

Description

Clone rows of an object a constant or random number of times

Usage
## Default S3 method:
clone(object, type, ...)
## S3 method for class 'popn'
clone(object, type, ...)
## S3 method for class 'capthist'
clone(object, type, ...)
Arguments
object any object
type character ‘constant’, ‘poisson’, ‘truncatedpoisson’ or ‘nbinom’

other arguments for distribution function

Details

The . ..argument specifies the number of times each row should be repeated. For random distribu-
tions (Poisson or negative binomial) ... provides the required parameter values: 1lambda for Poisson,
size, prob or size, mu for negative binomial.

One application is to derive a population of cues from a popn object, where each animal in the
original popn generates a number of cues from the same point.
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Cloning a capthist object replicates whole detection histories. Individual covariates and detection-
specific attributes (e.g., signal strength or xy location in polygon) are also replicated. Cloned data
from single-catch traps will cause verify() to fail, but a model may still be fitted in secr.fit by

overriding the check with verify = FALSE.

Value

Object of same class as object but with varying number of rows. For clone.popn and capthist
an attribute ‘freq’ is set, a vector of length equal to the original number of rows giving the number

of repeats (including zeros).

If popn or capthist is a multi-session object the returned value will be a multi-session object of

the same length.

See Also

sim.popn

Examples

## population of animals at 1 / hectare generates random
## Poisson number of cues, lambda = 5

mics4 <- make.grid( nx = 2, ny = 2, spacing = 44, detector = "signal")

pop <- sim.popn (D = 1, core = mics4, buffer = 300, nsessions = 6)
pop <- clone (pop, "poisson”, 5)
attr(poplL[1]1],"freq")

clone(captdata, "poisson”, 3)

# To avoid losing any individuals use zero-truncated Poisson
# First find lambda of truncated Poisson with given mean
getlambda <- function (target) {
fn <= function(x) x / (1-exp(-x)) - target
uniroot(interval = c(1e-8, target), f = fn)$root
3

clone(captdata, "truncatedpoisson”, getlambda(3))

closedN Closed population estimates

Description

Estimate N, the size of a closed population, by several conventional non-spatial capture—recapture

methods.
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Usage

closedN(object, estimator = NULL, level = 0.95, maxN = 1e+07,

dmax = 10 )

Arguments

object capthist object

estimator character; name of estimator (see Details)

level confidence level (1 — alpha)

maxN upper bound for population size

dmax numeric, the maximum AIC difference for inclusion in confidence set
Details

Data are provided as spatial capture histories, but the spatial information (trapping locations) is
ignored.

AIC-based model selection is available for the maximum-likelihood estimators null, zippin, darroch,

h2, and betabinomial.

Model weights are calculated as
__exp(—Ai/2)
>_exp(—Ai/2)

Models for which dAICc > dmax are given a weight of zero and are excluded from the summation,
as are non-likelihood models.

Computation of null, zippin and darroch estimates differs slightly from Otis et al. (1978) in
that the likelihood is maximized over real values of N between Mt1 and maxN, whereas Otis et al.
considered only integer values.

Asymmetric confidence intervals are obtained in the same way for all estimators, using a log trans-
formation of N — Mt1 following Burnham et al. (1987), Chao (1987) and Rexstad and Burnham
(1991).

The available estimators are

Name Model Description Reference

null MO null Otis et al. 1978 p.105
zippin Mb removal Otis et al. 1978 p.108
darroch Mt Darroch Otis et al. 1978 p.106-7
h2 Mh 2-part finite mixture Pledger 2000
betabinomial Mh Beta-binomial continuous mixture Dorazio and Royle 2003
jackknife Mh jackknife Burnham and Overton 1978
chao Mh Chao’s Mh estimator Chao 1987

chaomod Mh Chao’s modified Mh estimator Chao 1987

chao. th1 Mth sample coverage estimator 1 Lee and Chao 1994
chao. th2 Mth sample coverage estimator 2 Lee and Chao 1994



closedN 39

Value

A dataframe with one row per estimator and columns

model model in the sense of Otis et al. 1978
npar number of parameters estimated
loglik maximized log likelihood
AIC Akaike’s information criterion
AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)
dAICc difference between AICc of this model and the one with smallest AICc
Mt1 number of distinct individuals caught
Nhat estimate of population size
seNhat estimated standard error of Nhat
lclNhat lower 100 x level % confidence limit
uclNhat upper 100 x level % confidence limit
Warning

If your data are from spatial sampling (e.g. grid trapping) it is recommended that you do not use
these methods to estimate population size (see Efford and Fewster 2013). Instead, fit a spatial model
and estimate population size with region.N.

Note
Prof. Anne Chao generously allowed me to adapt her code for the variance of the ‘chao.thl’ and
‘chao.th2’ estimators.

Chao’s estimators have been subject to various improvements not included here (e.g., Chao et al.
2016).

References
Burnham, K. P. and Overton, W. S. (1978) Estimating the size of a closed population when capture
probabilities vary among animals. Biometrika 65, 625-633.

Chao, A. (1987) Estimating the population size for capture—recapture data with unequal catchability.
Biometrics 43, 783-791.

Chao, A., Ma, K. H., Hsieh, T. C. and Chiu, Chun-Huo (2016) SpadeR: Species-Richness Prediction
and Diversity Estimation with R. R package version 0.1.1. https://CRAN.R-project.org/package=SpadeR

Dorazio, R. M. and Royle, J. A. (2003) Mixture models for estimating the size of a closed population
when capture rates vary among individuals. Biometrics 59, 351-364.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture—
recapture. Oikos 122, 918-928.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297-307.

Lee, S.-M. and Chao, A. (1994) Estimating population size via sample coverage for closed capture-
recapture models. Biometrics 50, 88-97.
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Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1-135.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture-recapture models using
mixtures. Biometrics 56, 434—442.

Rexstad, E. and Burnham, K. (1991) User’s guide for interactive program CAPTURE. Colorado
Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, USA.

See Also

capthist, closure. test, region.N

Examples

closedN(deermouse.ESG)

closure.test Closure tests

Description
Perform tests to determine whether a population sampled by capture-recapture is closed to gains
and losses over the period of sampling.

Usage

closure.test(object, SB = FALSE, min.expected = 2)

Arguments
object capthist object
SB logical, if TRUE then test of Stanley and Burnham 1999 is calculated in addition

to that of Otis et al. 1978

min.expected integer for the minimum expected count in any cell of a component 2x2 table

Details

The test of Stanley and Burnham in part uses a sum over 2x2 contingency tables; any table with a
cell whose expected count is less than min.expected is dropped from the sum. The default value of
2 is that used by CloseTest (Stanley and Richards 2005, T. Stanley pers. comm.; see also Stanley
and Burnham 1999 p. 203).
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In the case of a single-session capthist object, either a vector with the statistic (z-value) and p-value
for the test of Otis et al. (1978 p. 120) or a list whose components are data frames with the statistics
and p-values for various tests and test components as follows —

Otis

Xc

NRvsJS
NMvsJS
MtvsNR
MtvsNM
compNRvsJS
compNMvsJS

Test of Otis et al. 1978

Overall test of Stanley and Burnham 1999
Stanley and Burnham 1999

Stanley and Burnham 1999

Stanley and Burnham 1999

Stanley and Burnham 1999
Occasion-specific components of NRvsJS

Occasion-specific components of NMvsJS

Check the original papers for an explanation of the components of the Stanley and Burnham test.

In the case of a multi-session object, a list with one component (as above) for each session.

Note

No omnibus test exists for closure: the existing tests may indicate nonclosure even when a popu-
lation is closed if other effects such as trap response are present (see White et al. 1982 pp 96-97).
The test of Stanley and Burnham is sensitive to individual heterogeneity which is inevitable in most
spatial sampling, and it should not in general be used for this sort of data.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1-135.

Stanley, T. R. and Burnham, K. P. (1999) A closure test for time-specific capture—recapture data.
Environmental and Ecological Statistics 6, 197-209.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture-recapture data for closure.
Wildlife Society Bulletin 33, 782-785.

White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982) Capture-recapture and
removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos,

New Mexico.

See Also

capthist

Examples

closure.test(captdata)
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cluster Detector Clustering

Description

Clusters are uniform groups of detectors. Use these functions to extract or replace cluster informa-
tion of a traps object, or extract cluster information for each detection in a capthist object.

Usage

clusterID(object)
clusterID(object) <- value
clustertrap(object)
clustertrap(object) <- value

Arguments

object traps or capthist object

value factor (clusterID) or integer-valued vector (clustertrap)
Details

Easy access to attributes used to define compound designs, those in which a detector array comprises
several similar subunits (‘clusters’). ‘clusterID’ identifies the detectors belonging to each cluster,
and ‘clustertrap’ is a numeric index used to relate matching detectors in different clusters.

For replacement (‘traps’ only), the number of rows of value must match exactly the number of
detectors in object.

‘clusterID’ and ‘clustertrap’ are assigned automatically by trap.builder.

Value

Factor (clusterID) or integer-valued vector (clustertrap).
clusterID(object) may be NULL.

See Also

traps, trap.builder, mash, derivedCluster, cluster.counts, cluster.centres

Examples

## 25 4-detector clusters
mini <- make.grid(nx = 2, ny = 2)

tempgrid <- trap.builder (cluster = mini , method = "all"”,
frame = expand.grid(x = seq(100, 500, 100), y = seq(100,
500, 100)))

clusterID(tempgrid)
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clustertrap(tempgrid)

tempCH <- sim.capthist(tempgrid)
table(clusterID(tempCH)) ## detections per cluster
cluster.counts(tempCH)  ## distinct individuals

coef.secr Coefficients of secr Object

Description

Extract coefficients (estimated beta parameters) from a spatially explicit capture—recapture model.

Usage
## S3 method for class 'secr'
coef(object, alpha = 0.05, ...)
Arguments
object secr object output from secr.fit
alpha alpha level

other arguments (not used currently)

Value

A data frame with one row per beta parameter and columns for the coefficient, SE(coefficient),
asymptotic lower and upper 100(1-alpha) confidence limits.

See Also

secr.fit, esa.plot

Examples

## load & extract coefficients of previously fitted null model
coef (secrdemo. @)
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collate Array of Parameter Estimates

Description

Estimates from one or more openCR models are formed into an array.

Usage

## S3 method for class 'secr'

collate(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,
alpha = 0.05, perm = 1:4, fields = 1:4)

## S3 method for class 'ipsecr'

collate(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, perm = 1:4, fields = 1:4)

## S3 method for class 'secrlist'
collate(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,
alpha = 0.05, perm = 1:4, fields = 1:4)

Arguments
object secr or secrlist object
other secr objects
realnames character vector of real parameter names
betanames character vector of beta parameter names
newdata optional dataframe of values at which to evaluate models
alpha alpha level for confidence intervals
perm permutation of dimensions in output from collate
fields vector to restrict summary fields in output
Details

collate extracts parameter estimates from a set of fitted secr model objects.

fields may be used to select a subset of summary fields ("estimate","SE.estimate","lcl","ucl") by
name or number.
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A 4-dimensional array of model-specific parameter estimates. By default, the dimensions corre-

spond respectively to

* rows in newdata (usually sessions),
e models,
« statistic fields (estimate, SE.estimate, Icl, ucl), and

 parameters ("phi", "sigma" etc.).

It often helps to reorder the dimensions with the perm argument.

See Also

modelAverage, secr.fit

Examples

collate (secrdemo.@, secrdemo.b, perm = c(4,2,3,1))[,,1,]

confint.secr Profile Likelihood Confidence Intervals

Description

Compute profile likelihood confidence intervals for ‘beta’ or ‘real’ parameters of a spatially explicit

capture-recapture model,

Usage

## S3 method for class 'secr'
confint(object, parm, level = 0.95, newdata = NULL,

tracelevel = 1, tol = 0.0001, bounds = NULL, ncores = NULL,

Arguments
object secr model object
parm numeric or character vector of parameters
level confidence level (1 — alpha)
newdata optional dataframe of values at which to evaluate model
tracelevel integer for level of detail in reporting (0,1,2)
tol absolute tolerance (passed to uniroot)
bounds numeric vector of outer starting values — optional
ncores number of threads used for parallel processing

other arguments (not used)

.2
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Details

If parm is numeric its elements are interpreted as the indices of ‘beta’ parameters; character values
are interpreted as ‘real’ parameters. Different methods are used for beta parameters and real param-
eters. Limits for the j-th beta parameter are found by a numerical search for the value satisfying
—2(1;(B;) — 1) = ¢, where [ is the maximized log likelihood, [;(§;) is the maximized profile log
likelihood with 3; fixed, and g is the 100(1 — ) quantile of the x? distribution with one degree of
freedom. Limits for real parameters use the method of Lagrange multipliers (Fletcher and Faddy
2007), except that limits for constant real parameters are backtransformed from the limits for the
relevant beta parameter.

If bounds is provided it should be a 2-vector or matrix of 2 columns and length(parm) rows.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Value

A matrix with one row for each parameter in parm, and columns giving the lower (Icl) and upper
(ucl) 100*1evel

Note

Calculation may take a long time, so probably you will do it only after selecting a final model.

The R function uniroot is used to search for the roots of —2(;(5;) — ) = ¢ within a suitable
interval. The interval is anchored at one end by the MLE, and at the other end by the MLE inflated
by a small multiple of the asymptotic standard error (1, 2, 4 or 8 SE are tried in turn, using the
smallest for which the interval includes a valid solution).

A more efficient algorithm was proposed by Venzon and Moolgavkar (1988); it has yet to be imple-
mented in secr, but see plkhci in the package Bhat for another R implementation.

