Package 'robomit'

October 14, 2022

Version 1.0.6 **Date** 2021-06-21

Title Robustness Checks for Omitted Variable Bias
Maintainer Sergei Schaub <seschaub@ethz.ch></seschaub@ethz.ch>
intainer Sergei Schaub <seschaub@ethz.ch> scription Robustness checks for omitted variable bias. The package includes robustness checks proposed by Oster (2019). robomit the estimate i) the bias-adjusted treatment correlation or effect and ii) the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result based on the fram work by Oster (2019). Additionally, robomit offers a set of sensitivity analysis and visualization functions. See: Oster, E. 2019. <doi:10.1080 07350015.2016.1227711="">. **ense MIT + file LICENSE** **coding UTF-8** **exygenNote 7.1.1** **ports plm, dplyr, ggplot2, broom, tidyr, tibble, stats, ggests testthat** **edsCompilation** **edsCompilation** **note the result based on the fram work by Oster (2019). <doi:10.1080 07350015.2016.1227711="">. **ense MIT + file LICENSE** **exygenNote 7.1.1** **ports plm, dplyr, ggplot2, broom, tidyr, tibble, stats, ggests testthat** **edsCompilation** **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result based on the fram work by Oster (2019). **edsCompilation** **note the result bas</doi:10.1080></doi:10.1080></seschaub@ethz.ch>
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1
Imports plm, dplyr, ggplot2, broom, tidyr, tibble, stats,
Suggests testthat
NeedsCompilation no
Author Sergei Schaub [aut, cre] (https://orcid.org/0000-0001-8477-3737), ETH Zurich [cph]
Repository CRAN
Date/Publication 2021-06-22 06:50:02 UTC
R topics documented:
o_beta 2 o_beta_boot 3 o_beta_boot_inf 5 o_beta_boot_viz 6 o_beta_rsq 8 o_beta_rsq_viz 10 o_delta 11 o_delta_boot 13

o_beta

o_be	ta	b	eta	*																		
Index																						22
	o_delta_rsq_viz .					•	 •	•		•	 •				•	٠		•	•			20
	o_delta_rsq																					
	o_delta_boot_viz																					16
	o_delta_boot_inf																					14

Description

Estimates beta*, i.e., the bias-adjusted treatment effect (or correlation) (following Oster 2019).

Usage

```
o_beta(y, x, con, m = "none", w = NULL, id = "none", time = "none", delta = 1, R2max, type, data)
```

Arguments

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta* should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta* should be estimated.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates beta*, i.e., the bias-adjusted treatment effect (or correlation).

Value

Returns tibble object, which includes beta* and various other information.

o_beta_boot 3

References

Oster, E. (2019) Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

o_beta_boot

Bootstrapped beta*s

Description

Estimates bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

```
o_beta_boot(y, x, con, m = "none", w = NULL, id = "none", time = "none", delta = 1, R2max, sim, obs, rep, type, useed = NA, data)
```

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
w	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.

o_beta_boot

id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Estimates bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_beta_boot_inf 5

o_beta_boot_inf

Bootstrapped mean beta* and confidence intervals

Description

Provides the mean and confidence intervals of estimated bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

```
o_beta_boot_inf(y, x, con, m = "none", w = NULL, id = "none", time = "none", delta = 1, R2max, sim, obs, rep, CI, type, useed = NA, data)
```

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

o_beta_boot_viz

Details

Provides the mean and confidence intervals of estimated bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes the mean and confidence intervals of estimated bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# compute the mean and confidence intervals of estimated bootstrapped beta*s
                         (y = "mpg",  # dependent variable
x = "wt",  # independent treatment variables
con = "hp + qsec",  # related control variables
o_beta_boot_inf(y = "mpg",
                                                            # independent treatment variable
                         delta = 1, # delta

