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regress Fit a Gaussian Linear Model with Linear Covariance Structure

Description

Fits Gaussian linear models in which the covariance structure can be expressed as a linear combina-
tion of known matrices. For example, random effects, block effects models and spatial models that
include a nugget effect. Fits model by maximising the log-likelihood of the model. The choice of
kernel affects which likelihood and by default it is the REML log likelihood or restricted log likeli-
hood but the ordinary log-likelihood is also possible. The regress algorithm uses a Newton-Raphson
algorithm to locate the maximum of the log-likelihood surface. Some computational efficiencies are
achieved when all variance components are associated with factors. In such a random effects model
the matrix inversion is computed using the Sherman-Morrison-Woodbury identities.

Usage

regress(formula, Vformula, identity=TRUE, kernel=NULL,
start=NULL, taper=NULL, pos, verbose=0, gamVals=NULL,
maxcyc=50, tol=1e-4, data)

Arguments

formula a symbolic description of the model to be fitted. The details of model specifica-
tion are the same as for lm

Vformula Specifies the matrices to include in the covariance structure. Each term is ei-
ther a symmetric matrix, or a factor. Independent Gaussian random effects are
included by passing the corresponding block factor.

identity Logical variable, includes the identity as the final matrix of the covariance struc-
ture. Default is TRUE

kernel Compute the log likelihood based on a reduced observation TY where T has this
kernel. Default value of NULL assumes that the kernal matches the fixed effects
model matrix X corresponding to REML. Setting kernel=0 gives the ordinary
likelihood and kernel=1 gives the one dimensional subspace of constant vectors.
See examples for more details.

start Specify the variance components at which the Newton-Raphson algorithm starts.
Default value is rep(var(y),k).

taper The proportion of each step to take. A vector of values from 0 to 1 of length
maxcyc. Default value takes smaller steps initially.

pos logical vector of length k, where k is the number of matrices in the covariance
structure. Indicates which variance components are positive (TRUE) and which
are real (FALSE). Important for multivariate problems.
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verbose Controls level of time output, takes values 0, 1 or 2, Default is 0, level 1 gives
parameter estimates and value of log likelihood at each stage.

gamVals When k=2, the marginal log likelihood based on the residual configuration statis-
tic (see Tunnicliffe Wilson(1989)), is evaluated first at (1-gam) V1 + gam V2 for
each value of gam in gamVals, a set of values from the unit interval. Subse-
quently the Newton-Raphson algorithm is started at variance components corre-
sponding the the value of gam that has the highest marginal log likelihood. This
is overridden if start is specified.

maxcyc Maximum number of cycles allowed. Default value is 50. A warning is output
to the screen if this is reached before convergence.

tol Convergence criteria. If the change in residual log likelihood for one cycle is less
than 10 x tol the algorithm finishes. If each component of the change proposed
by the Newton-Raphson is lower in magnitude than tol the algorithm finishes.
Default value is 1e-4.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from ’environment(formula)’, typically the environment from
which ’regress’ is called.

Details

As the code is running it can output the variance components, and the residual log likelihood at each
iteration when verbose is non-zero.

To avoid confusion over terminology. I define variance components to be the multipliers of the
matrices and variance parameters to the parameter space over which the Newton-Raphson algorithm
is run. I can force a component to be positive be defining the corresponding variance parameter on
the log scale.

All output to the screen is for variance components (i.e. the multiples of the matrices). Values for
start are on the variance component scale. Use pos to force certain variance components to be
positive.

NOTE: The final stage of the algorithm converts the estimates of the variance components and the
Fisher Information to the usual linear scale, i.e. as if pos were a vector of zeroes.

NOTE: No predict functionality is provided with regress due to some ambiguity. Are we predict-
ing conditional on the observed data. Are we predicting observations from the fitted model itself?
It is all normal anyway so it is straightforward, see our paper on regress.

When you fit a Gaussian regression model using fit <- regress(y~X, ~V, kernel=K) the function
computes the log likelihood based on the reduced observation $TY ~ N(TX, T V T’)$, where $T$
is a linear transformation with kernel $K$. Only $n-k$ degrees of freedom are available. Ordinary
likelihood corresponds to $K=0$, and REML to $K=X$, but these are not the only options.

When you fit two nested Gaussian models ($X0 subset of X1$ and $V0 subset of V1$) using the
commands:

fit0 <- regress(y~X0, ~V0, kernel=K)

fit1 <- regress(y~X1, ~V1, kernel=K)

then the likelihood ratio statistic fit1$llik - fit0$llik is the ordinary likelihood ratio based on the
Gaussian observation $TY$ where the kernel of T is K. So if you set kernel=0, you get the ordi-
nary likelihood ratio based on the complete observation $y$; And if you set kernel=1, you get the
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likelihood ratio based on simple contrasts $y_i - y_j$ only. In the latter case, you have only $n-1$
degrees of freedom to work with. And if you set kernel=X0, you get the likelihood ratio based on
contrasts $Ty$ with kernel $X0$, which for fit0 is the REML likelihood.

We recommend fitting the models with the "largest" kernel possible. For example, with models fit0
and fit1 above, we could choose K=0, or K=X0 to get the desired result. Our experience though is
that the model with K=X0 may be easier to fit with regress compared with a model where K=0.