References

Evans, M. A., Kim, H.-M. and O’Brien, T. E. (1996) An application of profile-likelihood based
confidence interval to capture-recapture estimators. Journal of Agricultural, Biological and Exper-
imental Statistics 1, 131-140.

Fletcher, D. and Faddy, M. (2007) Confidence intervals for expected abundance of rare species.
Journal of Agricultural, Biological and Experimental Statistics 12, 315-324.

Venzon, D. J. and Moolgavkar, S. H. (1988) A method for computing profile-likelihood-based con-
fidence intervals. Applied Statistics 37, 87-94.

Examples

## Not run:

## Limits for the constant real parameter "D"
confint(secrdemo.@, "D")

## End(Not run)
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contour

Contour Detection Probability

Description

Display contours of the net probability of detection p.(X), or the area within a specified distance of
detectors. buffer.contour adds a conventional ‘boundary strip’ to a detector (trap) array, where
buffer equals the strip width.

Usage

pdot.contour(traps, border = NULL, nx = 64, detectfn = 0,

detectpar

= list(go = 0.2, sigma = 25, z = 1), noccasions = NULL,

binomN = NULL, levels = seq(@.1, 0.9, 0.1), poly =

NULL, poly.habitat = TRUE, plt

TRUE, add = FALSE, fill = NULL, ...)

buffer.contour(traps, buffer, nx = 64, convex = FALSE, ntheta = 100,
plt = TRUE, add = FALSE, poly = NULL, poly.habitat = TRUE,
fill = NULL, ...)

Arguments

traps
border
nx
detectfn

detectpar
noccasions
binomN
levels
poly
poly.habitat
plt

add

fill
buffer
convex
ntheta

traps object (or mask for buffer.contour)
width of blank margin around the outermost detectors
dimension of interpolation grid in x-direction

integer code or character string for shape of detection function 0 = halfnormal
etc. — see detectfn

list of values for named parameters of detection function
number of sampling occasions

integer code for discrete distribution (see secr.fit)
vector of levels for p.(X)

matrix of two columns, the x and y coordinates of a bounding polygon (optional)
logical as in make .mask

logical to plot contours

logical to add contour(s) to an existing plot

vector of colours to fill contours (optional)

other arguments to pass to contour

vector of buffer widths

logical, if TRUE the plotted contour(s) will be convex

integer value for smoothness of convex contours
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Details
pdot.contour constructs a rectangular mask and applies pdot to compute the p.(X) at each mask
point.

If convex = FALSE, buffer.contour constructs a mask and contours the points on the basis of
distance to the nearest detector at the levels given in buffer.

If convex = TRUE, buffer.contour constructs a set of potential vertices by adding points on a
circle of radius = buffer to each detector location; the desired contour is the convex hull of these
points (this algorithm derives from Efford, 2012).

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

If traps is for multiple sessions then detectpar should be a list of the same length, one component
per session, and noccasions may be a numeric vector of the same length.

Increase nx for smoother lines, at the expense of speed.

Value

Coordinates of the plotted contours are returned as a list with one component per polygon. The list
is returned invisibly if plt = TRUE.

For multi-session input (traps) the value is a list of such lists, one per session.

Note

The precision (smoothness) of the fitted line in buffer.contour is controlled by ntheta rather
than nx when convex = TRUE.

To suppress contour labels, include the argument drawlabels = FALSE (this will be passed via
...to contour). Other useful arguments of contour are col (colour of contour lines) and 1wd (line
width).

You may wish to consider function st_buffer in package sf as an alternative to buffer.contour..

buffer.contour failed with multi-session traps before secr 2.8.0.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture—recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand https://www.otago.
ac.nz/density/.

See Also

pdot, make.mask

Examples

possumtraps <- traps(possumCH)

## convex and concave buffers
plot(possumtraps, border = 270)
buffer.contour(possumtraps, buffer = 100, add = TRUE, col = "blue")


https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

covariates

buffer.contour(possumtraps, buffer =

## areas
buff.concave <- buffer.contour(possum
plt = FALSE)

buff.convex <- buffer.contour(possum
plt = FALSE, convex = TRUE)
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100, convex = TRUE, add = TRUE)

traps, buffer = 100,

traps, buffer = 100,

sum (sapply(buff.concave, polyarea)) ## sum over parts

sapply (buff.convex, polyarea)

## effect of nx on area

buff.concave2 <- buffer.contour(possu
nx = 128, plt = FALSE)

sum (sapply(buff.concave2, polyarea))

## Not run:

plot(possumtraps, border = 270)

pdot.contour(possumtraps, detectfn =
detectpar(possum.model.@), levels
noccasions = 5, add = TRUE)

## clipping to polygon

olddir <- setwd(system.file("extdata”

possumtraps <- traps(possumCH)

possumarea <- read.table("possumarea.

par(xpd = TRUE, mar = c¢(1,6,6,6))

plot(possumtraps, border = 400, gridl

pdot.contour(possumtraps, detectfn =
detectpar(possum.model.@), levels
noccasions = 5, add = TRUE, poly

lines(possumarea)

setwd(olddir)

par(xpd = FALSE, mar = c(5,4,4,2) + 0

## End(Not run)

mtraps, buffer = 100,

0, nx = 128, detectpar =
= c(0.1, 9.01, 0.001),

, package = "secr"))
txt", header = TRUE)
ines = FALSE)

@, nx = 256, detectpar =

= c(0.1, 0.01, 0.001),
= possumarea, col = "blue")

.1 ## reset to default

covariates Covariates Attribute

Description

Extract or replace covariates

Usage

covariates(object, ...)
covariates(object) <- value
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Arguments
object an object of class traps, popn, capthist, or mask
value a dataframe of covariates
other arguments (not used)
Details

For replacement, the number of rows of value must match exactly the number of rows in object.

Value

covariates(object) returns the dataframe of covariates associated with object. covariates(object)
may be NULL.

Individual covariates are stored in the ‘covariates’ attribute of a capthist object.
Covariates used for modelling density are stored in the ‘covariates’ attribute of a mask object.

Detector covariates may vary between sampling occasions. In this case, columns in the detec-
tor covariates data.frame are associated with particular times; the matching is controlled by the
timevaryingcov attribute.

See Also

timevaryingcov

Examples

## detector covariates

temptrap <- make.grid(nx = 6, ny = 8)

covariates (temptrap) <- data.frame(halfnhalf =
factor(rep(c("left”,"right"),c(24,24))) )

summary (covariates(temptrap))

cv Coefficient of Variation

Description
The coefficient of variation of effective sampling area predicts the bias in estimated density (Efford

and Mowat 2014). These functions assist its calculation from fitted finite mixture models.

Usage

CV(x, p, na.rm = FALSE)
CVa@(object, ...)
CVa(object, sessnum = 1, ...)
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Arguments

X vector of numeric values

p vector of class probabilities

na.rm logical; if TRUE missing values are dropped from x

object fitted secr finite mixture model

sessnum integer sequence number of session to analyse

other arguments passed to predict.secr (e.g., newdata)

Details

CV computes the coefficient of variation of x. If p is provided then the distribution is assumed to be
discrete, with support x and class membership probabilities p (scaled automatically to sum to 1.0).

CVa computes CV(a) where a is the effective sampling area of Borchers and Efford (2008).

CVa@ computes CV(a0) where a0 is the single-detector sampling area defined as ag = 27 \go?
(Efford and Mowat 2014); a0 is a convenient surrogate for a, the effective sampling area. CV(a0)
uses either the fitted MLE of a0 (if the a0 parameterization has been used), or a0 computed from
the estimates of lambda0 and sigma.

CVa and CVa® do not work for models with individual covariates.

Value

Numeric

Note

Do not confuse the function CVa with the estimated relative standard error of the estimate of a from
derived, also labelled CVa in the output. The relative standard error RSE is often labelled CV in
the literature on capture—recapture, but this can cause unnecessary confusion. See also RSE.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics 64, 377-385.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture-recapture data. Ecol-
0gy 95, 1341-1348.

See Also

CVpdot, derived, details, RSE

Examples

## Not run:

## housemouse model
morning <- subset(housemouse, occ = c(1,3,5,7,9))
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D.designdata

msk <- make.mask((traps(morning)), nx = 32)

morning.h2  <- secr.fit(morning, buffer = 20, model = list(g@~h2), mask = msk,
trace = FALSE)

CVa@(morning.h2 )

## End(Not run)

D.designdata Construct Density Design Data

Description

Internal function used by secr.fit, confint.secr, and score. test.

Usage

D.designdata (mask, Dmodel, grouplevels, sessionlevels, sessioncov =
NULL, meanSD = NULL)

Arguments

mask mask object.

Dmodel formula for density model

grouplevels vector of group names

sessionlevels vector of character values for session names

sessioncov optional dataframe of values of session-specific covariate(s).

meanSD optional external values for scaling x- and y- coordinates
Details

This is an internal secr function that you are unlikely ever to use. Unlike secr.design.MS, this
function does not call model .matrix.

Value

Dataframe with one row for each combination of mask point, group and session. Conceptually, we
use a 3-D rectangular array with enough rows to accommodate the largest mask, so some rows in
the output may merely hold space to enable easy indexing. The dataframe has an attribute ‘dimD’
that gives the relevant dimensions: attr(dframe, "dimD") = c(nmask, ngrp, R), where nmask is
the number of mask points, ngrp is the number of groups, and R is the number of sessions. Columns
correspond to predictor variables in Dmodel.

The number of valid rows (points in each session-specific mask) is stored in the attribute ‘valid-
MaskRows’.

For a single-session mask, meanSD is a 2 x 2 matrix of mean and SD (rows) for x- and y-coordinates.
For a multi-session mask, a list of such objects. Ordinarily these values are from the meanSD
attribute of the mask, but they must be specified when applying a new mask to an existing model.
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See Also

secr.design.MS

deermouse Deermouse Live-trapping Datasets

Description

Data of V. H. Reid from live trapping of deermice (Peromyscus maniculatus) at two sites in Col-
orado, USA.

Usage

deermouse.ESG
deermouse.WSG

Details

Two datasets of V. H. Reid were described by Otis et al. (1978) and distributed with their CAPTURE
software (now available from https://www.mbr-pwrc.usgs.gov/software.html). They have
been used in several other papers on closed population methods (e.g., Huggins 1991, Stanley and
Richards 2005). This description is based on pages 32 and 87-93 of Otis et al. (1978).

Both datasets are from studies in Rio Blanco County, Colorado, in the summer of 1975. Trapping
was for 6 consecutive nights. Traps were arranged in a 9 x 11 grid and spaced 50 feet (15.2 m)
apart.

The first dataset was described by Otis et al. (1978: 32) as from ‘a drainage bottom of sagebrush,
gambel oak, and serviceberry with pinyon pine and juniper on the uplands’. By matching with the
‘examples’ file of CAPTURE this was from East Stuart Gulch (ESG).

The second dataset (Otis et al. 1978: 87) was from Wet Swizer Creek or Gulch (WSG) in August
1975. No specific vegetation description is given for this site, but it is stated that Sherman traps
were used and trapping was done twice daily.

Two minor inconsistencies should be noted. Although Otis et al. (1978) said they used data from
morning trap clearances, the capture histories in ‘examples’ from CAPTURE include a ‘pm’ tag
on each record. We assume the error was in the text description, as their numerical results can be
reproduced from the data file. Huggins (1991) reproduced the East Stuart Gulch dataset (omitting
spatial data that were not relevant to his method), but omitted two capture histories.

The data are provided as two single-session capthist objects ‘deermouse.ESG’ and ‘deermouse. WSG’.
Each has a dataframe of individual covariates, but the fields differ between the two study areas. The
individual covariates of deermouse.ESG are sex (factor levels ‘f*, ‘m’), age class (factor levels ‘y’,

LR

‘sa’, ‘a’) and body weight in grams. The individual covariates of deermouse.WSG are sex (factor

levels ‘f”,‘m’) and age class (factor levels j°, ‘y’, ‘sa’, ‘a’) (no data on body weight). The aging
criteria used by Reid are not recorded.


https://www.mbr-pwrc.usgs.gov/software.html
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The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives
the ‘column’ and ‘row’ numbers of the trap (e.g. * 9 5’ for a capture in the trap at position (x=9,
y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros
(e.g. “905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include double captures (1
at ESG and 8 at WSG - see Examples). The true detector type therefore falls between ‘single’ and
‘multi’. Detector type is set to ‘multi’ in the distributed data objects.

Object Description
deermouse.ESG  capthist object, East Stuart Gulch
deermouse. WSG  capthist object, Wet Swizer Gulch

Source

File ‘examples’ distributed with program CAPTURE.

References

Huggins, R. M. (1991) Some practical aspects of a conditional likelihood approach to capture ex-
periments. Biometrics 47, 725-732.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1-135.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture-recapture data for closure.
Wildlife Society Bulletin 33, 782-785.

See Also

closure.test

Examples

par(mfrow = c(1,2), mar = c(1,1,4,1))

plot(deermouse.ESG, title = "Peromyscus data from East Stuart Gulch”,
border = 10, gridlines = FALSE, tracks = TRUE)

plot(deermouse.WSG, title = "Peromyscus data from Wet Swizer Gulch”,
border = 10, gridlines = FALSE, tracks = TRUE)

closure.test(deermouse.ESG, SB = TRUE)
## reveal multiple captures

table(trap(deermouse.ESG), occasion(deermouse.ESG))
table(trap(deermouse.WSG), occasion(deermouse.WSG))
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deleteMaskPoints Edit Mask Points

Description

Mask points may be removed by one of three methods: clicking on points, clicking on vertices to
define a polygon from which points will be removed, or specifying a polygon to which the mask
will be clipped.

