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popdemo-package Provides tools for demographic modelling using projection matrices

Description

popdemo provides tools for modelling populations and demography using matrix projection models
(MPMs), with deterministic and stochastic model implementations. These tools include popula-
tion projection, indices of short- and long-term population size and growth, perturbation analysis,
convergence to stability or stationarity, and diagnostic and manipulation tools. This includes:

POPULATION PROJECTION popdemo provides a simple means of projecting and plotting PPM
models. project provides a means to project and plot population dynamics of both deter-
ministic and stochastic models. Many methods are available for working with population
projections: see Projection-class and Projection-plots
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ASYMPTOTIC DYNAMICS The eigs function provides a simple means to calculate asymptotic
population dynamics using matrix eigenvalues.

TRANSIENT DYNAMICS There are functions for calculating transient dynamics at various points
of the population projection. reac measures immediate transient density of a population
(within the first time step). maxamp, maxatt are near-term indices that measure the largest and
smallest transient dynamics a population may exhibit overall, respectively. inertia measures
asymptotic population density relative to stable state, and has many perturbation methods in
the package (see below). All transient indices can be calculated using specific population
structures, as well as bounds on population size.

PERTURBATION ANALYSIS Methods for linear perturbation (sensitivity and elasticity) anal-
ysis of asymptotic dynamics are available through the sens, tfs_lambda and tfsm_lambda
functions. Elasticity analysis is also available using the elas function. Sensitivity analysis of
transient dynamics is available using the tfs_inertia and tfsm_inertia functions. Meth-
ods for nonlinear perturbation (transfer function) analysis of asymptotic dynamics is achieved
using tfa_lambda and tfam_lambda, whilst transfer function analysis of transient dynamics
is available with tfa_inertia and tfam_inertia. These all have associated plotting methods
linked to them: see plot.tfa and plot.tfam).

MODEL CONVERGENCE Information on the convergence of populations to stable state can be
useful, and popdemo provides several means of analysing convergence. dr measures the damp-
ing ratio, and there are several distance measures available (see KeyfitzD, projectionD and
CohenD). There is also a means of calculating convergence time through simulation: convt.

DIAGNOSTIC TOOLS isPrimitive, isIrreducible and isErgodic facilitate diagnosis of
matrix properties pertaining to ergodicity.

UTILITIES Matlab2R allows coding of matrices in a Matlab style, which also facilitates import
of multiple matrices simultaneously if comma-seperated files are used to import dataframes.
Its analogue, R2Matlab, converts R matrices to Matlab-style strings, for easier export.

Author(s)

Maintainer: Iain Stott <iainmstott@gmail.com>

Authors:

• Dave Hodgson <D.J.Hodgson@exeter.ac.uk>

• Stuart Townley <S.B.Townley@exeter.ac.uk>

Other contributors:

• Stephen Ellner <spe2@cornell.edu> [contributor]

blockmatrix Block-permute a reducible matrix

Description

Conjugate a reducible matrix into block upper triangular form
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Usage

blockmatrix(A)

Arguments

A a square, reducible, non-negative numeric matrix of any dimension

Details

Any square, reducible, non-negative matrix may have its rows and columns conjugated so that it
takes a block upper triangular structure, with irreducible square submatrices on the diagonal, zero
submatrices in the lower triangle and non-negative submatrices in the upper triangle (Caswell 2001;
Stott et al. 2010). blockmatrix permutes the rows and columns of a reducible matrix into this
form, which enables further evaluation (e.g. computation of eigenvalues of submatrices).

Value

a list containing components:

blockmatrix the block-permuted matrix.

stage.order the permutation of rows/columns of A in the block-permuted matrix.

References

• Caswell (2001) Matrix population models 2nd ed. Sinauer.

• Stott et al. (2010) Methods. Ecol. Evol., 1, 242-252.

Examples

# Create a 3x3 reducible PPM
A <- matrix(c(0,1,0,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3)
dimnames(A) <- list(c("Juv", "Pre-R", "R"), c("Juv", "Pre-R", "R"))
A

# Block-permute the matrix
blockmatrix(A)

CohenD Calculate Cohen’s cumulative distance

Description

Calculate Cohen’s cumulative distance metric for a population matrix projection model.

