Definitions of ψ-Functions Available in Robustbase

Manuel Koller and Martin Mächler

January 4, 2021

Contents

1 Monotone ψ-Functions 2
 1.1 Huber ... 3

2 Redescenders 3
 2.1 Bisquare ... 4
 2.2 Hampel ... 5
 2.3 GGW .. 6
 2.4 LQQ .. 7
 2.5 Optimal ... 8
 2.6 Welsh ... 9

Preamble

Unless otherwise stated, the following definitions of functions are given by Maronna et al. (2006, p. 31), however our definitions differ sometimes slightly from theirs, as we prefer a different way of standardizing the functions. To avoid confusion, we first define ψ- and ρ-functions.

Definition 1 A ψ-function is a piecewise continuous function $\psi : \mathbb{R} \to \mathbb{R}$ such that

1. ψ is odd, i.e., $\psi(-x) = -\psi(x) \forall x$,

2. $\psi(x) \geq 0$ for $x \geq 0$, and $\psi(x) > 0$ for $0 < x < x_r := \sup \{ \hat{x} : \psi(\hat{x}) > 0 \}$ ($x_r > 0$, possibly $x_r = \infty$).

3* Its slope is 1 at 0, i.e., $\psi'(0) = 1$.

Note that ‘3*’ is not strictly required mathematically, but we use it for standardization in those cases where ψ is continuous at 0. Then, it also follows (from 1.) that $\psi(0) = 0$, and we require $\psi(0) = 0$ also for the case where ψ is discontinuous in 0, as it is, e.g., for the M-estimator defining the median.

Definition 2 A ρ-function can be represented by the following integral of a ψ-function,

$$\rho(x) = \int_0^x \psi(u)du ,$$

which entails that $\rho(0) = 0$ and ρ is an even function.

A ψ-function is called redescending if $\psi(x) = 0$ for all $x \geq x_r$ for $x_r < \infty$, and x_r is often called rejection point. Corresponding to a redescending ψ-function, we define the function $\tilde{\rho}$, a version of ρ standardized such as to attain maximum value one. Formally,

$$\tilde{\rho}(x) = \rho(x)/\rho(\infty).$$
Note that \(\rho(\infty) = \rho(x_r) \equiv \rho(x) \forall |x| \geq x_r. \) \(\tilde{\rho} \) is a \(\rho \)-function as defined in Maronna et al. (2006) and has been called \(\chi \) function in other contexts. For example, in package robustbase, `Mchi(x, *)` computes \(\tilde{\rho}(x) \), whereas `Mpsi(x, *, deriv=-1)` ("(-1)-st derivative" is the primitive or antiderivative) computes \(\rho(x) \), both according to the above definitions.

Note: An alternative slightly more general definition of redescending would only require \(\rho(\infty) := \lim_{x \to \infty} \rho(x) \) to be finite. E.g., "Welsh" does not have a finite rejection point, but *does* have bounded \(\rho \), and hence well defined \(\rho(\infty) \), and we *can* use it in `lmrob()`.

Weakly redescending \(\psi \) functions. Note that the above definition does require a finite rejection point \(x_r \). Consequently, e.g., the score function \(s(x) = -f'(x)/f(x) \) for the Cauchy (= \(t_1 \)) distribution, which is \(s(x) = 2x/(1 + x^2) \) and hence non-monotone and "re descends” to 0 for \(x \to \pm \infty \), and \(\psi_C(x) := s(x)/2 \) also fulfills \(\psi_C'(0) = 1 \), but it has \(x_r = \infty \) and hence \(\psi_C() \) is *not* a redescending \(\psi \)-function in our sense. As they appear e.g. in the MLE for \(t_\nu \), we call \(\psi \)-functions fulfilling \(\lim_{x \to \infty} \psi(x) = 0 \) weakly redescending. Note that they’d naturally fall into two sub categories, namely the one with a finite \(\rho \)-limit, i.e. \(\rho(\infty) := \lim_{x \to \infty} \rho(x) \), and those, as e.g., the \(t_\nu \) score functions above, for which \(\rho(x) \) is unbounded even though \(\rho' = \psi \) tends to zero.