Usage

deleteMaskPoints(mask, onebyone = TRUE, add = FALSE, poly = NULL,

poly.habitat = FALSE, ...)
Arguments
mask secr mask object
onebyone logical; see Details
add logical; if true then the initial mask plot will be added to an existing plot
poly polygon defining habitat or non-habitat as described in make . mask

poly.habitat logical; if TRUE polygon represents habitat

other arguments to plot.mask

Details

The default method (onebyone = TRUE, poly = NULL) is to click on each point to be removed.
The nearest mask point will be selected.

Setting onebyone = FALSE allows the user to click on the vertices of a polygon within which
all points are to be removed (the default) or retained (poly.habitat = TRUE). Vertices need not
coincide with mask points.

Defining poly here is equivalent to calling make.mask with poly defined. poly one of the several
types described in boundarytoSF. Whether poly represents habitat or non-habitat is toggled with
poly.habitat — the default here differs from make . mask.

Value

A mask object, usually with fewer points than the input mask.

See Also

make.mask, subset.mask
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Examples

if (interactive()) {
mask® <- make.mask (traps(captdata))
## Method 1 - click on each point to remove
mask1l <- deleteMaskPoints (mask®)
## Method 2 - click on vertices of removal polygon
mask2 <- deleteMaskPoints (mask@®, onebyone = FALSE)
## Method 3 - predefined removal polygon
plot(captdata)
poly1l <- locator(5)
mask3 <- deleteMaskPoints (mask@, poly = polyl)

derived Derived Parameters of Fitted SECR Model

Description

Compute derived parameters of spatially explicit capture-recapture model. Density is a derived
parameter when a model is fitted by maximizing the conditional likelihood. So also is the effective
sampling area (in the sense of Borchers and Efford 2008).

Usage

derived(object, ...)

## S3 method for class 'secr'

derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,
se.esa = FALSE, se.D = TRUE, loginterval = TRUE, distribution = NULL,
ncores = NULL, bycluster = FALSE, ...)

## S3 method for class 'secrlist'

derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,
se.esa = FALSE, se.D = TRUE, loginterval = TRUE, distribution
ncores = NULL, bycluster = FALSE, ...)

NULL,

esa(object, sessnum = 1, beta = NULL, real = NULL, noccasions = NULL,
ncores = NULL)

Arguments

object secr object output from secr. fit, or an object of class c("secrlist”, "1ist")

sessnum index of session in object$capthist for which output required
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groups vector of covariate names to define group(s) (see Details)
alpha alpha level for confidence intervals

se.esa logical for whether to calculate SE(mean(esa))

se.D logical for whether to calculate SE(D-hat)

loginterval logical for whether to base interval on log(D)

distribution  character string for distribution of the number of individuals detected

ncores integer number of threads used for parallel processing

bycluster logical; if TRUE results are reported separately for each cluster of detectors
beta vector of fitted parameters on transformed (link) scale

real vector of ‘real’ parameters

noccasions integer number of sampling occasions (see Details)

other arguments (not used)

Details

The derived estimate of density is a Horvitz-Thompson-like estimate:
D=> a6
i=1

where ai(é) is the estimate of effective sampling area for animal 7 with detection parameter vector
0.

A non-null value of the argument distribution overrides the value in object$details. The
sampling variance of D from secr.fit by default is spatially unconditional (distribution =
"Poisson”). For sampling variance conditional on the population of the habitat mask (and therefore
dependent on the mask area), specify distribution = "binomial”. The equation for the condi-
tional variance includes a factor (1 — a/A) that disappears in the unconditional (Poisson) variance
(Borchers and Efford 2007). Thus the conditional variance is always less than the unconditional
variance. The unconditional variance may in turn be an overestimate or (more likely) an underesti-
mate if the true spatial variance is non-Poisson.

Derived parameters may be estimated for population subclasses (groups) defined by the user with
the groups argument. Each named factor in groups should appear in the covariates dataframe of
object$capthist (or each of its components, in the case of a multi-session dataset).

esa is used by derived to compute individual-specific effective sampling areas:
() = [ p(X5:0) X
A

where p.(X) is the probability an individual at X is detected at least once and the z; are optional
individual covariates. Integration is over the area A of the habitat mask.

The argument noccasions may be used to vary the number of sampling occasions; it works only
when detection parameters are constant across individuals and across time.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).
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derived

The effective sampling area ‘esa’ (a(é)) reported by derived is equal to the harmonic mean of the
a;(0) (arithmetic mean prior to version 1.5). The sampling variance of a(0) is estimated by

var(a(0)) = GEVeGy,

where V is the asymptotic estimate of the variance-covariance matrix of the beta detection param-
eters (¢) and G is a numerical estimate of the gradient of a(#) with respect to ¢, evaluated at 6.

A 100(1-alpha)% asymptotic confidence interval is reported for density. By default, this is asym-
metric about the estimate because the variance is computed by backtransforming from the log scale.
You may also choose a symmetric interval (variance obtained on natural scale).

The vector of detection parameters for esa may be specified via beta or real, with the former
taking precedence. If neither is provided then the fitted values in object$fit$par are used. Spec-
ifying real parameter values bypasses the various linear predictors. Strictly, the ‘real’ parameters
are for a naive capture (animal not detected previously).

The computation of sampling variances is relatively slow and may be suppressed with se.esa and
se.D as desired.

For computing derived across multiple models in parallel see par.derived.

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

estimate estimate of derived parameter

SE.estimate  standard error of the estimate

Icl lower 100(1-alpha)% confidence limit

ucl upper 100(1-alpha)% confidence limit

CVn relative SE of number observed (Poisson or binomial assumption)
CVa relative SE of effective sampling area

CVD relative SE of density estimate

For a multi-session or multi-group analysis the value is a list with one component for each session
and group.

The result will also be a list if object is an ‘secrlist’.

Warning

derived() may be applied to detection models fitted by maximizing the full likelihood (CL =
FALSE). However, models using g (groups) will not be handled correctly.

Note

Before version 2.1, the output table had columns for ‘varcomp1’ (the variance in D due to variation
in n, i.e., Huggins’ s?), and ‘varcomp2’ (the variance in D due to uncertainty in estimates of
detection parameters).

These quantities are related to CVn and CVa as follows:

CVn = y/varcompl /D
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CVa = \/varcomp2/D

References

Borchers, D. L. and Efford, M. G. (2007) Supplements to Biometrics paper. Available online at
https://www.otago.ac.nz/density/.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics, 64, 377-385.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133-140.

See Also

predict.secr, print.secr, secr.fit, empirical.varD par.derived
Examples

## Not run:

## extract derived parameters from a model fitted previously
## by maximizing the conditional likelihood

derived (secrdemo.CL)

## what happens when sampling variance is conditional on mask N?
derived(secrdemo.CL, distribution = "binomial”)

## fitted g0, sigma

esa(secrdemo.CL)

## force different g0, sigma

esa(secrdemo.CL, real = c(0.2, 25))

## End(Not run)

details Detail Specification for secr.fit

Description

The function secr.fit allows many options. Some of these are used infrequently and have been
bundled as a single argument details to simplify the documentation. They are described here.

Detail components

details$autoini specifies the session number from which to compute starting values (multi-
session data only; default 1). From 4.0.0, the character value ‘all’ first forms a single-session
capthist using join(); this may be slow or not work at all (especially with telemetry data).

details$centred = TRUE causes coordinates of both traps and mask to be centred on the centroid
of the traps, computed separately for each session in the case of multi-session data. This may be


https://www.otago.ac.nz/density/
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necessary to overcome numerical problems when x- or y-coordinates are large numbers. The default
is not to centre coordinates.

details$chat optionally specifies the overdispersion of unmarked sightings Tu and unidentified
marked sightings Tm. It is used only for mark-resight models, and is usually computed within
secr.fit (details$nsim > @), but may be provided by the user. For a single session ‘chat’ is a
vector of length 2; for multiple sessions it is a 2-column matrix.

details$chatonly = TRUE used with details$nsim > @ causes the overdispersion statistics for
sighting counts Tu and Tm to be estimated and returned as a vector or 2-column matrix (multi-
session models), with no further model fitting.

details$contrasts may be used to specify the coding of factor predictors. The value should be
suitable for the ’contrasts.arg’ argument of model.matrix. See ‘Trend across sessions’ in secr-
multisession.pdf for an example.

details$convexpolygon may be set to FALSE for searches of non-convex polygons. This is
slower than the default which requires poygons to be convex east-west (secr-polygondetectors.pdf).

details$debug is an integer code used to control the printing of intermediate values (1,2) and to
switch on the R code browser (3). In ordinary use it should not be changed from the default (0).

details$Dfnis a function for reparameterizing density models; this is set internally when Dlambda
= TRUE. Exotic variations may be specified directly by the user when Dlambda = FALSE. The
defaults (Dfn = NULL, Dlambda = FALSE) leave the original density model unchanged. Note
there is no connection to userDfn (except that the two are incompatible).

Dlambda if TRUE causes reparameterization of density as the session-on-session finite rate of in-
crease lambda. Details at (secr-trend.pdf).

details$distribution specifies the distribution of the number of individuals detected n; this
may be conditional on the number in the masked area ("binomial") or unconditional ("poisson").
distribution affects the sampling variance of the estimated density. The default is "poisson".
The component ‘distribution’ may also take a numeric value larger than nrow(capthist), rather than
"binomial" or "poisson". The likelihood then treats n as a binomial draw from a superpopulation of
this size, with consequences for the variance of density estimates. This can help to reconcile MLE
with Bayesian estimates using data augmentation.

details$fastproximity controls special handling of data from binary proximity and count detec-
tors. If TRUE and other conditions are met (no temporal variation or groups) then a multi-occasion
capthist is automatically reduced to a count for a single occasion and further compressed by storing
only non-zero counts, which can greatly speed up computation of the likelihood (default TRUE).

details$fixedbeta may be used to fix values of beta parameters. It should be a numeric vector
of length equal to the total number of beta parameters (coefficients) in the model. Parameters to
be estimated are indicated by NA. Other elements should be valid values on the link scale and will
be substituted during likelihood maximisation. Check the order of beta parameters in a previously
fitted model.

details$grain sets the grain argument for multithreading in RcppParallel parallelFor (default 1).
details$grain = @ suppresses multithreading (equivalent to ncores = 1).

details$hessian is a character string controlling the computation of the Hessian matrix from
which variances and covariances are obtained. Options are "none" (no variances), "auto" (the de-
fault) or "fdhess" (use the function f{dHess in nlme). If "auto" then the Hessian from the optimisation
function is used. See also method = "none" below.


https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://www.otago.ac.nz/density/pdfs/secr-polygondetectors.pdf
https://www.otago.ac.nz/density/pdfs/secr-trend.pdf
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details$ignoreusage = TRUE causes the function to ignore usage (varying effort) information
in the traps component. The default (details$ignoreusage = FALSE) is to include usage in the
model.

details$intwidth2 controls the half-width of the interval searched by optimise() for the maxi-
mum likelihood when there is a single parameter. Default 0.8 sets the search interval to (0.2s, 1.8s)
where s is the ‘start’ value.

details$knownmarks = FALSE causes secr.fit to fit a zero-truncated sightings-only model that
implicitly estimates the number of marked individuals, rather than inferring it from the number of
rows in the capthist object.

details$LLonly = TRUE causes the function to returns a single evaluation of the log likelihood at
the ‘start’ values.

details$maxdistance sets a limit to the centroid-to-mask distances considered. The centroid is the
geometric mean of detection locations for each individual. If no limit is specified then summation
is over all mask points. Specifying maxdistance can speed up computation; it is up to the user to
select a limit that is large enough not to affect the likelihood (507?).

details$miscparm (default NULL) is an optional numeric vector of starting values for additional
parameters used in a user-supplied distance function (see ‘userdist’ below). If the vector has a
names attribute then the names will be used for the corresponding coefficients (‘beta’ parameters)
which will otherwise be named ‘miscparm1’, miscparm?2’ etc. These parameters are constant across
each model and do not appear in the model formula, but are estimated along with other coefficients
when the likelihood is maximised. Any transformation (link function) etc. is handled by the user
in the userdist function. The coefficients appear in the output from coef . secr and vcov.secr, but
not predict.secr.

details$newdetector specifies a detector type to use for this fit, replacing the previous detector (traps(capthist)).
The value may be a vector (one value per occasion) or for multi-session data, a list of vectors. A

scalar value (e.g. "proximity") is otherwise used for all occasions and sessions. The true detector

type is usually known and will be specified in the ’traps’ attribute; newdetector is useful in sim-

ulation studies that examine the effect of misspecification. The capthist component of the output

from secr.fit has the new type.

details$nsim specifies the number of replicate simulations to perform to estimate the overdisper-
sion statistics for the sighting counts Tu and Tm. See also details$chat and details$chatonly.

details$paramchooses between various parameterisations of the SECR model. The default details$param
= @ is the formulation in Borchers and Efford (2008) and later papers.

details$param = 1 was once used to select the Gardner & Royle parameterisation of the detection
model (p0, o; Gardner et al. 2009) when the detector type is ‘multi’. This parameterisation was
discontinued in 2.10.0.

details$param = 2 selects parameterisation in terms of (esa(go, o), o) (Efford and Mowat 2014).

details$param = 3 selects parameterisation in terms of (ag(\g, o), o) (Efford and Mowat 2014).
This parameterization is used automatically if a0 appears in the model (e.g., a0 ~ 1).