Usage

CohenD(A, vector)
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Arguments

A a square, irreducible, non-negative numeric matrix of any dimension.

vector a numeric vector or one-column matrix describing the age/stage distribution
used to calculate the distance.

Details

Calculates the cumulative distance metric as outlined in Cohen (1979). Will not work for reducible
matrices and returns a warning for imprimitive matrices (although will not function for imprimitive
matrices with nonzero imaginary components in the dominant eigenpair).

Value

Cohen’s D1.

References

• Cohen (1979) SIAM J. Appl. Math., 36, 169-175.

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

See Also

Other DistanceMeasures: KeyfitzD(), projectionD()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate Cohen cumulative distance
CohenD(A, vector=initial)

convt Calculate time to convergence

Description

Calculate the time to convergence of a population matrix projection model from the model projec-
tion

Usage

convt(A, vector = "n", accuracy = 0.01, iterations = 1e+05)
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Arguments

A a square, non-negative numeric matrix of any dimension

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution used to calculate the projection.

accuracy the accuracy with which to determine convergence on asymptotic growth, ex-
pressed as a proportion (see details).

iterations the maximum number of iterations of the model before the code breaks. For
slowly-converging models and/or high specified convergence accuracy, this may
need to be increased.

Details

convt works by simulating the given model and manually determining growth when convergence
to the given accuracy is reached. Convergence on an asymptotic growth is deemed to have been
reached when the growth of the model stays within the window determined by accuracy for 10*s
iterations of the model, with s equal to the dimension of A. For example, projection of an 8 by
8 matrix with convergence accuracy of 1e-2 is deemed to have converged on asymptotic growth
when 10*8=80 consecutive iterations of the model have a growth within 1-1e-2=0.99 (i.e. 99%)
and 1+1e-2=1.01 (i.e. 101%) of each other.

If vector is specified, the convergence time of the projection of vector through A is returned.
If vector="n" then asymptotic growths of the set of ’stage-biased’ vectors are calculated. These
projections are achieved using a set of standard basis vectors equal in number to the dimension of
A. These have every element equal to 0, except for a single element equal to 1, i.e. for a matrix of
dimension 3, the set of stage-biased vectors are: c(1,0,0), c(0,1,0) and c(0,0,1).

Due to the way in which convergence is defined, convt can only properly work for strongly ergodic
models. Therefore, it will not function for imprimitive (therefore potentially weakly ergodic) or
reducible (therefore potentially nonergodic) models.

Value

If vector is specified, the convergence time of vector projected through A.

If vector is not specified, a numeric vector of convergence times for corresponding stage-biased
projections: the length of the vector is equal to the dimension of A; the first entry is the convergence
time of [1,0,0,...], the second entry is the convergence time of [0,1,0,...], etc.).

References

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

See Also

Other ConvergenceMeasures: dr(), truelambda()
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Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the convergence time of the 3 stage-biased
# populations within 0.1% of lambda-max
( convt(A, accuracy=1e-3) )

# Calculate the convergence time of the projection of initial and A
# to within 0.001% of lambda-max
( convt(A, vector=initial, accuracy=1e-5) )

dr Calculate damping ratio

Description

Calculate the damping ratio of a given population matrix projection model.

Usage

dr(A, return.time = FALSE, x = 10)

Arguments

A a square, irreducible, non-negative numeric matrix of any dimension.
return.time (optional) a logical argument determining whether an estimated convergence

time should be returned.
x (optional) the logarithm used in determining estimated time to convergence (see

details).

Details

The damping ratio is calculated as the ratio of the dominant eigenvalue to the modulus of the largest
subdominant eigenvalue. Time to convergence can be estmimated by calculating log(dr)/log(x),
which is the time taken for the dominant eigenvalue to become x times larger than the largest
subdominant eigenvalue.