1 **Monotone \(\psi \)-Functions**

Monotone \(\psi \)-functions lead to convex \(\rho \)-functions such that the corresponding M-estimators are defined uniquely.

Historically, the “Huber function” has been the first \(\psi \)-function, proposed by Peter Huber in Huber (1964).

\[1\text{E-mail Oct. 18, 2014 to Manuel and Werner, proposing to change the definition of “redescending”.
}
1.1 Huber

The family of Huber functions is defined as,

\[\rho_k(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \leq k \\ k(|x| - \frac{k}{2}) & \text{if } |x| > k \end{cases} \]

\[\psi_k(x) = \begin{cases} x & \text{if } |x| \leq k \\ k \text{ sign}(x) & \text{if } |x| > k \end{cases} \]

The constant \(k \) for 95% efficiency of the regression estimator is 1.345.

> plot(huberPsi, x., ylim=c(-1.4, 5), leg.loc="topright", main=FALSE)

![Figure 1: Huber family of functions using tuning parameter \(k = 1.345. \)](image)

2 Redescenders

For the MM-estimators and their generalizations available via \texttt{lmrob()} (and for some methods of \texttt{nlrob()}), the \(\psi \)-functions are all redescending, i.e., with finite “rejection point” \(x_r = \sup\{t; \psi(t) > 0\} < \infty \). From \texttt{lmrob}, the psi functions are available via \texttt{lmrob.control}, or more directly, \texttt{.Mpsi.tuning.defaults},

> names(.Mpsi.tuning.defaults)

[1] "huber" "bisquare" "welsh" "ggw" "lqq"
[6] "optimal" "hampel"

and their \(\psi, \rho, \psi' \), and weight function \(w(x) := \psi(x)/x \), are all computed efficiently via C code, and are defined and visualized in the following subsections.
2.1 Bisquare

Tukey’s bisquare (aka “biweight”) family of functions is defined as,

\[\hat{\rho}_k(x) = \begin{cases}
1 - (1 - (x/k)^2)^3 & \text{if } |x| \leq k \\
1 & \text{if } |x| > k
\end{cases} \]

with derivative \(\hat{\rho}'_k(x) = 6\psi_k(x)/k^2 \) where,

\[\psi_k(x) = x \left(1 - \left(\frac{x}{k}\right)^2\right)^2 \cdot I\{|x|\leq k\} \cdot \]

The constant \(k \) for 95% efficiency of the regression estimator is 4.685 and the constant for a breakdown point of 0.5 of the S-estimator is 1.548. Note that the exact default tuning constants for M- and MM- estimation in robustbase are available via .Mpsi.tuning.default() and .Mchi.tuning.default(), respectively, e.g., here,

```r
> print(c(k.M = .Mpsi.tuning.default("bisquare"), k.S = .Mchi.tuning.default("bisquare")), digits = 10)

k.M  k.S
4.685061 1.547640
```

and that the p.psiFun(.) utility is available via

```r
> source(system.file("xtraR/plot-psiFun.R", package = "robustbase", mustWork=TRUE))
```

```r
> p.psiFun(x., "biweight", par = 4.685)
```

![Figure 2: Bisquare family functions using tuning parameter \(k = 4.685 \).](image-url)
2.2 Hampel

