Package 'runstats'

October 14, 2022

Type Package

Title Fast Computation of Running Statistics for Time Series

Version 1.1.0

Description Provides methods for fast computation of running sample statistics for time series. These include: (1) mean, (2) standard deviation, and (3) variance over a fixed-length window of time-series, (4) correlation, (5) covariance, and (6) Euclidean distance (L2 norm) between short-time pattern and time-series. Implemented methods utilize Convolution Theorem to compute convolutions via Fast Fourier Transform (FFT).

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

URL https://github.com/martakarass/runstats

BugReports https://github.com/martakarass/runstats/issues

Imports fftwtools

Suggests covr, testthat, ggplot2, knitr, rmarkdown, sessioninfo, rbenchmark, cowplot, spelling

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Marta Karas [aut, cre] (<https://orcid.org/0000-0001-5889-3970>), Jacek Urbanek [aut] (<https://orcid.org/0000-0002-1890-8899>), John Muschelli [ctb] (<https://orcid.org/0000-0001-6469-1750>), Lacey Etzkorn [ctb]

Maintainer Marta Karas <marta.karass@gmail.com>

Repository CRAN

Date/Publication 2019-11-14 20:30:02 UTC

R topics documented:

RunningCor	
RunningCov	
RunningL2Norm	
RunningMean	
RunningSd	
Running Var	
runstats.demo	
	1
	1

Index

RunningCor

Fast Running Correlation Computation

Description

Computes running correlation between time-series x and short-time pattern y.

Usage

RunningCor(x, y, circular = FALSE)

Arguments

х	A numeric vector.
У	A numeric vector, of equal or shorter length than x.
circular	logical; whether running correlation is computed assuming circular nature of x
	time-series (see Details).

Details

Computes running correlation between time-series x and short-time pattern y. The length of output vector equals the length of x. Parameter circular determines whether x time-series is assumed to have a circular nature. Assume l_x is the length of time-series x, l_y is the length of short-time pattern y.

If circular equals TRUE then

- first element of the output vector corresponds to sample correlation between x[1:1_y] and y,
- last element of the output vector corresponds to sample correlation between $c(x[1_x], x[1:(1_y 1)])$ and y.

If circular equals FALSE then

- first element of the output vector corresponds to sample correlation between $x[1:1_y]$ and y,
- the $l_x W + 1$ -th element of the output vector corresponds to sample correlation between $x[(1_x 1_y + 1):1_x]$,
- last W-1 elements of the output vector are filled with NA.

See runstats.demo(func.name = "RunningCor") for a detailed presentation.

RunningCov

Value

A numeric vector.

Examples

```
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100]
out1 <- RunningCor(x, y, circular = TRUE)
out2 <- RunningCor(x, y, circular = FALSE)
plot(out1, type = "1"); points(out2, col = "red")
```

RunningCov

Fast Running Covariance Computation

Description

Computes running covariance between time-series x and short-time pattern y.

Usage

RunningCov(x, y, circular = FALSE)

Arguments

х	A numeric vector.
У	A numeric vector, of equal or shorter length than x.
circular	Logical; whether running variance is computed assuming circular nature of x
	time-series (see Details).

Details

Computes running covariance between time-series x and short-time pattern y.

The length of output vector equals the length of x. Parameter circular determines whether x timeseries is assumed to have a circular nature. Assume l_x is the length of time-series x, l_y is the length of short-time pattern y.

If circular equals TRUE then

- first element of the output vector corresponds to sample covariance between x[1:1_y] and y,
- last element of the output vector corresponds to sample covariance between c(x[l_x], x[1:(l_y 1)]) and y.

If circular equals FALSE then

- first element of the output vector corresponds to sample covariance between x[1:1_y] and y,
- the $l_x W + 1$ -th last element of the output vector corresponds to sample covariance between $x[(1_x 1_y + 1):1_x]$,
- last W-1 elements of the output vector are filled with NA.

See runstats.demo(func.name = "RunningCov") for a detailed presentation.

Value

A numeric vector.

Examples

```
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100]
out1 <- RunningCov(x, y, circular = TRUE)
out2 <- RunningCov(x, y, circular = FALSE)
plot(out1, type = "1"); points(out2, col = "red")
```

RunningL2Norm Fast Running L2 Norm Computation

Description

Computes running L2 norm between between time-series x and short-time pattern y.

Usage

RunningL2Norm(x, y, circular = FALSE)

Arguments

х	A numeric vector.
У	A numeric vector, of equal or shorter length than x.
circular	logical; whether running L2 norm is computed assuming circular nature of x
	time-series (see Details).

Details

Computes running L2 norm between between time-series x and short-time pattern y. The length of output vector equals the length of x. Parameter circular determines whether x time-series is assumed to have a circular nature. Assume l_x is the length of time-series x, l_y is the length of short-time pattern y.

If circular equals TRUE then

- first element of the output vector corresponds to sample L2 norm between x[1:1_y] and y,
- last element of the output vector corresponds to sample L2 norm between c(x[1_x], x[1:(1_y 1)]) and y.

If circular equals FALSE then

- first element of the output vector corresponds to sample L2 norm between x[1:1_y] and y,
- the $l_x W + 1$ -th element of the output vector corresponds to sample L2 norm between x[(1_x 1_y + 1):1_x],
- last W-1 elements of the output vector are filled with NA.

See runstats.demo(func.name = "RunningL2Norm") for a detailed presentation.