Value

If return.time=FALSE, the damping ratio of A.
If return.time=TRUE, a list containing components:

dr the damping ratio of A
t the estimated time to convergence.
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References

• Caswell (2001) Matrix Population Models 2nd. ed. Sinauer.

• Stott et al. (2010) Ecol. Lett., 14, 959-970.

See Also

Other ConvergenceMeasures: convt(), truelambda()

Examples

# Create a 3x3 PPM
A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3)

# Calculate damping ratio
dr(A)

# Calculate damping ratio and time to convergence using a
# multiple of 10
dr(A, return.time=TRUE, x=10)

eigs Calculate asymptotic growth

Description

Dominant eigenstuff of a population matrix projection model.

Usage

eigs(A, what = "all", check = TRUE)

Arguments

A a square, nonnegative numeric matrix of any dimension.

what what components of the dominant eigenstuff should be returned. A character
vector, which may include:

"lambda" the dominant eigenvalue (lambda)
"ss" the dominant right eigenvector (stable stage)
"rv" the dominant left eigenvector (reproductive value)

the default, "all", returns all of the above.

check (logical) determines whether the dominant eigenvalue is checked for nonzero
imaginary component, and largest absolute value. If either of these occur, then
the dominant eigenvalue may not be described as truly dominant.
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Details

eigs gives the dominant eigenstuff of a population projection model. This includes the dominant
eigenvalue (asymptotic population growth), the dominant right eigenvector (stable age/stage dis-
tribution), and the dominant left eigenvector (reproductive value). The dominant eigenvalue is the
eigenvalue with the largest real component, and the dominant eigenvectors are the eigenvectors that
correspond to this eigenvalue. If the matrix is reducible, then there may be other real or complex
eigenvalues whose absolute value are equal in magnitude to that of the dominant eigenvalue. In
this case, eigs returns the first one, and gives a warning "More than one eigenvalues have equal
absolute magnitude", for information.

Value

A list with possible components that depends on the contents of what:

lambda the dominant eigenvalue, which describes asymptotic population growth (if A is primitive;
see isPrimitive). A real, nonnegative numeric vector of length 1.

ss the dominant right eigenvector, which describes the stable age/stage structure (if A is primitive;
see isPrimitive). A real, nonnegative numeric vector equal to the dimension of A in length,
scaled to sum to 1.

rv the dominant left eigenvector, which describes the reproductive value (if A is primitive; see
isPrimitive). A real, nonnegative numeric vector equal to the dimension of A in length,
scaled so that rv

If only one of these components is returned, then the value is not a list, but a single numeric vector.

Examples

# load the desert tortoise data
data(Tort)

# find the dominant eigenvalue
eigs(Tort, "lambda")

#find the stable stage structure
eigs(Tort, "ss")

#find the reproductive value
eigs(Tort, "rv")

#find both dominant eigenvectors
eigs(Tort, c("ss","rv"))

#find all eigenstuff
eigs(Tort)
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elas Calculate elasticity matrix

Description

Calculate the elasticity matrix for a specified population matrix projection model using eigenvec-
tors.

Usage

elas(A, eval = "max")

Arguments

A a square, non-negative numeric matrix of any dimension

eval the eigenvalue to evaluate. Default is eval="max", which evaluates the dom-
inant eigenvalue (the eigenvalue with largest REAL value: for imprimitive or
reducible matrices this may not be the first eigenvalue). Otherwise, specifying
e.g. eval=2 will evaluate elasticity of the eigenvalue with second-largest modu-
lus.

Details

elas uses the eigenvectors of A to calculate the elasticity matrix of the specified eigenvalue, see
section 9.1 in Caswell (2001). Same method as elasticity in popbio but can also evaluate sub-
dominant eigenvalues.

Value

A numeric (real or complex) matrix of equal dimension to A.

References

• Caswell (2001) Matrix Population Models 2nd ed. Sinauer.