The Hampel family of functions (Hampel et al., 1986) is defined as,

\[
\tilde{\rho}_{a,b,r}(x) = \begin{cases}
\frac{1}{2} x^2 / C & |x| \leq a \\
\frac{1}{2} (a^2 + a(|x| - a)) / C & a < |x| \leq b \\
\frac{a}{2} \left(2b - a + (|x| - b) \left(1 + \frac{r-|x|}{r-b}\right)\right) / C & b < |x| \leq r \\
1 & r < |x|
\end{cases}
\]

\[
\psi_{a,b,r}(x) = \begin{cases}
x & |x| \leq a \\
a \text{sign}(x) & a < |x| \leq b \\
a \text{sign}(x) \frac{r-|x|}{r-b} & b < |x| \leq r \\
0 & r < |x|
\end{cases}
\]

where \(C := \rho(\infty) = \rho(r) = \frac{a}{2} \left(2b - a + (r - b)\right) = \frac{a}{2} (b - a + r). \)

As per our standardization, \(\psi \) has slope 1 in the center. The slope of the redescending part \((x \in [b, r])\) is \(-a/(r - b)\). If it is set to \(-\frac{1}{2}\), as recommended sometimes, one has

\[r = 2a + b. \]

Here however, we restrict ourselves to \(a = 1.5k, b = 3.5k\), and \(r = 8k\), hence a redescending slope of \(-\frac{1}{3}\), and vary \(k\) to get the desired efficiency or breakdown point.

The constant \(k\) for 95% efficiency of the regression estimator is 0.902 (0.9016085, to be exact) and the one for a breakdown point of 0.5 of the S-estimator is 0.212 (i.e., 0.2119163).

![Figure 3: Hampel family of functions using tuning parameters 0.902 · (1.5, 3.5, 8).](image)
2.3 GGW

The Generalized Gauss-Weight function, or ggw for short, is a generalization of the Welsh ψ-function (subsection 2.6). In Koller and Stahel (2011) it is defined as,

$$\psi_{a,b,c}(x) = \begin{cases} x & |x| \leq c \\ \exp \left(-\frac{1}{2} \frac{|x| - c}{a} \right) x & |x| > c \end{cases}$$

Our constants, fixing $b = 1.5$, and minimal slope at $-\frac{1}{2}$, for 95% efficiency of the regression estimator are $a = 1.387$, $b = 1.5$ and $c = 1.063$, and those for a breakdown point of 0.5 of the S-estimator are $a = 0.204$, $b = 1.5$ and $c = 0.296$:

```r
> cT <- rbind(cc1 = .psi.ggw.findc(ms = -0.5, b = 1.5, eff = 0.95 ), cc2 = .psi.ggw.findc(ms = -0.5, b = 1.5, bp = 0.5)); cT

cc1 0 1.3863620 1.5 1.0628199 4.7773893
cc2 0 0.2036739 1.5 0.2959131 0.3703396
```

Note that above, $cc*[1] = 0$, $cc*[5] = \rho(\infty)$, and $cc*[2:4] = (a, b, c)$. To get this from (a, b, c), you could use

```r
> ipsi.ggw <- .psi2ipsi("GGW") # = 5
> ccc <- c(0, cT[,1:4], 1)
> integrate(.Mpsi, 0, Inf, ccc=ccc, ipsi=ipsi.ggw)$value # = rho(Inf)

[1] 4.777389
```

```r
> p.psiFun(x., "GGW", par = c(-.5, 1, .95, NA))
```

The GGW family of functions using tuning parameters $a = 1.387$, $b = 1.5$ and $c = 1.063$.

![GGW family of functions](image-url)
2.4 LQQ

The “linear quadratic quadratic” ψ-function, or \textit{lqq} for short, was proposed by Koller and Stahel (2011). It is defined as,

$$\psi_{b,c,s}(x) = \begin{cases}
 x & |x| \leq c \\
 \text{sign}(x) \left(|x| - \frac{s}{2b} (|x| - c)^2 \right) & c < |x| \leq b + c \\
 \text{sign}(x) \left(c + b - \frac{bs}{2} + \frac{s-1}{a} \left(\frac{1}{2} \tilde{x}^2 - a\tilde{x} \right) \right) & b + c < |x| \leq a + b + c \\
 0 & \text{otherwise},
\end{cases}$$

where

$$\tilde{x} := |x| - b - c \quad \text{and} \quad a := (2c + 2b - bs)/(s - 1).$$

(3)

The parameter c determines the width of the central identity part. The sharpness of the bend is adjusted by b while the maximal rate of descent is controlled by s ($s = 1 - \min_x \psi'(x) > 1$).