Value

trace Matrix with one row for each iteration of algorithm. Each row contains the resid-
ual log likelihood, marginal log likelihood, variance parameters and increments.

llik Value of the marginal log likelihood at the point of convergence.

cycle Number of cycles to convergence.

rdf Residual degrees of freedom.

beta Estimate of the linear effects.

beta.cov Estimate of the covariance structure for terms in beta.

beta.se Standard errors for terms in beta.

sigma Variance component estimates, interpretation does not depend on value of pos

sigma.cov Covariance matrix for the variance component estimates based on the Fisher
Information at the point of convergence.

W Inverse of covariance matrix at point of convergence.

Q $I - X^T (X^T W X)^-1 X^T W$ at point of convergence.

fitted $X beta$, the fitted values.

predicted If identity=TRUE, decompose y into the part associated with the identity and
that assosicated with the rest of the variance structure, this second part is the
predicted values. If $Sigma = V1 + V2$ at point of convergence then y = V1 W
y + V2 W y is the decomposition. This is the conditional expectation for new
observations conditional on the observed data.

predictedVariance

Variance of new observations conditional on the observed data
predictedVariance2

Additional variance associated with the uncertainty of beta. Can be be added to
predictedVariance

pos Indicator for the scale for each variance parameter.

Vnames Names associated with each variance component, used in print.regress.

formula Copy of formula

Vformula Updated version of Vformula to include identity if necessary

Kcolnames Names associated with the kernel

model Response, covariates and matrices/factors to be used for model fitting

Z Design matrices associated with the random effects, used for computation of
BLUPs
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Examples

######################
## Comparison with lme
######################

## Example of Random Effects model from Venables and Ripley, page 205
library(nlme)
library(regress)

citation("regress")

names(Oats) <- c("B","V","N","Y")
Oats$N <- as.factor(Oats$N)

## Using regress
oats.reg <- regress(Y~N+V,~B+I(B:V),identity=TRUE,verbose=1,data=Oats)
summary(oats.reg)

## Using lme
oats.lme <- lme(Y~N+V,random=~1|B/V,data=Oats,method="REML")
summary(oats.lme)

## print and summary
oats.reg
print(oats.reg)
summary(oats.reg)

ranef(oats.lme)
BLUP(oats.reg)

rm(oats.reg, oats.lme, Oats)

#######################
## Computation of BLUPs
#######################

ex2 <- list()
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ex2 <- within(ex2,{

## Set up example
set.seed(1001)
n <- 101
x1 <- runif(n)
x2 <- seq(0,1,l=n)
z1 <- gl(4,10,n)
z2 <- gl(6,1,n)

X <- model.matrix(~1 + x1 + x2)
Z1 <- model.matrix(~z1-1)
Z2 <- model.matrix(~z2-1)

## Create the individual random and fixed effects
beta <- c(1,2,3)
eta1 <- rnorm(ncol(Z1),0,10)
eta2 <- rnorm(ncol(Z2),0,10)
eps <- rnorm(n,0,3)

## Combine them into a response
y <- X %*% beta + Z1 %*% eta1 + Z2 %*% eta2 + eps

})

## Data frame containing all we need for model fitting
regressDF <- with(ex2,data.frame(y,x1,x2,z1,z2))
rm(ex2)

## Fit the model using regress
regress.output <- regress(y~1 + x1 + x2,~z1 + z2,data=regressDF)

summary(regress.output)

blup1 <- BLUP(regress.output,RE="z1")
blup1$Mean
blup1$Variance
blup1$Covariance
cov2cor(blup1$Covariance) ## Large correlation terms

blup2 <- BLUP(regress.output) ## Joint BLUP of z1 and z2 by default
blup2$Mean
blup2$Variance
cov2cor(blup2$Covariance) ## Strong negative correlation between BLUPs

## for z1 and z2

rm(blup1,blup2)

############################
## Examples of use of kernel
############################

## REML LRT for x2 which will be 0 as x2 lies in the kernel
with(regressDF,{
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K <- model.matrix(~1+x1+x2)
model1 <- regress(y~1+x1,~z1,kernel=K)
model2 <- regress(y~1+x1+x2,~z1,kernel=K)
2*(model2$llik - model1$llik)

})

## LRT for x2 using ordinary likelihood
with(regressDF,{

K <- 0
model1 <- regress(y~1+x1,~z1,kernel=K)
model2 <- regress(y~1+x1+x2,~z1,kernel=K)
2*(model2$llik - model1$llik)

})

## LRT for x2 based on a reduced observation TY with kernel K. This
## LRT is approximately equal to the last one, and numerically this
## turns out to be the case also.
with(regressDF,{

K <- model.matrix(~1+x1)
model1 <- regress(y~1+x1,~z1,kernel=K)
model2 <- regress(y~1+x1+x2,~z1,kernel=K)
2*(model2$llik - model1$llik)

})

## Two ways to drop out the 17th and 19th observations.
with(regressDF,{

n <- length(y)
K <- matrix(0,n,2)
K[17,1] <- K[19,2] <- 1
model1 <- regress(y~1+x1,~z1,kernel=K,tol=1e-8)
drop <- c(17,19)
model2 <- regress(y[-drop]~1+x1[-drop],~z1[-drop],kernel=0,tol=1e-8)
print(model1)
print(model2)

})

rm(regressDF, regress.output)
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