See Also

Other PerturbationAnalyses: sens(), tfa_inertia(), tfa_lambda(), tfam_inertia(), tfam_lambda(),
tfs_inertia(), tfs_lambda()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate sensitivities of dominant eigenvalue
elas(A)
# Calculate sensitivities of first subdominant eigenvalue,
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# only for observed transitions
elas(A, eval=2)

inertia Calculate population inertia

Description

Calculate population inertia for a population matrix projection model.

Usage

inertia(A, vector = "n", bound = NULL, return.N = FALSE, t = NULL)

Arguments

A a square, primitive, irreducible, non-negative numeric matrix of any dimension
vector (optional) a numeric vector or one-column matrix describing the age/stage dis-

tribution (’demographic structure’) used to calculate a ’case-specific’ maximal
amplification

bound (optional) specifies whether an upper or lower bound should be calculated (see
details).

return.N (optional) if TRUE, returns population size for a specified t (including effects of
asymptotic growth and initial population size), alongside standardised inertia.

t (optional) the projection interval at which N is to be calculated. Calculation of N
is only accurate for t where the model has converged (see details)

Details

A nonstable population, when it achieves asymptotic growth following transient dynamics, is a fixed
ratio of the size of a population projected with the same initial size but stable structure. inertia
calculates the value of this ratio (Koons et al. 2007)

If vector="n" then either bound="upper" or bound="lower" must be specified, which calculate
the upper or lower bound on population inertia (i.e. the largest and smallest values that inertia
may take) respectively. Specifying vector overrides calculation of a bound, and will yield a ’case-
specific’ value for inertia.

inertia will not work with imprimitive or reducible matrices.

Value

If vector="n", the upper bound on inertia of A if bound="upper" and the lower bound on inertia
of A if bound="lower".
If vector is specified, the case-specific inertia of the model.
If return.N=TRUE and t is specified, a list with components:

inertia the bound on or case-specific inertia
N the population size at specified t.
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References

• Koons et al. (2007) Ecology, 88, 2867-2867.

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

See Also

Transfer function methods for inertia: inertia.tfa, inertia.tfamatrix, inertia.tfsens, inertia.tfsensmatrix

Other TransientIndices: Kreiss(), maxamp(), maxatt(), reac()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the upper bound on inertia of A
inertia(A,bound="upper")

# Calculate the lower bound on inertia of A
inertia(A,bound="lower")

# Calculate case-specific inertia of A and initial
inertia(A, vector=initial)

# Calculate case-specific inertia of A and initial and
# return realised population size at t=25
inertia(A, vector=initial, return.N=TRUE, t=25)

isErgodic Determine ergodicity of a matrix

Description

Determine whether a matrix is ergodic or nonergodic

Usage

isErgodic(A, digits = 12, return.eigvec = FALSE)

Arguments

A a square, non-negative numeric matrix of any dimension.

digits the number of digits that the dominant left eigenvector should be rounded to.

return.eigvec (optional) logical argument determining whether or not the dominant left eigen-
vector should be returned.



isIrreducible 13

Details

isErgodic works on the premise that a matrix is ergodic if and only if the dominant left eigenvector
(the reproductive value vector) of the matrix is positive (Stott et al. 2010).

In rare cases, R may calculate that the dominant left eigenvector of a nonergodic matrix contains
very small entries that are approximate to (but not equal to) zero. Rounding the dominant eigenvec-
tor using digits prevents mistakes.

Value

If return.eigvec=FALSE, either TRUE (for an ergodic matrix) or FALSE (for a nonergodic matrix).

If return.eigvec=TRUE, a list containing elements:

ergodic TRUE or FALSE, as above

eigvec the dominant left eigenvector of A

References

• Stott et al. (2010) Methods Ecol. Evol., 1, 242-252.

See Also

Other PerronFrobeniusDiagnostics: isIrreducible(), isPrimitive()

Examples

# Create a 3x3 ergodic PPM
( A <- matrix(c(0,0,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Diagnose ergodicity
isErgodic(A)

# Create a 3x3 nonergodic PPM
B<-A; B[3,2] <- 0; B

# Diagnose ergodicity and return left eigenvector
isErgodic(B, return.eigvec=TRUE)

isIrreducible Determine reducibility of a matrix

Description

Determine whether a matrix is irreducible or reducible

Usage

isIrreducible(A)
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Arguments

A a square, non-negative numeric matrix of any dimension.