details$param = 4 selects parameterisation of sigma in terms of the coefficient sigmak and con-
stant ¢ (sigma = sigmak / D*0.5 + ¢) (Efford et al. 2016). If c is not included explicitly in the model
(e.g., ¢ ~ 1) then it is set to zero. This parameterization is used automatically if sigmak appears in
the model (e.g., sigmak ~ 1)

details$param = 5 combines parameterisations (3) and (4) (first compute sigma from D, then com-
pute lambda0 from sigma).
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details$relativeD fits a density model conditional on n that describes relative density instead of
absolute density. This describes the distribution of tagged animals.

details$savecall determines whether the full call to secr.fit is saved in the output object. The
default is TRUE except when called by list.secr.fit as names in the call are then evaluated,
causing the output to become unwieldy.

details$splitmarked determines whether the home range centre of marked animals is allowed to
move between the marking and sighting phases of a spatial capture—mark-resight study. The default
is to assume a common home-range centre (splitmarked = FALSE).

details$telemetrytype determines how telemetry data in the attribute ‘xylist’ are treated. ‘none’
causes the xylist data to be ignored. ‘dependent’ uses information on the sampling distribution of
each home-range centre in the SECR likelihood. ‘concurrent’” does that and more: it splits capthist
according to telemetry status and appends all-zero histories to the telemetry part for any animals
present in xylist. The default is ‘concurrent’.

details$usecov selects the mask covariate to be used for normalization. NULL limits denomina-
tor for normalization to distinguishing habitat from non-habitat.

details$userDfn is a user-provided function for modelling a density surface. See secr-densitysurfaces.pdf

details$userdist is either a function to compute non-Euclidean distances between detectors and
mask points, or a pre-computed matrix of such distances. The first two arguments of the function
should be 2-column matrices of x-y coordinates (respectively k detectors and m mask points). The
third argument is a habitat mask that defines a non-Euclidean habitat geometry (a linear geometry is
described in documentation for the package ‘secrlinear’). The matrix returned by the function must
have exactly k rows and m columns. When called with no arguments the function should return a
character vector of names for the required covariates of ‘mask’, possibly including the dynamically
computed density ‘D and a parameter ‘noneuc’ that will be fitted. A slightly expanded account is
at userdist, and full documentation is in the separate document secr-noneuclidean.pdf.

**Do not use ‘userdist’ for polygon or transect detectors**

References

Efford, M. G., Dawson, D. K., Jhala, Y. V. and Qureshi, Q. (2016) Density-dependent home-range
size revealed by spatially explicit capture—recapture. Ecography 39, 676—688.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture-recapture data.Ecology
95, 1341-1348.

Gardner, B., Royle, J. A. and Wegan, M. T. (2009) Hierarchical models for estimating density from
DNA mark-recapture studies. Ecology 90, 1106-1115.

Royle, J. A., Chandler, R. B., Sun, C. C. and Fuller, A. K. (2013) Integrating resource selection
information with spatial capture-recapture. Methods in Ecology and Evolution 4, 520-530.

See Also

secr.fit , userdist
Examples

## Not run:


https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf
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## Demo of miscparm and userdist

## We fix the usual 'sigma' parameter and estimate the same

## quantity as miscparm[1]. Differences in CI reflect the implied use
## of the identity link for miscparm[1].

mydistfn3 <- function (xy1,xy2, mask) {
if (missing(xy1)) return(character(9@))
xyl <- as.matrix(xy1)
xy2 <- as.matrix(xy2)
miscparm <- attr(mask, 'miscparm')
distmat <- edist(xyl,xy2) / miscparm[1]
distmat

3

fito <- secr.fit (captdata)

fit <- secr.fit (captdata, fixed = list(sigma=1), details =
list(miscparm = c(sig = 20), userdist = mydistfn3))

predict(fite)

coef(fit)

## End(Not run)

detectfn Detection Functions

Description

A detection function relates the probability of detection g or the expected number of detections A
for an animal to the distance of a detector from a point usually thought of as its home-range centre.
In secr only simple 2- or 3-parameter functions are used. Each type of function is identified by its
number or by a 2-3 letter code (version > 2.6.0; see below). In most cases the name may also be
used (as a quoted string).

Choice of detection function is usually not critical, and the default ‘HN’ is usually adequate.

Functions (14)—(20) are parameterised in terms of the expected number of detections A, or cu-
mulative hazard, rather than probability. ‘Exposure’ (e.g. Royle and Gardner 2011) is another
term for cumulative hazard. This parameterisation is natural for the ‘count’ detector type or if
the function is to be interpreted as a distribution of activity (home range). When one of the
functions (14)—(19) is used to describe detection probability (i.e., for the binary detectors ‘sin-
gle’, ‘multi’, ‘proximity’, ‘polygonX’ or ‘transectX’), the expected number of detections is internally
transformed to a binomial probability using g(d) = 1 — exp(—A(d)).

The hazard halfnormal (14) is similar to the halfnormal exposure function used by Royle and Gard-
ner (2011) except they omit the factor of 2 on o2, which leads to estimates of o that are larger by a
factor of sqrt(2). The hazard exponential (16) is identical to their exponential function.

Code Name Parameters Function
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19 HVP  hazard variable power lambda0, sigma, z

detecttn

0 HN halfnormal 20, sigma g(d) = go exp <2f22
1 HR hazard rate 20, sigma, z g(d) = go[l — exp{ (?/5)~*}]
2 EX exponential 20, sigma g(d) = Oexp{ (1/5)}
3CHN  compound halfnormal 20, sigma, z g(d) = go[1l — {1 —exp ( oz )}Z]
4 UN uniform g0, sigma g(d) = go,d <= 0; g(d) = 0, otherwise
5WEX  w exponential 20, sigma, w g9(d) = go,d < w; g(d) = goexp (— —) otherwise

2
6 ANN  annular normal 20, sigma, w g(d) = go exp{ 202 w) }
7CLN  cumulative lognormal 20, sigma, z g(d) = go[l — F{(d — p)/s}]
8 CG cumulative gamma 20, sigma, z g(d) = 0{1 — G(d; k,0)}
9 BSS binary signal strength b0, bl g(d) =1— F{—=(by + b1d)}
10 SS signal strength beta0, betal, sdS  g(d) =1 — F[{c— (8o + £1d)}/s]
11 SSS  signal strength spherical ~ beta0, betal, sdS g(d)=1—F[{c— (Bo+ Bi(d—1) — 10log;, d*
14 HHN hazard halfnormal lambda0, sigma A(d) = Ao exp ( ), g(d) =1 — exp(—A(d))
I5HHR hazard hazard rate lambda0, sigma, z ~ A\(d) = A\o(1 — exp{ (¢
16 HEX hazard exponential lambda0, sigma A(d) = Ao exp{—(?/ U)},
17 HAN  hazard annular normal lambda0, sigma, w  A(d) = g exp{— (‘;U;” )* 1
18 HCG  hazard cumulative gamma  lambda0, sigma,z ~ A(d) = Ag{1l — (d k,0)

A(d)
(

20 HPX  hazard pixelar lambda0, sigma g(d) =1—exp(—A(d)

= Noexp{—(4/,)* })>

Functions (1) and (15), the "hazard-rate" detection functions described by Hayes and Buckland
(1983), are not recommended for SECR because of their long tail, and care is also needed with (2)
and (16).

Function (3), the compound halfnormal, follows Efford and Dawson (2009).

Function (4) uniform is defined only for simulation as it poses problems for likelihood maximisation
by gradient methods. Uniform probability implies uniform hazard, so there is no separate function
‘HUN’.

For function (7), ‘F’ is the standard normal distribution function and y and s are the mean and
standard deviation on the log scale of a latent variable representing a threshold of detection distance.
See Note for the relationship to the fitted parameters sigma and z.

For functions (8) and (18), ‘G’ is the cumulative distribution function of the gamma distribution
with shape parameter k ( = z) and scale parameter 6 ( = sigma/z). See R’s pgamma.

For functions (9), (10) and (11), ‘F’ is the standard normal distribution function and c is an arbitrary
signal threshold. The two parameters of (9) are functions of the parameters of (10) and (11): by =
(Bo — ¢)/sdS and by = (1 /s (see Efford et al. 2009). Note that (9) does not require signal-strength
data or c.

Function (11) includes an additional ‘hard-wired’ term for sound attenuation due to spherical spread-
ing. Detection probability at distances less than 1 m is given by g(d) = 1 — F{(c — fy)/sdS}

Functions (12) and (13) are undocumented methods for sound attenuation.

Function (19) has been used in some published papers and is included for comparison (see e.g.
Ergon and Gardner 2014).

/o) 7}); 9(d) = 1 — exp(=A(d))
(d) =1 — exp(=A(d))
- g(d) = 1 — exp(—A\(d)
b g(d) = 1 — exp(—A\(d)
g(d) =1 — exp(=A(d))
d' <= o;g(d") = 0, otherwise
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Function (20) assigns positive probability of detection only to points within a square pixel (cell) with
side 2 sigma that is centred on the detector. (Typically used with fixed sigma = detector spacing /
2).

Note

The parameters of function (7) are potentially confusing. The fitted parameters describe a latent
threshold variable on the natural scale: sigma (mean) = exp(u + s2/2) and z (standard deviation) =
Vexp(s? + 2u)(exp(s2) — 1). As with other detection functions, sigma is a spatial scale parame-
ter, although in this case it corresponds to the mean of the threshold variable; the standard deviation
of the threshold variable (z) determines the shape (roughly 1/max(slope)) of the detection function.

References

Efford, M. G. and Dawson, D. K. (2009) Effect of distance-related heterogeneity on population size
estimates from point counts. Auk 126, 100-111.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676-2682.

Ergon, T. and Gardner, B. (2014) Separating mortality and emigration: modelling space use, dis-
persal and survival with robust-design spatial capture-recapture data. Methods in Ecology and
Evolution 5, 1327-1336.

Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Bio-
metrics 39, 29-42.

Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture—recapture models for estimating
density from trapping arrays. In: A.F. O’Connell, J.D. Nichols & K.U. Karanth (eds) Camera Traps
in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163-190.

See Also

detectfnplot

detector Detector Type

Description

Extract or replace the detector type.

Usage

detector(object, ...)
detector(object) <- value

Arguments
object object with ‘detector’ attribute e.g. traps
value character string for detector type

other arguments (not used)
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Details

Valid detector types are ‘single’, ‘multi’, ‘proximity’, ‘count’, ‘capped’, ‘signal’, ‘polygon’, ‘tran-
sect’, ‘polygonX’, and ‘transectX’. The detector type is stored as an attribute of a traps object. De-
tector types are mostly described by Efford et al. (2009a,b; see also secr-overview.pdf). Polygon and
transect detector types are for area and linear searches as described in secr-polygondetectors.pdf and
Efford (2011). The ‘signal’ detector type is used for acoustic data as described in secr-sound.pdf.

The ‘capped’ detector type refers to binary proximity data in which no more than one individual
may be detected at a detector on any occasion. The type is partially implemented in secr 3.1.1:
data may be simulated and manipulated, but for model fitting these are treated as proximity data by
secr.fit().

Value

character string for detector type

References
Efford, M. G. (2011) Estimation of population density by spatially explicit capture—recapture with
area searches. Ecology 92, 2202-2207.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009a) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255-269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009b) Population density estimated from
locations of individuals on a passive detector array. Ecology 90, 2676-2682.

See Also

traps, RShowDoc

Examples

## Default detector type is "multi”
temptrap <- make.grid(nx = 6, ny = 8)
detector(temptrap) <- "proximity"
summary (temptrap)

deviance Deviance of fitted secr model and residual degrees of freedom

Description

Compute the deviance or residual degrees of freedom of a fitted secr model, treating multiple ses-
sions and groups as independent. The likelihood of the saturated model depends on whether the
‘conditional’ or ‘full’ form was used, and on the distribution chosen for the number of individuals
observed (Poisson or binomial).


https://www.otago.ac.nz/density/pdfs/secr-polygondetectors.pdf
https://www.otago.ac.nz/density/pdfs/secr-sound.pdf

deviance 67

Usage
## S3 method for class 'secr'
deviance(object, ...)
## S3 method for class 'secr'
df.residual(object, ...)

Arguments
object secr object from secr.fit

other arguments (not used)

Details

The deviance is —2log(L) + 2l0g(Lsat ), where L is the value of the log-likelihood evaluated at its
maximum, and L, is the log-likelihood of the saturated model, calculated thus:

Likelihood conditional on 7 -
Lyqt = log(n!) + 3 [ne log(%+) — log(n,,!)]

Full likelihood, Poisson n -

Lgqt = nlog(n) —n+ 3 [n, log(%e) — log(n!)]
Full likelihood, binomial n -

Lot = nlog(L]\)]) + (N - ’I’L) IOg(

)+ log((N o)+ Z[nw log (%) — log(n!)]
n is the number of individuals observed at least once, N is the number of distinct histories, and N
is the number in a chosen area A that we estimate by N = DA.

The residual degrees of freedom is the number of distinct detection histories minus the number of
parameters estimated. The detection histories of two animals are always considered distinct if they
belong to different groups.

When samples are (very) large the deviance is expected to be distributed as x? with n,, — p degrees
of freedom when p parameters are estimated. In reality, simulation is needed to assess whether a
given value of the deviance indicates a satisfactory fit, or to estimate the overdispersion parameter
c. sim.secr is a convenient tool.

Value
The scalar numeric value of the deviance or the residual degress of freedom extracted from the fitted
model.

References
Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics 64, 377-385.