R2max = 0.9, # maximum R-square

sim = 100, # number of simulations

obs = 30, # draws per simulation

rep = FALSE, # bootstrapping with or without replacement

CI = c(90,95,99), # confidence intervals

type = "lm", # model type

useed = 123, # seed
                          useed = 123,
                                                            # seed
                          data = data_oster)
                                                             # dataset
```

o_beta_boot_viz

Visualization of bootstrapped beta*s

Description

Estimates and visualizes bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

o_beta_boot_viz

Usage

```
o_beta_boot_viz(y, x, con, m = "none", w = NULL, id = "none", time = "none", delta = 1, R2max, sim, obs, rep, CI, type, norm = TRUE, bin, col = c("#08306b","#4292c6","#c6dbef"), nL = TRUE, mL = TRUE, useed = NA, data)
```

Arguments

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
norm	Option to include a normal distribution in the plot (default is norm = TURE).
bin	Number of bins used in the histogram.
col	Colors used to indicate different confidence interval levels (indicated as vector). Needs to be the same length as the variable CI. The default is a blue color range.
nL	Option to include a red vertical line at 0 (default is $nL = TRUE$).
mL	Option to include a vertical line at mean of all beta*s (default is $mL = TRUE$).
useed	User defined seed.
data	Dataset.

Details

Estimates and visualizes bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

o_beta_rsq

Value

Returns ggplot2 object, which depicts the bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

o_beta_rsq

beta*s over a range of maximum R-squares

Description

Estimates beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_beta_rsq(y, x, con, m = "none", w = NULL, id = "none", time = "none", delta = 1, type, data)
```

o_beta_rsq 9

Arguments

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R -square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes beta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars

# preview of data
head(data_oster)

# load robomit
require(robomit)

# estimate delta*s over a range of maximum R-squares
o_beta_rsq(y = "mpg", # dependent variable</pre>
```

10 o_beta_rsq_viz

```
x = "wt",  # independent treatment variable
con = "hp + qsec",  # related control variables
delta = 1,  # delta
type = "lm",  # model type
data = data_oster)  # dataset
```

o_beta_rsq_viz

Visualization of beta*s over a range of maximum R-squares

Description

Estimates and visualizes beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_beta_rsq_viz(y, x, con, m = "none", w = NULL, id = "none", time = "none", delta = 1, type, data)
```

Arguments

у	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $w + z +$
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates and visualizes beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

o_delta 11

Value

Returns ggplot2 object, which depicts beta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

o_delta

delta*

Description

Estimates delta*, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta(y, x, con, m = "none", w = NULL, id = "none", time = "none", beta = 0, R2max, type, data)
```

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $w + z +$
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m
	= "none").

o_delta

W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta* should be estimated (default is beta = 0).
R2max	Maximum R-square for which delta* should be estimated.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates delta*, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes delta* and various other information.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate delta*
                        # dependent variable
o_delta(y = "mpg",
       x = "wt",
                            # independent treatment variable
       con = "hp + qsec", # related control variables
                            # beta
       beta = 0,
                       # maximum R-square
# model type
       R2max = 0.9,
        type = "lm",
        data = data_oster) # dataset
```

o_delta_boot

o_delta_boot Bootstrapped delta*s	o_delta_boot
-----------------------------------	--------------

Description

Estimates bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot(y, x, con, m = "none", w = NULL, id = "none", time = "none", beta = 0, R2max, sim, obs, rep, type, useed = NA, data)
```

Arguments

у	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Estimates bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

o_delta_boot_inf

Value

Returns tibble object, which includes bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate bootstrapped delta*s
o_delta_boot(y = "mpg",
                                   # dependent variable
# independent treatment variable
                  x = "wt",
                  con = "hp + qsec", # related control variables
                 beta = 0,  # beta

R2max = 0.9,  # maximum R-square

sim = 100,  # number of simulations

obs = 30,  # draws per simulation

rep = FALSE,  # bootstrapping with or without replacement

type = "lm",  # model type

useed = 123,  # seed
                  useed = 123,
                                               # seed
                  data = data_oster) # dataset
```