From (3), the length a of the final descent to 0 is a function of b, c and s.

> cT <- rbind(cc1 = .psi.lqq.findc(ms= -0.5, b.c = 1.5, eff=0.95, bp=NA),
+ cc2 = .psi.lqq.findc(ms= -0.5, b.c = 1.5, eff=NA , bp=0.50))
> colnames(cT) <- c("b", "c", "s"); cT

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4734061</td>
<td>0.9822707</td>
<td>1.5</td>
</tr>
<tr>
<td>0.4015457</td>
<td>0.2676971</td>
<td>1.5</td>
</tr>
</tbody>
</table>

If the minimal slope is set to $-\frac{1}{2}$, i.e., $s = 1.5$, and $b/c = 3/2 = 1.5$, the constants for 95% efficiency of the regression estimator are $b = 1.473$, $c = 0.982$ and $s = 1.5$, and those for a breakdown point of 0.5 of the S-estimator are $b = 0.402$, $c = 0.268$ and $s = 1.5$.

> p.psiFun(x., "LQQ", par = c(-.5,1.5,.95,NA))

![Figure 5: LQQ family of functions using tuning parameters $b = 1.473$, $c = 0.982$ and $s = 1.5$.](image)
2.5 Optimal

The optimal ψ function as given by Maronna et al. (2006, Section 5.9.1),

\[\psi_c(x) = \text{sign}(x) \left(-\frac{\varphi'(|x|) + c}{\varphi(|x|)} \right)_+, \]

where \(\varphi \) is the standard normal density, \(c \) is a constant and \(t_+ := \max(t, 0) \) denotes the positive part of \(t \).

Note that the \texttt{robustbase} implementation uses rational approximations originating from the \texttt{robust} package’s implementation. That approximation also avoids an anomaly for small \(x \) and has a very different meaning of \(c \).

The constant for 95% efficiency of the regression estimator is 1.060 and the constant for a breakdown point of 0.5 of the S-estimator is 0.405.

![Figure 6: ‘Optimal’ family of functions using tuning parameter \(c = 1.06 \).](image)
2.6 Welsh

The Welsh ψ function is defined as,

\[
\tilde{\rho}_k(x) = 1 - \exp\left(-\frac{(x/k)^2}{2}\right) \\
\psi_k(x) = k^2 \tilde{\rho}_k'(x) = x \exp\left(-\frac{(x/k)^2}{2}\right) \\
\psi'_k(x) = \left(1 - \frac{x}{k}\right) \exp\left(-\frac{(x/k)^2}{2}\right)
\]

The constant k for 95% efficiency of the regression estimator is 2.11 and the constant for a breakdown point of 0.5 of the S-estimator is 0.577.

Note that GGW (subsection 2.3) is a 3-parameter generalization of Welsh, matching for $b = 2$, $c = 0$, and $a = k^2$ (see R code there):

\[
\begin{align*}
&> ccc \leftarrow c(0, a = 2.11^2, b = 2, c = 0, 1) \\
&> (ccc[5] <- integrate(.Mpsi, 0, Inf, ccc=ccc, ipsi = 5)$value) # = rho(Inf) \\
&\textbf{[1]} \ 4.4521
\end{align*}
\]

\[
> \text{stopifnot(all.equal}(\text{Mpsi}(x., ccc, \text{"GGW"}), \text{## psi[GGW]}(x; a=k^2, b=2, c=0) == + \text{Mpsi}(x., 2.11, \text{"Welsh"})))\text{## psi[Welsh](x; k)}
\]

Figure 7: Welsh family of functions using tuning parameter $k = 2.11$.

References