See Also

secr.fit, sim.secr
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discretize

Examples

deviance(secrdemo.®)
df.residual (secrdemo.@)

discretize Rasterize Area Search or Transect Data

Description

It is sometimes useful to re-cast area-search (polygon or polygonX) data as if it was from a set of
closely spaced point detectors, i.e. to rasterize the detection locations. This function makes that
conversion. Each polygon detector in the input is replaced by a number of point detectors, each
representing a square pixel. Detections are mapped to the new detectors on the basis of their x-y
coordinates.

If object contains transect data the problem is passed to snip and reduce.capthist.

Usage

discretize(object, spacing =5, outputdetector = c("proximity”, "count”, "multi"),

tol = 0.001, cell.overlap = FALSE, type = c("centre”,"any"”, "all"), ...)
Arguments
object secr capthist or traps object
spacing numeric spacing between point detectors in metres

outputdetector character output detector type

tol numeric fractional inflation of perimeter (see Details)
cell.overlap  logical; if TRUE the area of overlap is stored in usage attribute
type character; see Details

other arguments passed to snip if object is transect

Details

The input should have detector type ‘polygon’ or ‘polygonX’.

A new array of equally spaced detectors is generated within each polygon of the input, inflated
radially by 1 + tol to avoid some inclusion problems. The origin of the superimposed grid is fixed
automatically. If type = "centre"” detectors are included if they lie within the (inflated) polygon.
Otherwise, the decision on whether to include a candidate new detector is based on the corner
vertices of the cell around the detector (side = spacing); type = "any” and type = "all"” have the
obvious meanings.
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tol may be negative, in which case the array(s) will be shrunk relative to the polygon(s).

For irregular polygons the edge cells in the output may be only partially contained within the poly-
gon they represent. Set cell.overlap = TRUE to retain the proportion of overlap as the ‘usage’ of
the new traps object. This can take a few seconds to compute. If ‘usage’ is already defined then the
new ‘usage’ is the old multiplied by the proportion of overlap.

Combining type = "any” and cell.overlap = TRUE with tol > 0 can have the odd effect of in-
cluding some marginal detectors that are assigned zero usage.

With type = "any”, the sum of the overlap proportions times cell area is equal to the area of the
polygons.
Value

A capthist or traps object of the requested detector type, but otherwise carrying forward all attributes
of the input. The embedded traps object has a factor covariate ‘polyID’ recording the polygon to
which each point detector relates.

Note

Consider the likely number of detectors in the output before you start.

See Also

reduce.capthist, snip
Examples

## Not run:

## generate some polygon data

pol <- make.poly()

CH <- sim.capthist(pol, popn = list(D = 30), detectfn = 'HHN',
detectpar = list(lambda® = 0.3))

plot(CH, border = 10, gridl = FALSE, varycol = FALSE)

## discretize and plot

CH1 <- discretize(CH, spacing = 10, output = 'count')

plot(CH1, add = TRUE, cappar = list(col = 'orange'), varycol =
FALSE, rad = 0)

plot(traps(CH1), add = TRUE)

# overlay cell boundaries

plot(as.mask(traps(CH1)), dots = FALSE, col = NA, meshcol = 'green',
add = TRUE)

## show how detections are snapped to new detectors
newxy <- traps(CH1)[nearesttrap(xy(CH),traps(CH1)),]
segments(xy(CH)[,1]1, xy(CH)L,21, newxy[,1]1, newxy[,2]1)

plot(traps(CH), add = TRUE) # original polygon
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## Incomplete overlap

pol <- rotate(make.poly(), 45)
CH2 <- sim.capthist(pol, popn = list(D = 30), detectfn = 'HHN',
detectpar = list(lambda® = 0.3))
plot(CH2, border = 10, gridl = FALSE, varycol = FALSE)
CH3 <- discretize(CH2, spacing = 10, output = 'count', type = 'any',
cell.overlap = TRUE, to0l=0.05)

plot(CH3, add = TRUE, cappar = list(col = 'orange'), varycol =
FALSE, rad = @)
plot(traps(CH3), add = TRUE)

# overlay cell boundaries and usage
msk <- as.mask(traps(CH3))
covariates(msk) <- data.frame(usage = usage(traps(CH3))[,1])
plot(msk, dots = FALSE, cov='usage', meshcol = 'green',
add = TRUE)

## End(Not run)

distancetotrap Distance To Nearest Detector

Description

Compute Euclidean distance from each of a set of points to the nearest detector in an array, or return
the sequence number of the detector nearest each point.

Usage

distancetotrap(X, traps)

nearesttrap(X, traps)

Arguments

X coordinates

traps traps object or 2-column matrix of coordinates
Details

distancetotrap returns the distance from each point in X to the nearest detector in traps. It may
be used to restrict the points on a habitat mask.

For traps objects with polygon detector type (polygon, polygonX), and for SpatialPolygons, the
function sf::st_distance is used internally(from secr 4.5.2).
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Value

distancetotrap returns a vector of distances (assumed to be in metres).

nearesttrap returns the index of the nearest trap.

See Also

make . mask

Examples

## restrict a habitat mask to points within 70 m of traps
## this is nearly equivalent to using make.mask with the
## “trapbuffer' option

temptrap <- make.grid()

tempmask <- make.mask(temptrap)

d <- distancetotrap(tempmask, temptrap)

tempmask <- subset(tempmask, d < 70)

Dsurface Density Surfaces

Description

S3 class for rasterized fitted density surfaces. A Dsurface is a type of ‘mask’ with covariate(s) for
the predicted density at each point.

Usage

## S3 method for class 'Dsurface’
print(x, scale =1, ...)

## S3 method for class 'Dsurface’
summary(object, scale =1, ...)

Arguments

x, object Dsurface object to display
scale numeric multiplier for density

other arguments passed to print method for data frames or summary method for
masks
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Details

ellipse.secr

A Dsurface will usually have been constructed with predictDsurface.

The ‘scale’ argument may be used to change the units of density from the default (animals / hectare)
to animals / km”2 (scale = 100) or animals / 100km”2 (scale = 10000).

A virtual S4 class ‘Dsurface’ is defined to allow the definition of a method for the generic function
raster from the raster package.

See Also

predictDsurface, plot.Dsurface

ellipse.secr

Confidence Ellipses

Description

Plot joint confidence ellipse for two parameters of secr model, or for a distribution of points.

Usage
ellipse.secr(object, par = c("g@", "sigma"), alpha = 0.05,
npts = 100, plot = TRUE, linkscale = TRUE, add = FALSE,
col = palette(), ...)
ellipse.bvn(xy, alpha = 0.05, npts = 100, centroid = TRUE, add = FALSE, ...)
Arguments
object secr object output from secr.fit
par character vector of length two, the names of two ‘beta’ parameters
alpha alpha level for confidence intervals
npts number of points on perimeter of ellipse
plot logical for whether ellipse should be plotted
linkscale logical; if FALSE then coordinates will be backtransformed from the link scale
add logical to add ellipse to an existing plot
col vector of one or more plotting colours
arguments to pass to plot functions (or polygon() in the case of ellipse.bvn)
Xy 2-column matrix of coordinates
centroid logical; if TRUE the plotted ellipse is a confidence region for the centroid of

points in xy
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Details

ellipse. secr calculates coordinates of a confidence ellipse from the asymptotic variance-covariance
matrix of the beta parameters (coefficients), and optionally plots it.

If linkscale == FALSE, the inverse of the appropriate link transformation is applied to the coor-
dinates of the ellipse, causing it to deform.

If object is alist of secr models then one ellipse is constructed for each model. Colours are recycled
as needed.

ellipse.bvn plots a bivariate normal confidence ellipse for the centroid of a 2-dimensional distri-
bution of points (default centroid = TRUE), or a Jennrich and Turner (1969) elliptical home-range
model.

Value

A list containing the x and y coordinates is returned invisibly from either function.

References

Jennrich, R. I. and Turner, F. B. (1969) Measurement of non-circular home range. Journal of
Theoretical Biology, 22, 227-237.

Examples

ellipse.secr(secrdemo.®)

empirical.varD Empirical Variance of H-T Density Estimate

Description

Compute Horvitz-Thompson-like estimate of population density from a previously fitted spatial de-
tection model, and estimate its sampling variance using the empirical spatial variance of the number
observed in replicate sampling units. Wrapper functions are provided for several different scenar-
ios, but all ultimately call derivednj. The function derived also computes Horvitz-Thompson-like
estimates, but it assumes a Poisson or binomial distribution of total number when computing the
sampling variance.

Usage

derivednj ( nj, esa, se.esa = NULL, method = c("SRS", "R2", "R3", "local”,
"poisson”, "binomial”), xy = NULL, alpha = 0.05, loginterval = TRUE,
area = NULL, independent.esa = FALSE )

derivedMash ( object, sessnum = NULL, method = c("”"SRS", "local"),
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alpha = 0.05, loginterval = TRUE)

derivedCluster ( object, method = c("SRS", "R2", "R3", "local”, "poisson”, "binomial”),
alpha = 0.05, loginterval = TRUE)

derivedSession ( object, method = c("SRS"”, "R2", "R3", "local”, "poisson”, "binomial"),
xy = NULL, alpha = 0.05, loginterval = TRUE, area = NULL, independent.esa = FALSE )

derivedExternal ( object, sessnum = NULL, nj, cluster, buffer = 100,
mask = NULL, noccasions = NULL, method = c(”"SRS", "local"), xy = NULL,
alpha = 0.05, loginterval = TRUE)

derivedSystematic( object, xy, design = list(), basenx = 10, df =9, extrapolate = TRUE,
alpha = 0.05, loginterval = TRUE, independent.esa = FALSE, keep = FALSE,
ncores = NULL)

Arguments
object fitted secr model
nj vector of number observed in each sampling unit (cluster)
esa estimate of effective sampling area (a)
se.esa estimated standard error of effective sampling area (@(d))
method character string ‘SRS’ or ‘local’
Xy dataframe of x- and y- coordinates (method = "local” only)
alpha alpha level for confidence intervals
loginterval logical for whether to base interval on log(N)
area area of region for method = "binomial" (hectares)

independent.esa
logical; controls variance contribution from esa (see Details)

sessnum index of session in object$capthist for which output required

cluster ‘traps’ object for a single cluster

buffer width of buffer in metres (ignored if mask provided)

mask mask object for a single cluster of detectors

noccasions number of occasions (for nj)

design list specifying systematic design (see Details)

basenx integer number of basis grid points in x-dimension

df integer number of degrees of freedom for gam

extrapolate logical; if FALSE then boxlet p values are inferred from nearest point inside
convex hull of grid

keep logical; if TRUE then derivedSystematic saves key intermediate values as at-
tributes

ncores integer
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Details

derivednj accepts a vector of counts (nj), along with a and @(&) The argument esa may be a
scalar or (if se.esa is NULL) a 2-column matrix with ¢; and @(dj) for each replicate j (row). In the
special case that nj is of length 1, or method takes the values ‘poisson’ or ‘binomial’, the variance
is computed using a theoretical variance rather than an empirical estimate. The value of method
corresponds to ‘distribution’ in derived, and defaults to ‘poisson’. For method = 'binomial' you
must specify area (see Examples).

If independent.esa is TRUE then independence is assumed among cluster-specific estimates of
esa, and esa variances are summed. The default is a weighted sum leading to higher overall variance.

derivedCluster accepts a model fitted to data from clustered detectors; each cluster is interpreted
as a replicate sample. It is assumed that the sets of individuals sampled by different clusters do not
intersect, and that all clusters have the same geometry (spacing, detector number etc.).

derivedMash accepts a model fitted to clustered data that have been ‘mashed’ for fast processing
(see mash); each cluster is a replicate sample: the function uses the vector of cluster frequencies
(n;) stored as an attribute of the mashed capthist by mash.

derivedExternal combines detection parameter estimates from a fitted model with a vector of
frequencies nj from replicate sampling units configured as in cluster. Detectors in cluster are
assumed to match those in the fitted model with respect to type and efficiency, but sampling duration
(noccasions), spacing etc. may differ. The mask should match cluster; if mask is missing, one
will be constructed using the buffer argument and defaults from make . mask.

derivedSession accepts a single fitted model that must span multiple sessions; each session is
interpreted as a replicate sample.

Spatial variance is calculated by one of these methods

Method Description
"SRS" simple random sampling with identical clusters
"R2" variable cluster size cf Thompson (2002:70) estimator for line transects
"R3" variable cluster size cf Buckland et al. (2001)
"local” neighbourhood variance estimator (Stevens and Olsen 2003) SUSPENDED in 4.4.7
"poisson” theoretical (model-based) variance

"binomial” theoretical (model-based) variance in given area

The weighted options R2 and R3 substitute d; for line length I in the corresponding formulae of
Fewster et al. (2009, Eq 3,5). Density is estimated by D = n/A where A = ) a;. The variance of
A is estimated as the sum of the cluster-specific variances, assuming independence among clusters.
Fewster et al. (2009) found that an alternative estimator for line transects derived by Thompson
(2002) performed better when there were strong density gradients correlated with line length (R2 in
Fewster et al. 2009, Eq 3).

The neighborhood variance estimator is implemented in package spsurvey and was originally pro-
posed for generalized random tessellation stratified (GRTS) samples. For ‘local’ variance estimates,
the centre of each replicate must be provided in xy, except where centres may be inferred from the
data. It is unclear whether ‘local’ can or should be used when clusters vary in size.

derivedSystematic implements the ’boxlet’ variance estimator of Fewster (2011) for systematic
designs using clustered detectors (an alternative to derivedCluster and derivedSessions). The
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method is experimental in secr 3.2.0 and may change. The ‘design’ argument is a list with compo-
nents corresponding to arguments of make.systematic, (n and origin are ignored if provided):

Component  Description

cluster traps object for a single cluster
region 2-column matrix or SpatialPolygons
spacing spacing between cluster origins

other arguments passed to trap.builder
e.g. edgemethod, exclude, exclmethod

If region is omitted from design then an attempt will be made to retrieve it from the mask attribute
of object (this works if the call to make .mask used keep.poly = TRUE).