Details

isIrreducible works on the premise that a matrix A is irreducible if and only if (I+A)^(s-1) is
positive, where I is the identity matrix of the same dimension as A and s is the dimension of A
(Caswell 2001).

Value

TRUE (for an irreducible matrix) or FALSE (for a reducible matrix).

References

• Caswell (2001) matrix Population Models, 2nd. ed. Sinauer.

See Also

Other PerronFrobeniusDiagnostics: isErgodic(), isPrimitive()

Examples

# Create a 3x3 irreducible PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Diagnose reducibility
isIrreducible(A)

# Create a 3x3 reducible PPM
B<-A; B[3,2] <- 0; B

# Diagnose reducibility
isIrreducible(B)

isPrimitive Determine primitivity of a matrix

Description

Determine whether a matrix is primitive or imprimitive

Usage

isPrimitive(A)
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Arguments

A a square, non-negative numeric matrix of any dimension.

Details

isPrimitive works on the premise that a matrix A is primitive if A^(s^2-(2*s)+2) is positive,
where s is the dimension of A (Caswell 2001).

Value

TRUE (for an primitive matrix) or FALSE (for an imprimitive matrix).

References

• Caswell (2001) matrix Population Models, 2nd. ed. Sinauer.

See Also

Other PerronFrobeniusDiagnostics: isErgodic(), isIrreducible()

Examples

# Create a 3x3 primitive PPM
( A <- matrix(c(0,1,2,0.5,0,0,0,0.6,0), byrow=TRUE, ncol=3) )

# Diagnose primitivity
isPrimitive(A)

# Create a 3x3 imprimitive PPM
B<-A; B[1,2] <- 0; B

# Diagnose primitivity
isPrimitive(B)

KeyfitzD Calculate Keyfitz’s delta

Description

Calculate Keyfitz’s delta for a population matrix projection model.

Usage

KeyfitzD(A, vector)
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Arguments

A a square, irreducible, non-negative numeric matrix of any dimension.

vector a numeric vector or one-column matrix describing the age/stage distribution
used to calculate the distance.

Details

Keyfitz’s delta is the sum of the differences between the stable demographic vector (the dominant
right eigenvector of A) and the demographic distribution vector of the population (given by vector).
KeyfitzD will not work for reducible matrices and returns a warning for imprimitive matrices
(although will not function for imprimitive matrices with nonzero imaginary components in the
dominant eigenpair).

Value

Keyfitz’s delta.

References

• Keyfitz (1968) Introduction to the Mathematics of Populations. Addison-Wesley.

• Stott et al. (2010) Ecol. Lett., 14, 959-970.

See Also

Other DistanceMeasures: CohenD(), projectionD()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate Keyfitz's delta
KeyfitzD(A, vector=initial)

Kreiss Calculate Kreiss bounds

Description

Calculate the upper or lower Kreiss bound for a population matrix projection model.
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Usage

Kreiss(
A,
bound = NULL,
return.r = FALSE,
theta = 1,
rlimit = 100,
step1 = 0.001,
step2 = 1e-06

)

Arguments

A a square, irreducible, non-negative numeric matrix of any dimension

bound (optional) specifies whether an upper or lower bound should be calculated.

return.r (optional) specifies whether the value of r at which the Kreiss bound is achieved
should be returned (see details).

theta the value to which the Kriess bound is to be assessed relative to (see details).

rlimit the maximum value of r that may be reached before the code breaks (see details).

step1, step2 determine the iterative process in calculating the Kreiss bound (see details).

