
Package ‘population’
October 14, 2022

Type Package

Title Models for Simulating Populations

Version 0.3

Date 2022-03-15

Author Guillaume Chapron

Maintainer Guillaume Chapron <gchapron@carnivoreconservation.org>

Description Run population simulations using an Individual-Based Model (IBM) compiled in C.

License GPL-3

Depends parallel, abind

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-03-16 13:30:06 UTC

R topics documented:

population-package . 1
get_cores . 3
plot_projection . 4
project . 5
project_parallel . 6

Index 9

population-package Population models

1

2 population-package

Description

A package to run population simulations using an Individual-Based Model compiled in C. The pop-
ulation model is a discrete, age-structured model and follows the formalizing of a post-breeding
Leslie matrix model.

Version 0.1 proposes functions to run and plot population projections and includes demographic
and environmental stochasticities. There is also the option to parallelize simulations (except on
Windows).

Version 0.2 fixes a bug that generated wrong results at very large population sizes.

Details

Package: population
Type: Package
Version: 0.2
Date: 2018-02-05
License: GPL-3

Author(s)

Guillaume Chapron <gchapron@carnivoreconservation.org>

Examples

Initial number of individuals
n0 <- 10
n1 <- 20
n2 <- 15
n3 <- 10
n4 <- 5

Age-specific survival rates
s0 <- 0.5
s1 <- 0.6
s2 <- 0.7
s3 <- 0.8
s4 <- 0.9

Age-specific number of offspring
b1 <- 0.5
b2 <- 0.8
b3 <- 1.8
b4 <- 1.8
b5 <- 1.1

get_cores 3

Project 10 years ahead repeated 10000 times
years <- 10
runs <- 10000

results <- project(
years = years,
runs = runs,
initial_population = c(n0, n1, n2, n3, n4),
survival = cbind(c(s0, s1, s2, s3, s4), 0.0), # no environmental stochasticity
litter = cbind(c(b1, b2, b3, b4, b5), 0.0) # no environmental stochasticity
)

Plot projection
plot_projection(results, "mean")

Equivalent model with a post-breeding Leslie matrix
postM <- matrix(nrow=5, ncol=5, byrow=TRUE, data = c(
s0*b1, s1*b2, s2*b3, s3*b4, s4*b5,

s0, 0, 0, 0, 0,
0, s1, 0, 0, 0,
0, 0, s2, 0, 0,
0, 0, 0, s3, 0

))

popvector <- c(n0, n1, n2, n3, n4)
N <- numeric(years)
N[1] <- sum(popvector)

for (i in 2:years) {
popvector <- postM
N[i] <- sum(popvector)
}

Check we get similar results
lines(1:years, N, col="blue", lwd=2)

get_cores Get number of available cores

Description

Get number of available cores for parallel simulations. Non-Windows systems only.

Usage

get_cores(runs)

Arguments

runs Number of times (or Monte Carlo runs) to repeat the simulation.

4 plot_projection

Details

This function detects the number of cores (see ’detectCores’ in package ’parallel’) available and
returns the largest possible number of cores being an integer divider of the number of runs. On
multi-core machines at least one core is not used for the simulation.

Value

get_cores()

Examples

get_cores(2)
get_cores(1000)

plot_projection Plot population projections

Description

Plot population projections.

Usage

plot_projection(projection, kind)

Arguments

projection A list obtained after running functions ’project’ or ’project_cores’.

kind (optional) A string indicating which quantity should be plotted ("median" or
"mean"). If missing, all projections are shown.

Details

Plot all population projections or the median or mean with 95% confidence interval. Only total
population sizes are displayed.

Value

No returned value, plot created

project 5

Examples

years <- 10
runs <- 100

init.pop <- c(30, 20, 15, 12, 10, 9, 8, 7, 6, 5)

surv.md <- c(0.5, 0.7, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9)
surv.sd <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
surv.msd <- cbind(surv.md, surv.sd)

litter.md <- c(0.2, 1.1, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 1.8, 0.2)
litter.sd <- c(0.1, 0.2, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
litter.msd <- cbind(litter.md, litter.sd)

nclass <- 4 # vary number of classes

projection <- project(
years = years,
runs = runs,
initial_population = init.pop[1:nclass],
survival = surv.msd[1:nclass,],
litter = litter.msd[1:nclass,]
)

plot_projection(projection)
plot_projection(projection, kind="median")

project Population projections

Description

Run stochastic population projections.