RunningMean

Value

A numeric vector.

Examples

```
## Ex.1.
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y1 <- x[1:100] + rnorm(100)
y2 <- rnorm(100)
out1 <- RunningL2Norm(x, y1)
out2 <- RunningL2Norm(x, y2)
plot(out1, type = "1"); points(out2, col = "blue")
## Ex.2.
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100] + rnorm(100)
out1 <- RunningL2Norm(x, y, circular = TRUE)
out2 <- RunningL2Norm(x, y, circular = FALSE)
plot(out1, type = "1"); points(out2, col = "red")
```

```
RunningMean
```

Fast Running Mean Computation

Description

Computes running sample mean of a time-series x in a fixed length window.

Usage

```
RunningMean(x, W, circular = FALSE)
```

Arguments

х	A numeric vector.
W	A numeric scalar; length of x window over which sample mean is computed.
circular	Logical; whether running sample mean is computed assuming circular nature of x time-series (see Details).

Details

The length of output vector equals the length of x vector. Parameter circular determines whether x time-series is assumed to have a circular nature. Assume l_x is the length of time-series x, W is a fixed length of x time-series window.

If circular equals TRUE then

- first element of the output time-series corresponds to sample mean of x[1:W],
- last element of the output time-series corresponds to sample mean of c(x[1_x], x[1:(W 1)]).

If circular equals FALSE then

- first element of the output time-series corresponds to sample mean of x[1:W],
- $l_x W + 1$ -th element of the output time-series corresponds to sample mean of x[(1_x W + 1):1_x],
- last W-1 elements of the output time-series are filled with NA.

See runstats.demo(func.name = "RunningMean") for a detailed presentation.

Value

A numeric vector.

Examples

```
x <- rnorm(10)
RunningMean(x, 3, circular = FALSE)
RunningMean(x, 3, circular = TRUE)</pre>
```

```
RunningSd
```

Fast Running Standard Deviation Computation

Description

Computes running sample standard deviation of a time-series x in a fixed length window.

Usage

```
RunningSd(x, W, circular = FALSE)
```

Arguments

х	A numeric vector.
W	A numeric scalar; length of x window over which sample variance is computed.
circular	Logical; whether running sample standard deviation is computed assuming cir-
	cular nature of x time-series (see Details).

Details

The length of output vector equals the length of x vector. Parameter circular determines whether x time-series is assumed to have a circular nature. Assume l_x is the length of time-series x, W is a fixed length of x time-series window.

If circular equals TRUE then

- first element of the output time-series corresponds to sample standard deviation of x[1:W],
- last element of the output time-series corresponds to sample standard deviation of c(x[1_x], x[1:(W 1)]).

RunningVar

If circular equals FALSE then

- first element of the output time-series corresponds to sample standard deviation of x[1:W],
- the l_x W + 1-th element of the output time-series corresponds to sample standard deviation of x[(l_x - W + 1):l_x],
- last W-1 elements of the output time-series are filled with NA.

See runstats.demo(func.name = "RunningSd") for a detailed presentation.

Value

A numeric vector.

Examples

x <- rnorm(10)
RunningSd(x, 3, circular = FALSE)
RunningSd(x, 3, circular = FALSE)</pre>

RunningVar

Fast Running Variance Computation

Description

Computes running sample variance of a time-series x in a fixed length window.

Usage

```
RunningVar(x, W, circular = FALSE)
```

Arguments

х	A numeric vector.
W	A numeric scalar; length of x window over which sample variance is computed.
circular	Logical; whether running sample variance is computed assuming circular nature of x time-series (see Details).

Details

The length of output vector equals the length of x vector. Parameter circular determines whether x time-series is assumed to have a circular nature. Assume l_x is the length of time-series x, W is a fixed length of x time-series window.

If circular equals TRUE then

- first element of the output time-series corresponds to sample variance of x[1:W],
- last element of the output time-series corresponds to sample variance of c(x[1_x], x[1:(W 1)]).

If circular equals FALSE then

- first element of the output time-series corresponds to sample variance of x[1:W],
- the $l_x W + 1$ -th element of the output time-series corresponds to sample variance of x[(1_x W + 1):1_x],
- last W-1 elements of the output time-series are filled with NA.

See runstats.demo(func.name = "RunningVar") for a detailed presentation.

Value

A numeric vector.

Examples

x <- rnorm(10)
RunningVar(x, W = 3, circular = FALSE)
RunningVar(x, W = 3, circular = TRUE)</pre>

runstats.demo Demo visualization of package functions

Description

Generates demo visualization of output of methods for computing running statistics.

Usage

```
runstats.demo(func.name = "RunningCov")
```

Arguments

func.name

- Character value; one of the following:
 - "RunningMean",
 - "RunningSd",
 - "RunningVar",
 - "RunningCov",
 - "RunningCor",
 - "RunningL2Norm".

Value

NULL

runstats.demo

Examples

```
## Not run:
runstats.demo(func.name = "RunningMean")
runstats.demo(func.name = "RunningSd")
runstats.demo(func.name = "RunningVar")
runstats.demo(func.name = "RunningCov")
runstats.demo(func.name = "RunningCor")
runstats.demo(func.name = "RunningL2Norm")
```

End(Not run)

Index

RunningCor, 2 RunningCov, 3 RunningL2Norm, 4 RunningMean, 5 RunningSd, 6 RunningVar, 7 runstats.demo, 8