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

estimate estimate of derived parameter

SE.estimate  standard error of the estimate

Icl lower 100(1-alpha)% confidence limit

ucl upper 100(1-alpha)% confidence limit

CVn relative SE of number observed (across sampling units)
CVa relative SE of effective sampling area

CVD relative SE of density estimate

Note

The variance of a Horvitz-Thompson-like estimate of density may be estimated as the sum of two
components, one due to uncertainty in the estimate of effective sampling area (@) and the other due
to gpatial variance in the total number of animals n observed on .J replicate sampling units (n =
> =1 1;). We use a delta-method approximation that assumes independence of the components:

var(n)  var(a)

var(D) = D*{—

n a? }
where var(n) = ﬁ Z'jjzl (nj—n/J)?. The estimate of var(a) is model-based while that of var(n)
is design-based. This formulation follows that of Buckland et al. (2001, p. 78) for conventional dis-
tance sampling. Given sufficient independent replicates, it is a robust way to allow for unmodelled
spatial overdispersion.

There is a complication in SECR owing to the fact that a is a derived quantity (actually an integral)
rather than a model parameter. Its sampling variance var(a) is estimated indirectly in secr by
combining the asymptotic estimate of the covariance matrix of the fitted detection parameters
with a numerical estimate of the gradient of a(6) with respect to 8. This calculation is performed in
derived.
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See Also

derived, esa

Examples

## The ‘ovensong' data are pooled from 75 replicate positions of a

## 4-microphone array. The array positions are coded as the first 4

## digits of each sound identifier. The sound data are initially in the
## object ‘signalCH'. We first impose a 52.5 dB signal threshold as in

## Dawson & Efford (2009, J. Appl. Ecol. 46:1201--1209). The vector nj

## includes 33 positions at which no ovenbird was heard. The first and

## second columns of ‘temp' hold the estimated effective sampling area

## and its standard error.

## Not run:

signalCH.525 <- subset(signalCH, cutval = 52.5)
nonzero.counts <- table(substring(rownames(signalCH.525),1,4))
nj <- c(nonzero.counts, rep(@, 75 - length(nonzero.counts)))
temp <- derived(ovensong.model.1, se.esa = TRUE)

derivednj(nj, temp["esa”,1:21)

## The result is very close to that reported by Dawson & Efford
## from a 2-D Poisson model fitted by maximizing the full likelihood.

## If nj vector has length 1, a theoretical variance is used...
msk <- ovensong.model.1$mask

A <- nrow(msk) * attr(msk, "area”

derivednj (sum(nj), temp[”esa”,1:2], method "poisson")

derivednj (sum(nj), temp["esa”,1:2], method = "binomial”, area = A)

## Set up an array of small (4 x 4) grids,

## simulate a Poisson-distributed population,

## sample from it, plot, and fit a model.

## mash() condenses clusters to a single cluster
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testregion <- data.frame(x = c(0,2000,2000,0),
y = c(0,0,2000,2000))
t4 <- make.grid(nx = 4, ny = 4, spacing = 40)
t4.16 <- make.systematic (n = 16, cluster = t4,
region = testregion)
popn1 <- sim.popn (D = 5, core = testregion,
buffer = 0)
captl <- sim.capthist(t4.16, popn = popnl)
fitl <- secr.fit(mash(capt1), CL = TRUE, trace = FALSE)

## Visualize sampling

tempmask <- make.mask(t4.16, spacing = 10, type =
"clusterbuffer")

plot (tempmask)

plot(t4.16, add = TRUE)

plot(captl, add = TRUE)

## Compare model-based and empirical variances.
## Here the answers are similar because the data
## were simulated from a Poisson distribution,
## as assumed by \code{derived}

derived(fit1)
derivedMash(fit1)

## Now simulate a patchy distribution; note the
## larger (and more credible) SE from derivedMash().

popn2 <- sim.popn (D = 5, core = testregion, buffer = 0,
model2D = "hills"”, details = list(hills = c(-2,3)))

capt2 <- sim.capthist(t4.16, popn = popn2)

fit2 <- secr.fit(mash(capt2), CL = TRUE, trace = FALSE)

derived(fit2)

derivedMash(fit2)

## The detection model we have fitted may be extrapolated to
## a more fine-grained systematic sample of points, with

## detectors operated on a single occasion at each...

## Total effort 400 x 1 = 400 detector-occasions, compared
## to 256 x 5 = 1280 detector-occasions for initial survey.

t1 <- make.grid(nx =1, ny = 1)

t1.100 <- make.systematic (cluster = t1, spacing = 100,
region = testregion)

capt2a <- sim.capthist(t1.100, popn = popn2, noccasions = 1)

## one way to get number of animals per point

nj <- attr(mash(capt2a), "n.mash")

derivedExternal (fit2, nj = nj, cluster = t1, buffer = 100,
noccasions = 1)

## Review plots
library(MASS)
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base.plot <- function() {

eqscplot( testregion, axes = FALSE, xlab = "",

ylab = "", type = "n")

polygon(testregion)
3
par(mfrow = c(1,3), xpd = TRUE, xaxs = "i", yaxs = "i")
base.plot()
plot(popn2, add = TRUE, col = "blue")
mtext(side=3, line=0.5, "Population”, cex=0.8, col="black")
base.plot()
plot (capt2a, add = TRUE,title = "Extensive survey")
base.plot()
plot(capt2, add = TRUE, title = "Intensive survey")

"o

par(mfrow = c(1,1), xpd = FALSE, xaxs = "r", yaxs = "r") ## defaults

## Weighted variance

derivedSession(ovenbird.model.1, method = "R2")

## End(Not run)

esa.plot Mask Buffer Diagnostic Plot

Description

Plot effective sampling area (Borchers and Efford 2008) as a function of increasing buffer width.

Usage

esa.plot (object, max.buffer = NULL, spacing = NULL, max.mask = NULL,
detectfn, detectpar, noccasions, binomN = NULL, thin = 0.1,
poly = NULL, poly.habitat = TRUE, session = 1, plt = TRUE,
type = c('density', 'esa', 'meanpdot', 'CVpdot'), n = 1, add = FALSE,

overlay = TRUE, conditional = FALSE, ...)
Arguments
object traps object or secr object output from secr.fit
max.buffer maximum width of buffer in metres
spacing distance between mask points

max . mask mask object
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detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. — see detectfn
detectpar list of values for named parameters of detection function
noccasions number of sampling occasions
binomN integer code for discrete distribution (see secr.fit)
thin proportion of mask points to retain in plot and output
poly matrix of two columns interpreted as the x and y coordinates of a bounding

poly.habitat

polygon (optional)

logical as in make . mask

session vector of session indices (used if object spans multiple sessions)

plt logical to plot results

type character, what to plot

n integer number of distinct individuals detected

add logical to add line to an existing plot

overlay logical; if TRUE then automatically add = TRUE for plots after the first

conditional logical; if TRUE the reported mean and CV are conditional on detection (see
CVpdot)
graphical arguments passed to plot() and lines()

Details

Effective sampling area (esa) is defined as the integral of net capture probability (p.(X)) over a
region. esa.plot shows the effect of increasing region size on the value of esa for fixed values of
the detection parameters. The max.buffer or max.mask arguments establish the maximum extent
of the region; points (cells) within this mask are sorted by their distance dj, from the nearest detector.
esa(buffer) is defined as the cumulative sum of ¢p.(X) for di,(X) <= buffer, where c is the area
associated with each cell.

The default (type = 'density') is to plot the reciprocal of esa multiplied by n; this is on a more
familiar scale (the density scale) and hence is easier to interpret.

Because esa. plot uses the criterion ‘distance to nearest detector’, max . mask should be constructed
to include all habitable cells within the desired maximum buffer and no others. This is achieved with
type = "trapbuffer” in make.mask. It is a good idea to set the spacing argument of make .mask
rather than relying on the default based on nx. Spacing may be small (e.g. sigma/10) and the buffer
of max.mask may be quite large (e.g. 10 sigma), as computation is fast.

Thinning serves to reduce redundancy in the plotted points, and (if the result is saved and printed)
to generate more legible numerical output. Use thin=1 to include all points.

esa.plot calls the internal function esa.plot.secr when object is a fitted model. In this case
detectfn, detectpar and noccasions are inferred from object.

Value

A dataframe with columns

buffer buffer width
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esa computed effective sampling area
density n/esa

pdot p.(X)

pdotmin cumulative minimum (p.(X))

meanpdot expected pdot across mask (see CVpdot)
CVpdot CV of pdot across mask (see CVpdot)

If p1lt = TRUE the dataframe is returned invisibly.

Note

The response of effective sampling area to buffer width is just one possible mask diagnostic; it’s fast,
graphic, and often sufficient. mask.check performs more intensive checks, usually for a smaller
number of buffer widths.

The old argument ’as.density’ was superceded by ’type’ in 3.1.7.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics 64, 377-385.

See Also

mask, pdot, CVpdot, make.mask, mask.check, Detection functions

Examples

## Not run:

## with previously fitted model
esa.plot(secrdemo.0)

## from scratch
trps <- make.grid()
msk <- make.mask(trps, buffer = 200, spacing = 5, type = "trapbuffer")
detectpar <- list(gd = 0.2, sigma = 25)
esa.plot(trps,,, msk, @, detectpar, nocc = 10, col = "blue")
esa.plot(trps,,, msk, @, detectpar, nocc = 5, col = "green”,

add = TRUE)

esa.plot(trps,,, msk, @, detectpar, nocc = 5, thin = 0.002, plt = FALSE)

## End(Not run)
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esa.plot.secr Mask Buffer Diagnostic Plot (internal)

Description

Internal function used to plot effective sampling area (Borchers and Efford 2008) as a function of
increasing buffer width given an ‘secr’ object

Usage

esa.plot.secr (object, max.buffer = NULL, max.mask = NULL,
thin = 0.1, poly = NULL, poly.habitat = TRUE, session = 1, plt = TRUE,

type = "density"”, add = FALSE, overlay = TRUE, conditional = FALSE, ...)
Arguments
object secr object output from secr.fit
max.buffer maximum width of buffer in metres
max . mask mask object
thin proportion of mask points to retain in plot and output
poly matrix of two columns interpreted as the x and y coordinates of a bounding
polygon (optional)
poly.habitat logical as in make . mask
session vector of session indices (used if object spans multiple sessions)
plt logical to plot results
type character; see esa.plot
add logical to add line to an existing plot
overlay logical; if TRUE then automatically add = TRUE for plots after the first
conditional logical; see esa.plot

graphical arguments passed to plot() and lines()

Details

esa.plot.secr provides a wrapper for esa.plot that is called internally from esa.plot when it is
presented with an secr object. Arguments of esa.plot such as detectfn are inferred from the
fitted model.

If max.mask is not specified then a maximal mask of type ‘trapbuffer’ is constructed using max. buffer
and the spacing of the mask in object. In this case, if max.buffer is not specified then it is set
either to the width of the existing plot (add = TRUE) or to 10 x sigma-hat from the fitted model in
object (add = FALSE).
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Value

see esa.plot

See Also

esa.plot, mask, pdot, make.mask, mask.check, Detection functions

expected.n Expected Number of Individuals

Description

Computes the expected number of individuals detected across a detector layout or at each cluster of
detectors.

Usage

expected.n(object, session = NULL, group = NULL, bycluster
= FALSE, splitmask = FALSE, ncores = NULL)

Arguments
object secr object output from secr.fit
session character session vector
group group — for future use
bycluster logical to output the expected number for clusters of detectors rather than whole
array
splitmask logical for computation method (see Details)
ncores integer number of threads to be used for parallel processing
Details

The expected number of individuals detected is E(n) = [ p.(X)D(X)dX where the integration
is a summation over object$mask. p.(X) is the probability an individual at X will be detected at
least once either on the whole detector layout (bycluster = FALSE) or on the detectors in a single
cluster (see pdot for more on p.). D(X) is the expected density at X, given the model. D(X) is
constant (i.e. density surface flat) if object$CL == TRUE or object$model$D == ~1, and for some
other possible models.

If the bycluster option is selected and detectors are not, in fact, assigned to clusters then each
detector will be treated as a cluster, with a warning.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).
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By default, a full habitat mask is used for each cluster. This is the more robust option. Alternatively,
the mask may be split into subregions defined by the cells closest to each cluster.

The calculation takes account of any fitted continuous model for spatial variation in density (note
Warning).

Value

The expected count (bycluster = FALSE) or a vector of expected counts, one per cluster. For multi-
session data, a list of such vectors.

Warning

This function changed slightly between 2.1.0 and 2.1.1, and now performs as indicated here when
bycluster = TRUE and clusters are not specified.

Clusters of detectors are assumed to be independent (always true with detector types ‘proximity’,
‘count’ etc.). The computed E(n) does not apply when there is competition among clusters of
detectors.

The prediction of density at present considers only the base level of density covariates, such as
cell-specific habitat variables.