o_delta_boot_inf

Bootstrapped mean delta* and confidence intervals

Description

Provides the mean and confidence intervals of bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot_inf(y, x, con, m = "none", w = NULL, id = "none", time = "none", beta = 0, R2max, sim, obs, rep, CI, type, useed = NA, data)
```

o_delta_boot_inf

Arguments

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0)
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Provides the mean and confidence intervals of bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes the mean and confidence intervals of bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta_boot_viz

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars</pre>
# preview of data
head(data_oster)
# load robomit
require(robomit)
# compute the mean and confidence intervals of estimated bootstrapped delta*s
o_delta_boot_inf(y = "mpg", # dependent variable
              beta = 0,
                               # beta
              R2max = 0.9,
                              # maximum R-square
              sim = 100,
                               # number of simulations
              obs = 30,
                               # draws per simulation
              rep = FALSE,
                               # bootstrapping with or without replacement
              CI = c(90,95,99), # confidence intervals
              type = "lm",
                               # model type
              useed = 123,
                                # seed
              data = data_oster) # dataset
```

o_delta_boot_viz

Visualization of bootstrapped delta*s

Description

Estimates and visualizes bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot_viz(y, x, con, m = "none", w = NULL, id = "none", time = "none", beta = 0, R2max, sim, obs, rep, CI, type, norm = TRUE, bin, col = c("#08306b","#4292c6","#c6dbef"), nL = TRUE, mL = TRUE, useed = NA, data)
```

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").

o_delta_boot_viz

W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
norm	Option to include a normal distribution in the plot (default is norm = TURE).
bin	Number of bins used in the histogram.
col	Colors used to indicate different confidence interval levels (indicated as vector). Needs to be the same length as the variable CI. The default is a blue color range.
nL	Option to include a red vertical line at 0 (default is $nL = TRUE$).
mL	Option to include a vertical line at beta* mean (default is $mL = TRUE$).
useed	User defined seed.
data	Dataset.

Details

Estimates and visualizes bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts the bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

0_delta_rsq

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars</pre>
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate and visualize bootstrapped delta*s
o_delta_boot_viz(y = "mpg", # dependent variable
                 x = "wt", # independent treatment variable con = "hp + qsec", # related control variables
                 beta = 0,
                                     # beta
                 R2max = 0.9, # maximum R-square
sim = 100, # number of simular
                 sim = 100,
                                     # number of simulations
                 obs = 30,
                                     # draws per simulation
                                 # bootstrapping with or without replacement
                 rep = FALSE,
                 CI = c(90,95,99), # confidence intervals
                 type = "lm", # moder type
- TRUF # normal distribution
                 bin = 200,
                                       # number of bins
                 useed = 123,
                                       # seed
                 data = data_oster) # dataset
```

o_delta_rsq

delta*s over a range of maximum R-squares

Description

Estimates delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares following Oster (2019).

Usage

```
o_delta_rsq(y, x, con, m = "none", w = NULL, id = "none", time = "none", beta = 0, type, data)
```

У	Name of the dependent variable (as string).
Х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $w + z +$
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m
	= "none").

o_delta_rsq 19

W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes delta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

20 o_delta_rsq_viz

o_delta_rsq_viz	Visualization of delta*s over a range of maximum R-squares	
-----------------	--	--

Description

Estimates and visualizes delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_delta_rsq_viz(y, x, con, m = "none", w = NULL, id = "none", time = "none", beta = 0, type, data)
```

Arguments

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $w + z +$
m	Name of unrelated control variables (m; see Oster 2019; as string; default is m = "none").
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates and visualizes delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts delta*s over a range of maximum R-squares.

o_delta_rsq_viz

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Index

```
o_beta, 2
o_beta_boot, 3
o_beta_boot_inf, 5
o_beta_boot_viz, 6
o_beta_rsq, 8
o_beta_rsq_viz, 10
o_delta, 11
o_delta_boot, 13
o_delta_boot_inf, 14
o_delta_boot_viz, 16
o_delta_rsq, 18
o_delta_rsq_viz, 20
```