## ----include = FALSE---------------------------------------------------------- test_protti <- identical(Sys.getenv("TEST_PROTTI"), "true") knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, eval = test_protti, message = FALSE, warning = FALSE-------------- # library(protti) # library(magrittr) # library(dplyr) ## ----create_synthetic_data, eval = test_protti-------------------------------- # # by setting the seed we are making sure that the random object generation can be reproduced # set.seed(123) # # data <- create_synthetic_data( # n_proteins = 100, # frac_change = 0.05, # n_replicates = 3, # n_conditions = 2, # method = "effect_random", # additional_metadata = TRUE # ) ## ----qc_cvs, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # input <- data %>% # # as the data is log2 transformed, we need to transform it back before calculating the CVs # mutate(raw_intensity = 2^peptide_intensity_missing) # # qc_cvs( # data = input, # grouping = peptide, # condition = condition, # intensity = raw_intensity, # plot = FALSE # ) # # qc_cvs( # data = input, # grouping = peptide, # condition = condition, # intensity = raw_intensity, # plot = TRUE, # plot_style = "violin" # ) ## ----qc_ids, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_ids( # data = input, # sample = sample, # grouping = protein, # intensity = peptide_intensity_missing, # condition = condition, # plot = FALSE # ) # # qc_ids( # data = input, # sample = sample, # grouping = protein, # intensity = peptide_intensity_missing, # condition = condition, # title = "Protein identifications per sample", # plot = TRUE # ) ## ----qc_peptide_type, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_peptide_type( # data = input, # sample = sample, # peptide = peptide, # pep_type = pep_type, # method = "intensity", # intensity = raw_intensity, # plot = TRUE, # interactive = FALSE # ) # # qc_peptide_type( # data = input, # sample = sample, # peptide = peptide, # pep_type = pep_type, # method = "count", # plot = TRUE, # interactive = FALSE # ) ## ----qc_intensity_distribution_boxplot, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_intensity_distribution( # data = input, # sample = sample, # grouping = peptide, # intensity_log2 = peptide_intensity_missing, # plot_style = "boxplot" # ) # # qc_median_intensities( # data = input, # sample = sample, # grouping = peptide, # intensity = peptide_intensity_missing # ) ## ----qc_charge_states, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_charge_states( # data = input, # sample = sample, # grouping = peptide, # charge_states = charge, # method = "intensity", # intensity = raw_intensity, # plot = TRUE # ) ## ----qc_missed_cleavages, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_missed_cleavages( # data = input, # sample = sample, # grouping = peptide, # missed_cleavages = n_missed_cleavage, # method = "intensity", # intensity = raw_intensity, # plot = TRUE # ) ## ----qc_sequence_coverage, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_sequence_coverage( # data = input, # protein_identifier = protein, # coverage = coverage # ) ## ----qc_peak_width, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_peak_width( # data = input, # sample = sample, # intensity = peptide_intensity_missing, # retention_time = retention_time, # peak_width = peak_width # ) ## ----qc_data_completeness, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_data_completeness( # data = input, # sample = sample, # grouping = peptide, # intensity = peptide_intensity_missing, # plot = TRUE # ) ## ----qc_intensity_distribution_histogram, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_intensity_distribution( # data = input, # grouping = peptide, # intensity_log2 = peptide_intensity_missing, # plot_style = "histogram" # ) ## ----qc_sample_correlation, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_sample_correlation( # data = input, # sample = sample, # grouping = peptide, # intensity_log2 = peptide_intensity_missing, # condition = condition, # interactive = FALSE # ) ## ----qc_pca, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # qc_pca( # data = data, # sample = sample, # grouping = peptide, # intensity = peptide_intensity_missing, # condition = condition, # digestion = NULL, # plot_style = "scree" # ) # # qc_pca( # data = data, # sample = sample, # grouping = peptide, # intensity = peptide_intensity_missing, # condition = condition, # components = c("PC1", "PC2"), # plot_style = "pca" # ) ## ----qc_ranked_intensities, eval = test_protti, fig.width = 6, fig.height = 4, fig.align = "center"---- # # Plot ranked peptide intensities # qc_ranked_intensities( # data = data, # sample = sample, # grouping = peptide, # intensity_log2 = peptide_intensity, # plot = TRUE, # )