Details

Kreiss by default returns a standardised Kreiss bound relative to both asymptotic growth/decline
and initial population density (Townley & Hodgson 2008; Stott et al. 2011). It uses an iterative
process that evaluates a function of the resolvent of A over a range of values r where r>theta.
This iterative process finds the maximum/minimum of the function for the upper/lower bounds
respectively. The process is determined using step1 and step2: in order to increase accuracy
but keep computation time low, the function is evaluated forward in steps equal to step1 until the
maximum/minimum is passed and then backward in steps of step2 to more accurately find the
maximum/minimum itself. Therefore, step1 should be larger than step2. The balance between
both will determine computation time, whilst accuracy is determined almost solely by step2. The
defaults should be sufficient for most matrices.

theta defaults to 1, which means the Kriess bound is assessed relative to both asymptotic growth
and initial population size. Sometimes, the maximum/minimum of the function occurs at r–>theta,
in which case r is equal to theta+step2. Setting return.r=TRUE tells the function to return the
value of r where the maximum/minimum occurs alongside the value of the Kreiss bound. r may not
exceed rlimit.

Kreiss will not work with reducible matrices, and returns a warning for imprimitive matrices.

Value

The upper or lower Kreiss bound of A.
If return.r=TRUE, a list with components:

bound the upper or lower Kriess bound

r the value of r at which the function is minimised/maximised.



18 Matlab2R

References

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

• Townley & Hodgson (2008) J. Appl. Ecol., 45, 1836-1839.

See Also

Other TransientIndices: inertia(), maxamp(), maxatt(), reac()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate the upper Kreiss bound of A
Kreiss(A, bound="upper")

# Calculate the lower Kreiss bound of A
Kreiss(A, bound="lower")

# Calculate the upper Kreiss bound of A and return
# the value of r at which the function is maximised
Kreiss(A, bound="upper", return.r=TRUE)

Matlab2R Read Matlab style matrices into R

Description

Read a matrix coded in a Matlab style into R to create an object of class matrix

Usage

Matlab2R(M)

Arguments

M an object of class character that represents a numeric matrix coded in a Matlab
style.

Details

Matlab reads matrices using a unique one-line notation that can prove useful for storage in databases
and importing multiple matrices into a program at once, amongst other applications. This nota-
tion is by row, with "[" and "]" to specify the beginning and end of the matrix respectively, ";" to
specify a new row and a space between each matrix element. Thus, the R matrix created using
matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) is equivalent to [0 1 2;0.5 0.1
0;0 0.6 0.6].
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Matlab2R takes a Matlab-coded matrix expressed as a character string and converts it into an R ob-
ject of class matrix. As well as providing a simpler means of matrix notation in R, it also enables si-
multaneous import of multiple matrices of varying dimensions, using comma-seperated dataframes
and tables.

Value

An object of class matrix.

See Also

R2Matlab

Examples

# Create a 3x3 PPM using Matlab2R
( A<-Matlab2R("[0 1 2;0.5 0.1 0;0 0.6 0.6]") )

maxamp Calculate maximal amplification

Description

Calculate maximal amplification for a population matrix projection model.

Usage

maxamp(
A,
vector = "n",
return.N = FALSE,
return.t = FALSE,
return.stage = FALSE,
conv.iterations = 1e+05,
conv.accuracy = 1e-05

)

Arguments

A a square, primitive, non-negative numeric matrix of any dimension

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution (’demographic structure’) used to calculate a ’case-specific’ maximal
amplification.

return.N (optional) if TRUE, returns population size at the point of maximal amplification
(including effects of asymptotic growth and initial population size), alongside
standardised maximal amplification.
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return.t (optional) if TRUE, returns the time at which maximal amplification occurs in the
population projection.

return.stage (optional) if TRUE and vector="n", returns the stage that achieves the bound on
maximal amplification.

conv.iterations

the maximum number of iterations allowed when calulating convergence time
(see details). Please see iterations in convt.

conv.accuracy the accuracy of convergence (see details). Please see accuracy in convt.

Details

maxamp returns a standardised measure of maximal amplification, discounting the effects of both
initial population size and asymoptotic growth (Stott et al. 2011).

If vector is not specified then the bound on maximal amplification (the largest maximal amplifi-
cation that may be achieved) is returned, otherwise a ’case-specific’ maximal amplification for the
specified matrix and demographic structure is calculated. Note that not all demographic structures
will yield a maximal amplification: if the model does not amplify then an error is returned.