See Also

region.N

Examples

## Not run:

expected.n(secrdemo.0)
expected.n(secrdemo.@, bycluster = TRUE)
expected.n(ovenbird.model.D)

## Clustered design

mini <- make.grid(nx = 3, ny = 3, spacing = 50, detector =
"proximity")

tempgrids <- trap.builder (cluster = mini , method = "all”,
frame = expand.grid(x = seq(1000, 9000, 2000),
y = seq(1000, 9000, 2000)), plt = TRUE)

capt <- sim.capthist(tempgrids, popn = list(D = 2))

tempmask <- make.mask(tempgrids, buffer = 100,
type = "clusterbuffer”)

fit <- secr.fit(capt, mask = tempmask, trace = FALSE)

En <- expected.n(fit, bycluster = TRUE)

## GoF or overdispersion statistic

p <- length(fit$fit$par)

y <- cluster.counts(capt)

## scaled by n-p

sum((y - En)*2 / En) / (length(En)-p)
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sum((y - En)*2 / En) / sum(y/En)

## End(Not run)

extractMoves Simulated Movements

Description

Extract movements from a previously simulated multi-session population.

Usage

extractMoves(pop, plotn = NULL, add = FALSE, collapse = TRUE, maxradius = Inf, ...)

Arguments
pop popn object from sim.popn
plotn integer maximum number of instances to plot at each session
add logical for whether to add to existing plot
collapse logical; if TRUE plots for sessions 2, 3,... are added to the first
maxradius numeric radius for selecting subset of initial locations

arguments passed to arrows
Details

This function is mostly used to check the movement simulations.

Moves are constrained by the edge (argument ‘edgemethod’ of sim.popn). ‘maxradius’ may be
set to restrict the extraction to the subset of animals initially near the centroid of the arena in each
session.

Plotting uses the graphics function arrows that has some quirks, such as difficult-to-suppress warn-
ings for zero-length moves. Set code = @ to suppress arrowheads; length = 9.1 to shorten to 0.1
inches, etc.

Value

List of data frames, one for each session but the last (columns ‘x1°,‘y1’,‘x2’,°y2’,‘d’).

See Also

turnover, sim. popn
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Examples

set.seed(12345)

pop3 <- sim.popn(D = 2, core = make.grid(), buffer = 200, nsessions = 3,
details = list(lambda = 1.0, movemodel = 'BVE', move.a = 50,
edgemethod = 'stop'))

m <- extractMoves(pop3, plotn = 10, length = 0.1)

mean(unlist(sapply(m, '[', 'd"'))) # less than nominal 2 x move.a

# For distances closer to nominal for BVE (2 x move.a = 100),
# increase size of arena (e.g., buffer = 500) and consider only
# central animals (e.g., maxradius = 300).

FAQ Frequently Asked Questions, And Others

Description

A place for hints and miscellaneous advice.

How do I install and start secr?

Follow the usual procedure for installing from CRAN archive (see menu item Packages | Install
package(s)... in Windows). You also need to get the package abind from CRAN.

Like other contributed packages, secr needs to be loaded before each use e.g.,library(secr).

You can learn about changes in the current version with news (package = "secr").

How can I get help?

There are three general ways of displaying documentation from within R. Firstly, you can bring up
help pages for particular functions from the command prompt. For example:

?secr or ?secr.fit

Secondly, help.search() lets you ask for a list of the help pages on a vague topic (or just use ?? at
the prompt). For example:

?? "linear models”
Thirdly, you can display various secr documents listed in secr-package.

Tip: to search all secr help pages open the pdf version of the manual in Acrobat Reader (secr-
manual.pdf; see also ?secr) and use <ctrl> F.

There is a support forum at http://www.phidot.org/forum/ under ‘DENSITYIsecr’ and another
at secrgroup. See below for more R tips. Some specific problems with secr.fit are covered in
Troubleshooting.


https://www.otago.ac.nz/density/pdfs/secr-manual.pdf
https://www.otago.ac.nz/density/pdfs/secr-manual.pdf
http://www.phidot.org/forum/
https://groups.google.com/forum/#!forum/secrgroup
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How should I report a problem?

If you get really stuck or find something you think is a bug then please report the problem to one of
the online lists.

You may be asked to send an actual dataset - ideally, the simplest one that exhibits the prob-
lem. Use save to wrap several R objects together in one .RData file, e.g., save("captdata”,
"secrdemo.@”, "secrdemo.b”, file = "mydata.RData"). Also, paste into the text of your mes-
sage the output from packageDescription( "secr” ).

Why do I get different answers from secr and Density?

Strictly speaking, this should not happen if you have specified the same model and likelihood,
although you may see a little variation due to the different maximization algorithms. Likelihoods
(and estimates) may differ if you use different integration meshes (habitat masks), which can easily
happen because the programs differ in how they set up the mesh. If you want to make a precise
comparison, save the Density mesh to a file and read it into secr, or vice versa.

Extreme data, especially rare long-distance movements, may be handled differently by the two
programs. The ‘minprob’ component of the ‘details’ argument of secr.fit sets a lower threshold
of probability for capture histories (smaller values are all set to minprob), whereas Density has no
explicit limit.

How can I speed up model fitting and model selection?

There are many ways - see Speed tips and secr-troubleshooting.pdf.

Keep the number of mask points to a minimum and avoid detection covariates with many levels.

Does secr use multiple cores?

Some computations can be run in parallel on multiple processors (most desktops these days have
multiple cores). Likelihood calculations in secr.fit assign capture histories to multiple parallel
threads whenever possible.

The number of threads (cores) is controlled by an environment variable set by setNumThreads or
the *ncores’ argument of some functions.

Can a model use detector-level covariates that vary over time?
Yes. See ?timevaryingcov. However, a more direct way to control for varying effort is provided -
see the ‘usage’ atribute, which now allows a continuous measure of effort (secr-varyingeffort.pdf).

A tip: covariate models for detection fit more quickly when the covariate takes only a few different
values. Use binCovariate to bin values.

Things You Might Need To Know About R

The function findFn in package sos lets you search CRAN for R functions by matching text in their
documentation.

There is now a vast amount of R advice available on the web. For the terminally frustrated,
‘R inferno’ by Patrick Burns is recommended (https://www.burns-stat.com/pages/Tutor/R_
inferno.pdf). "If you are using R and you think you’re in hell, this is a map for you".


https://www.otago.ac.nz/density/pdfs/secr-troubleshooting.pdf
https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
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Method functions for S3 classes cannot be listed in the usual way by typing the function name at
the R prompt because they are ‘hidden’ in a namespace. Get around this with getAnywhere(). For
example:

getAnywhere(print.secr)

R objects have ‘attributes’ that usually are kept out of sight. Important attributes are ‘class’ (all
objects), ‘dim’ (matrices and arrays) and ‘names’ (lists). secr hides quite a lot of useful data as
named ‘attributes’. Usually you will use summary and extraction methods (traps, covariates,
usage etc.) to view and change the attributes of the various classes of object in secr. If you're
curious, you can reveal the lot with ‘attributes’. For example, with the demonstration capture history
data ‘captdata’:

traps(captdata) ## extraction method for “traps'
attributes(captdata) ## all attributes
Also, the function str provides a compact summary of any object:

str(captdata)

References

Claeskens, G. and Hjort N. L. (2008) Model Selection and Model Averaging. Cambridge: Cam-
bridge University Press.

Fletcher.chat Estimate overdispersion

Description

General function for estimating a variance inflation factor (¢) from observed counts.

Usage

Fletcher.chat (observed, expected, np, verbose = TRUE,
type = c('Fletcher', 'Wedderburn', 'both'), multinomial = FALSE)

Arguments
observed integer vector of observed counts, or a list of such vectors
expected numeric vector of expected counts
np integer number of parameters estimated
verbose logical; if TRUE returns extended output
type character

multinomial logical; if TRUE, one df is subtracted for the constraint
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Details

Fletcher.chat applies the overdispersion formula of Fletcher (2012) or computes the conventional
(Wedderburn 1974) variance inflation factor X2/df. It is used by chat.nk and adjustVarD. The
inputs ‘observed’ and ‘expected’ are vectors of counts (e.g., number of distinct individuals per
detector); ‘observed’ may also be a list of such vectors, possibly simulated.

Value

Output depends on ‘verbose’, ‘observed’ and ‘type’:

— if ‘observed’ is a list of nk vectors (usually generated by simulation) then the output is a vector
of (Fletcher or Wedderburn) ¢ values, one element for each component of ‘observed’, unless type =
"both" when the output is a list of two such vectors. Argument ‘verbose’ is ignored.

— if ‘observed’ is a simple vector then ‘verbose’ output is a list comprising input values, various
summary statistics, and the computed Fletcher overdispersion (‘chat’). The statistic ‘cX2’ is the
conventional variance inflation factor of Wedderburn (1974) — X2 /df. For verbose = FALSE, a
single estimate of ¢ is returned when type = "Fletcher” or type = "Wedderburn”, otherwise a
vector of the two estimates.

References

Fletcher, D. (2012) Estimating overdispersion when fitting a generalized linear model to sparse data.
Biometrika 99, 230-237.

Wedderburn, R. W. M. (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-
Newton method. Biometrika 61, 439—47.

See Also

chat.nk, adjustVarD

fx.total Activity Centres of Detected and Undetected Animals

Description

The summed probability densities of both observed and unobserved individuals are computed for a
fitted model and dataset.

Usage

fx.total(object, sessnum = 1, mask = NULL, ncores = NULL, ...)
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Arguments
object a fitted secr model
sessnum session number if object$capthist spans multiple sessions
mask x- and y- coordinates of points at which density will be computed
ncores integer number of threads to be used for parallel processing
other arguments passed to detectpar and thence to predict.secr
Details

This function calls fxi.secr for each detected animal and overlays the results to obtain a summed
probability density surface D.fx for the locations of the home-range centres of detected individuals.

A separate calculation using pdot provides the expected spatial distribution of undetected animals,
as another density surface: crudely, D.nc(X) = D(X) * ( 1 — pdot(X)).

The pointwise sum of the two surfaces is sometimes used to represent the spatial distrbution of the
population, but see Notes.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).
Value

An object of class ‘Dsurface’ (a variety of mask) with a ‘covariates’ attribute that is a dataframe
with columns —

D.fx sum of fxi over all detected individuals
D.nc expected density of undetected (‘not caught’) individuals
D.sum sum of D.fx and D.nc

All densities are in animals per hectare (the ‘scale’ argument of plot.Dsurface allows the units to
be varied later).
Note

The surface D.sum represents what is known from the data about a specific realisation of the spatial
point process for home range centres: varying the intensity of sampling will change its shape. It is
not an unbiased estimate of a biologically meaningful density surface. The surface will always tend
to lack relief towards the edge of a habitat mask where the main or only contribution is from D.nc.

References
Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics 64, 377-385.

See Also

fxi.secr, fxi.contour, pdot
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Examples

## Not run:
tmp <- fx.total(secrdemo.®)

## to plot we must name one of the covariates:
## the Dsurface default 'D.@' causes an error

plot(tmp, covariate = 'D.sum', col = terrain.colors(16),
plottype = 'shaded')

plot(tmp, covariate = 'D.sum', col = 'white', add = TRUE,
plottype = 'contour')

if (interactive()) {
spotHeight(tmp, prefix = 'D.sum')

}

fxsurface <- fx.total(ovenbird.model.D, sessnum = 3)
plot(fxsurface, covariate = 'D.sum')

## End(Not run)

fxi Probability Density of Home Range Centre

Description

Display contours of the probability density function for the estimated location of one or more range
centres, compute values for particular points X, or compute mode of pdf. The pdf is given by
f(Xj|wi) = Pr(w;|X;)m(X;), where w(X) is the probability density of range centres across the
mask (Borchers and Efford 2008).

Usage

fxi.contour (object, i = 1, sessnum = 1, border = 100, nx = 64,
levels = NULL, p = seq(0.1,0.9,0.1), plt = TRUE, add = FALSE,
fitmode = FALSE, plotmode = FALSE, fill = NULL,

output = c('list','sf', 'SPDF'), ncores = NULL, ...)
fxi.secr(object, i = NULL, sessnum = 1, X = NULL, ncores = NULL)
fxi.mode(object, i = 1, sessnum = 1, start = NULL, ncores = NULL, ...)
Arguments
object a fitted secr model
i integer or character vector of individuals (defaults to all in fxi.secr), or a single

individual as input to fxi.mode
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sessnum session number if object$capthist spans multiple sessions
border width of blank margin around the outermost detectors

nx dimension of interpolation grid in x-direction

levels numeric vector of confidence levels for Pr(XIwi)

p numeric vector of contour levels as probabilities

plt logical to plot contours

add logical to add contour(s) to an existing plot

fitmode logical to refine estimate of mode of each pdf

plotmode logical to plot mode of each pdf

X 2-column matrix of x- and y- coordinates (defaults to mask)
fill vector of colours to fill contours (optional)

output character; format of output (list, sf or SpatialPolygonsDataFrame)
ncores integer number of threadss to be used for parallel processing
start vector of x-y coordinates for maximization

additional arguments passed to contour or nlm

Details

fxi.contour computes contours of probability density for one or more detection histories. Increase
nx for smoother contours. If levels is not set, contour levels are set to approximate the confidence
levels in p.

fxi.secr computes the probability density for one or more detection histories; X may contain
coordinates for one or several points; a dataframe or vector (X then y) will be coerced to a matrix.

fxi.mode attempts to find the x- and y-coordinates corresponding to the maximum of the pdf for a
single detection history (i.e. i is of length 1). fxi.mode calls nlm.

fxi.contour with fitmode = TRUE calls fxi.mode for each individual. Otherwise, the reported
mode is an approximation (mean of coordinates of highest contour).

If i is character it will be matched to row names of object$capthist (restricted to the relevant session
in the case of a multi-session fit); otherwise it will be interpreted as a row number.

Values of the pdf are normalised by dividing by the integral of Pr(w;|X )7 (X) over the habitat mask
in object. (May differ in secr 4.0).

