sboost: Machine Learning with AdaBoost on Decision Stumps

Creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) <doi:10.1006/jcss.1997.1504>. This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.

Version: 0.1.2
Depends: R (≥ 3.4.0)
Imports: dplyr (≥ 0.7.6), rlang (≥ 0.2.1), Rcpp (≥ 0.12.17), stats (≥ 3.4)
LinkingTo: Rcpp (≥ 0.12.17)
Suggests: testthat
Published: 2022-05-26
DOI: 10.32614/CRAN.package.sboost
Author: Jadon Wagstaff [aut, cre]
Maintainer: Jadon Wagstaff <jadonw at>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: sboost results


Reference manual: sboost.pdf


Package source: sboost_0.1.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): sboost_0.1.2.tgz, r-oldrel (arm64): sboost_0.1.2.tgz, r-release (x86_64): sboost_0.1.2.tgz, r-oldrel (x86_64): sboost_0.1.2.tgz
Old sources: sboost archive


Please use the canonical form to link to this page.