Usage

project(years, runs, initial_population, survival, litter, seed)

Arguments

years Number of years to project the population.

runs Number of times (or Monte Carlo runs) to project the population.
initial_population

Vector of initial number of individuals for each class. This vector must contain
only positive integers.

survival Matrix of survival for each class, with nrow = number of classes and ncol = 2.
The first column is the median value of the survival of each class. The second
column is the standard deviation of the survival of each class.

6 project_parallel

litter Matrix of litter size for each class, with nrow = number of classes and ncol = 2.
The first column is the median value of the litter size of each class. The second
column is the standard deviation of the litter size of each class.

seed (optional) seed for the R random number generator. If missing, the seed is set to
1.

Details

Run stochastic population projections with an Individual-Based Model (IBM) compiled in C.

Value

runs a 3-dimensional array of numbers of individuals with dimension c(years, classes,
runs)

Examples

years <- 10
runs <- 100

init.pop <- c(30, 20, 15, 12, 10, 9, 8, 7, 6, 5)

surv.md <- c(0.5, 0.7, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9)
surv.sd <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
surv.msd <- cbind(surv.md, surv.sd)

litter.md <- c(0.2, 1.1, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 1.8, 0.2)
litter.sd <- c(0.1, 0.2, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
litter.msd <- cbind(litter.md, litter.sd)

nclass <- 4 # vary number of classes

projection <- project(
years = years,
runs = runs,
initial_population = init.pop[1:nclass],
survival = surv.msd[1:nclass,],
litter = litter.msd[1:nclass,]
)

project_parallel Parallel population projections

Description

Run parallel stochastic population projections. Non-Windows systems only.

Usage

project_parallel(years, runs, initial_population, survival, litter, cores)

project_parallel 7

Arguments

years Number of years to project the population.

runs Number of times (or Monte Carlo runs) to project the population.
initial_population

Vector of initial number of individuals for each class. This vector must contain
only positive integers.

survival Matrix of survival for each class, with nrow = number of classes and ncol = 2.
The first column is the median value of the survival of each class. The second
column is the standard deviation of the survival of each class.

litter Matrix of litter size for each class, with nrow = number of classes and ncol = 2.
The first column is the median value of the litter size of each class. The second
column is the standard deviation of the litter size of each class.

cores (optional) number of cores to use for the parallel projections. If missing, it is set
to the value returned by get_cores().

Details

Run parallel stochastic population projections with an Individual-Based Model (IBM) compiled in
C.

Value

runs a 3-dimensional array of numbers of individuals with dimension c(years, classes,
runs)

Examples

years <- 10
runs <- 100

init.pop <- c(30, 20, 15, 12, 10, 9, 8, 7, 6, 5)

surv.md <- c(0.5, 0.7, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9)
surv.sd <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
surv.msd <- cbind(surv.md, surv.sd)

litter.md <- c(0.2, 1.1, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 1.8, 0.2)
litter.sd <- c(0.1, 0.2, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
litter.msd <- cbind(litter.md, litter.sd)

nclass <- 4 # vary number of classes

with 2 cores
projection <- project_parallel(
years = years,
runs = runs,
initial_population = init.pop[1:nclass],
survival = surv.msd[1:nclass,],
litter = litter.msd[1:nclass,],

8 project_parallel

cores = 2
)

with all possible cores (not run)
projection <- project_parallel(
years = years,
runs = runs,
initial_population = init.pop[1:nclass],
survival = surv.msd[1:nclass,],
litter = litter.msd[1:nclass,]
)

Index

C_montecarlo (project), 5

get_cores, 3

plot_projection, 4
population (population-package), 1
population-package, 1
project, 5
project_parallel, 6

9

	population-package
	get_cores
	plot_projection
	project
	project_parallel
	Index