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

If start is not provided to fit.mode then (from 2.9.4) the weighted mean of all detector sites is
used (see Warning below).

The ... argument gives additional control over a contour plot; for example, set drawlabels = FALSE
to suppress contour labels.
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Value

fxi.contour (output = list’) —

Coordinates of the plotted contours are returned as a list with one component per polygon. The list
is returned invisibly if plt = TRUE.

An additional component ‘mode’ reports the x-y coordinates of the highest point of each pdf (see
Details).

fxi.contour (output =’SPDF’) —

Contours are returned as a SpatialPolygonsDataFrame (see package sp) with one component per
animal. The attributes dataframe has two columns, the x- and y-coordinates of the mode. The
SpatialPolygonsDataFrame is returned invisibly if plt = TRUE.

fxi.contour (output = ’sf”) — simple features ’st” object, as for SPDF.
fxi.secr —

Vector of probability densities

fxi.mode —

List with components ‘x” and ‘y’

Warnings

fxi.mode may fail to find the true mode unless a good starting point is provided. Note that the
distribution may have multiple modes and only one is reported. The default value of start before
secr 2.9.4 was the first detected location of the animal.

Note

From secr 2.8.3, these functions work with both homogeneous and inhomogeneous Poisson density
models, and fxi.secr accepts vector-valued i.

See fx.total for a surface summed across individuals.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture-recapture studies. Biometrics 64, 377-385.

See Also

pdot.contour, contour, fx.total
Examples

## Not run:
fxi.secr(secrdemo.@, i = 1, X = c(365,605))

## contour first 5 detection histories
plot(secrdemo.@$capthist)
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fxi.contour (secrdemo.@, i = 1:5, add = TRUE,
plotmode = TRUE, drawlabels = FALSE)

## extract modes only

## these are more reliable than those from fit.mode called directly as
## they use a contour-based approximation for the starting point

fxiout <- fxi.contour (secrdemo.@, i = 1:5, plt = FALSE, fitmode = TRUE)
t(sapply(fxiout, "[[", "mode"))

## using fill colours

## 1ty = @ suppresses contour lines

## nx = 256 ensures smooth outline

plot(traps(captdata))

fxi.contour(secrdemo.@, i = 1:5, add = TRUE, p = ¢(0.5,0.95), drawlabels
= FALSE, nx = 256, fill = topo.colors(4), lty = @)

## output as simple features
sf <- fxi.contour(secrdemo.@, i = 1:3, plt = FALSE, p = c(0.5,0.95),
nx = 256, output = 'sf', fitmode = TRUE)

## save as ESRI shapefile testsf.shp etc.
library(sf)

st_write(sf, 'testsf.shp')

## plot contours and modes
plot(st_as_sfc(sf)) # outline only
points(sf$modex, sf$modey)

## output as SpatialPolygonsDataFrame

spdf <- fxi.contour(secrdemo.@, i = 1:3, plt = FALSE, p = c(0.5,0.95),
nx = 256, output = 'SPDF', fitmode = TRUE)

sp::plot(spdf)

points(data.frame(spdf))

## End(Not run)

gridCells Construct Grid Cells

Description

Forms grid cells centred on input points.

Usage

gridCells(x, cellsize = spacing(x), crs = NA)
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Arguments
X matrix or dataframe with x- and y-coordinates
cellsize length of gridcell side
crs crs description suitable for st_crs

Details

The argument x will often be a traps or mask object with spacing attribute. Otherwise cellsize
must be provided.

Value

A simple features (sf) object of class ‘sfc. MULTIPOLYGON’.
crs may be the integer EPSG code (e.g. 3578 Yukon Albers).

See Also

plotMaskEdge, spacing

Examples

plot(gridCells(traps(captdata)))
plot(traps(captdata), add = TRUE)

hcov Hybrid Mixture Model

Description

The argument hcov in secr.fit is used to fit a hybrid mixture model. ‘Hybrid’ refers to a flexible
combination of latent classes (as in a finite mixture) and known classes (cf groups or sessions).
A hybrid mixture model includes a parameter ‘pmix’ for the mixing proportion and optionally
allows detection parameters to be modelled as class-specific ( ~ h2). This is particularly useful for
modelling sex ratio and sex differences in detection, and matches the Bayesian sex-specific model
of Gardner et al. (2010).

For observed animals all of unknown class the model is identical to a finite mixture (i.e. latent-class)
model. For observed animals all of known class, the classes are no longer ‘latent’ and the model is
equivalent to a grouped model with an additional binomial factor for class membership.

Assumptions

hcov identifies a single individual covariate (the class covariate) that should be a factor with two
levels, or contain character values that will be coerced to a factor (e.g., ‘f’, ‘m’). Missing values
(NA) are used for individuals of unknown class. If hcov has more than two levels, all but the first
two levels are converted to NA (but see exception for h3 models below).

It is assumed that the probability of recording a missing value for the class covariate is independent
of the true class membership (e.g., sex equally likely to be recorded for males and females).
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Operational details

A hybrid mixture model is fitted whenever hcov is not NULL. Mixture models include a parameter
‘pmix’, the mixing proportion. If the covariate identified by hcov is missing (*° or NA) for all
individuals and a mixture term (h2 or h3) appears in the detection model (e.g., g0 ~ h2) then a
conventional finite mixture model is fitted (cf Pledger 2000, Borchers & Efford 2008).

As with finite mixture models, any detection parameter (g0, sigma etc.) may be modelled as de-
pending on mixture class by model specifications such as (g0 ~ h2, sigma ~ h2). See Examples.

In general hcov has been designed for two classes and two classes are assumed if neither ‘h2’ nor
‘h3’ appears in the model formulae. However, there is a small exception: hcov may have three
non-missing levels if ‘h3’ appears in a model formula. Note that h2 cannot be combined with h3;
h3 is for advanced use only and has not been fully tested.

The number of fitted parameters is the same as the corresponding finite mixture model if mixture
terms (‘h2’, ‘h3’) appear in the model formulae. Otherwise (no mixture terms) estimating pmix
requires a single extra parameter. The estimate of pmix then depends solely on the observed class
proportions in the covariate, and the beta variance-covariance matrix will show zero covariance of
pmix with other detection parameters.

Models for pmix

Variation in the parameter pmix may be modelled across sessions i.e., models such as pmix ~ session
or pmix ~ Session are valid, as are formulae involving session covariates defined in the sessioncov
argument of secr.fit.

If no mixture term appears in the formula for pmix then one is added automatically (usually ‘h2’).
This serves mostly to keep track of values in the output.

Attempting to model pmix as a function of individual covariates or other within-session terms (t, b
etc.) will cause an error.

Interpreting output

When you display a fitted secr model the parameter estimates are in a final section headed ‘Fitted
(real) parameters evaluated at base levels of covariates’. The same output may be obtained by calling
the predict method directly. Calling predict has the advantage that you can obtain estimates for
levels of the covariates other than the base levels, by specifying newdata. An example below shows
how to specify h2 in newdata. [Note: predict is generic, and you must consult ?predict.secr to see
the help for the specific implementation of this method for fitted secr objects].

The output from predict. secr for a mixture model is a list with one component for each (possibly
latent) class. Each row corresponds to a fitted real parameter: ordinarily these include the detection
parameters (e.g., g0, sigma) and the mixing proportion (pmix).

In the case of a model fitted by maximizing the full likelihood (CL = FALSE), density D will also
appear in the output. Note that only one parameter for density is estimated, the total density across
classes. This total density figure appears twice in the output, once for each class.

The standard error (SE.estimate) is shown for each parameter. These are asymptotic estimates back-
transformed from the link scale. The confidence limits are also back-transformed from the link scale
(95% CI by default; vary alpha in predict.secr if you want e.g. 90% CI).

The mixing proportion pmix depends on the composition of the sample with respect to hcov and
the detection model. For a null detection model the mixing proportion is exactly the proportion in



hcov 97

the sample, with appropriate binomial confidence limits. Otherwise, the mixing proportion adjusts
for class differences in the probability and scale of detection (see Examples).

The preceding refers to the default behaviour when pmix ~ h2. It is possible also to fix the mixing
proportion at any arbitrary value (e.g., fixed = list(pmix = 0.5) for 1:1 sex ratio).

On output the classes are tagged with the factor levels of hcov, regardless of how few or how many
individuals were actually of known class. If only a small fraction were of known class, and there is
cryptic variation unrelated to hcov, then the association between the fitted classes and the nominal
classes (i.e. levels of hcov) may be weak, and should not be trusted.

Limitations

Hybrid mixture models are incompatible with groups as presently implemented.

The hcov likelihood conditions on the number of known-class individuals. A model fitted with hcov
= NULL or with a different hcov covariate has in effect a different data set, and likelihoods, deviances
or AICs cannot be compared. AIC can be used to compare models provided they all have the same
hcov covariate in the call to secr. fit, whether or not h2 appears in the model definition.

Likelihood

The likelihood of the hybrid mixture model is detailed in an appendix of the vignette secr-finitemixtures.pdf.

References

Borchers, D.L. and Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture—
recapture studies. Biometrics 64, 377-385.

Gardner, B., Royle, J.A., Wegan, M.T., Rainbolt, R. and Curtis, P. (2010) Estimating black bear
density using DNA data from hair snares. Journal of Wildlife Management 74, 318-325.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture-recapture models us-
ing mixtures. Biometrics 56, 434—442.

See Also

secr.fit

Examples

## Not run:

## house mouse dataset, morning trap clearances
## 81 female, 78 male, 1 unknown

morning <- subset(housemouse, occ = ¢(1,3,5,7,9))
summary (covariates(morning))

## speedy model fitting with coarse mask
mmask <- make.mask(traps(morning), buffer = 20, nx = 32)

## assuming equal detection of males and females
## fitted sex ratio p(female) = 0.509434 = 81 / (81 + 78)


https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf

98

head

" n

fit.0 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE)
predict(fit.o)

## allowing sex-specific detection parameters

## this leads to new estimate of sex ratio

fit.h2 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,
model = list(gd ~ h2, sigma ~ h2))

predict(fit.h2)

n

## specifying newdata for h2 - equivalent to predict(fit.h2)
predict(fit.h2, newdata = data.frame(h2 = factor(c('f','m'))))

## conditional likelihood fit of preceding model

## estimate of sex ratio does not change

fit.CL.h2 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,
CL = TRUE, model = list(gd ~ h2, sigma ~ h2))

predict(fit.CL.h2)

”

## did sexes differ in detection parameters?
fit.CL.Q <- secr.fit(morning, hcov = "sex"”, mask = mmask, trace = FALSE,
CL = TRUE, model = list(gd ~ 1, sigma ~ 1))

LR.test(fit.CL.h2, fit.CL.0)

n

## did sex ratio deviate from 1:17?

fit.CL.h2.50 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,
CL = TRUE, model = 1list(g@ ~ h2, sigma ~ h2), fixed = list(pmix = 0.5))

LR.test(fit.CL.h2, fit.CL.h2.50)

## did sexes show extra-compensatory variation in lambda@?

## (Efford and Mowat 2014)

fit.CL.a@ <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,
CL = TRUE, model = list(a@ ~ 1, sigma ~ h2))

LR.test(fit.CL.h2, fit.CL.a®)

## trend in ovenbird sex ratio, assuming sex-specific detection

omask <- make.mask(traps(ovenCH), buffer = 300, nx = 32)

fit.sextrend <- secr.fit(ovenCH, model = list(g@~h2, sigma~h2, pmix~Session),
hcov = "Sex", CL = TRUE, mask = omask, trace = FALSE)

predict(fit.sextrend)[1:5]

## End(Not run)

head First or Last Part of an Object

Description

Returns the first or last parts of secr objects
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Usage
## S3 method for class 'mask'
head(x, n=6L, )
## S3 method for class 'Dsurface'
head(x, n=6L, )
## S3 method for class 'traps'
head(x, n=6L, D)
## S3 method for class 'capthist'
head(x, n=6L, D)
## S3 method for class 'mask'
tail(x, n=6L, J)
## S3 method for class 'Dsurface’
tail(x, n=6L, )
## S3 method for class 'traps'
tail(x, n=6L, J)
## S3 method for class 'capthist'
tail(x, n=6L, ...)
Arguments
X ‘mask’, ‘traps’ or ‘capthist’ object
n a single integer. If positive, size for the resulting object: number of elements for
a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but the n last/first number of elements of x.
other arguments passed to subset
Details

These custom S3 methods retain the class of the target object, unlike the default methods applied to

‘mask’, ‘Dsurface’, ‘traps’ or ‘capthist’ objects.

Value

An object of the same class as x, but (usually) fewer rows.

See Also

head, tail

Examples

head(possummask)
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homerange Home Range Statistics

Description

Some ad hoc measures of home range size may be calculated in secr from capture—recapture data:

dbar is the mean distance between consecutive capture locations, pooled over individuals (e.g.
Efford 2004). moves returns the raw distances.

MMDM (for ‘Mean Maximum Distance Moved’) is the average maximum distance between detections
of each individual i.e. the observed range length averaged over individuals (Otis et al. 1978).

ARL (or ‘Asymptotic Range Length’) is obtained by fitting an exponential curve to the scatter of
observed individual range length vs the number of detections of each individual (Jett and Nichols
1987: 889).

RPSV (for ‘Root Pooled Spatial Variance’) is a measure of the 2-D dispersion of the locations at
which individual animals are detected, pooled over individuals (cf Calhoun and Casby 1958, Slade
and Swihart 1983).

moves reports the distance between successive detections of each animal.
centroids reports the averaged coordinates of each animal’s detections

ORL reports the observed range length of each animal, the maximum distance between any two
detections.

trapsPerAnimal ta