Setting return.N=T, return.t=T and return.stage=T results in the function returning realised
population size at maximal amplification (including the effects of asymptotic growth and initial
population size), the time at which maximal amplification occurs and (if vector="n"), the stage-
bias that results in the bound on maximal amplification, respectively. NOTE that N is not indicative
of maximum possible population size for a non-standardised model: merely the population size at
the point of maximal amplification (i.e. largest positive deviation from lambda-max).

max.amp uses a simulation technique, using project to project the dynamics of the model be-
fore evaluating maximum projected density over all t. conv.accuracy and conv.iterations are
passed to convt, which is used to find the point of model convergence in order to ensure maximal
amplification is correctly captured in model projection.

maxamp will not work for imprimitive or reducible matrices.

Value

If vector="n", the bound on maximal amplification of A.
If vector is specified, the case-specific maximal amplification of the model.
If return.N=TRUE, return.t=TRUE and/or return.stage=TRUE, a list with possible components:

maxamp the bound on or case-specific maximal amplification

N the population size at the point of maximal amplification, including the effects of initial popula-
tion size and asymptotic growth. NOTE that N is not indicative of maximum possible popu-
lation size for a non-standardised model: merely the population size at the point of maximal
amplification (i.e. largest positive deviation from lambda-max).

t the projection interval at which maximal amplification is achieved.

stage (only if vector="n"), the stage that achieves the bound on maximal amplification.
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References

• Neubert & Caswell (1997) Ecology, 78, 653-665.

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

• Townley & Hodgson (2008) J. Appl. Ecol., 45, 1836-1839.

See Also

Other TransientIndices: Kreiss(), inertia(), maxatt(), reac()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the bound on maximal amplification of A
maxamp(A)

# Calculate the bound on maximal amplification of A and
# return the stage that achieves it
maxamp(A, return.stage=TRUE)

# Calculate case-specific maximal amplification of A
# and initial
maxamp(A, vector=initial)

# Calculate case-specific maximal amplification of A
# and initial and return realised population size and the
# time at which it is achieved
maxamp(A, vector=initial, return.N=TRUE, return.t=TRUE)

maxatt Calculate maximal attenuation

Description

Calculate maximal attenuation for a population matrix projection model.

Usage

maxatt(
A,
vector = "n",
return.N = FALSE,
return.t = FALSE,
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return.stage = FALSE,
conv.iterations = 1e+05,
conv.accuracy = 1e-05

)

Arguments

A a square, primitive, non-negative numeric matrix of any dimension

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution (’demographic structure’) used to calculate a ’case-specific’ maximal
attenuation

return.N (optional) if TRUE, returns population size at the point of maximal attenuation
(including effects of asymptotic growth and initial population size), alongside
standardised maximal attenuation.

return.t (optional) if TRUE, returns the time at which maximal attenuation occurs in the
population projection.

return.stage (optional) if TRUE and vector="n", returns the stage that achieves the bound on
maximal attenuation.

conv.iterations

the maximum number of iterations allowed when calulating convergence time
(see details). Please see iterations in convt.

conv.accuracy the accuracy of convergence (see details). Please see accuracy in convt.

Details

maxatt returns a standardised measure of maximal attenuation, discounting the effects of both
initial population size and asymoptotic growth (Stott et al. 2011).

If vector is not specified then the bound on maximal attenuation (the greatest maximal attenuation
that may be achieved) is returned, otherwise a ’case-specific’ maximal attenuation for the specified
matrix and demographic structure is calculated. Note that not all demographic structures will yield
a maximal attenuation: if the model does not amplify then an error is returned.

Setting return.N=T, return.t=T and return.stage=T results in the function returning realised
population size at maximal attenuation (including the effects of asymptotic growth and initial pop-
ulation size), the time at which maximal attenuation occurs and (if vector="n"), the stage-bias that
results in the bound on maximal attenuation, respectively. NOTE that N is not indicative of minuium
possible population size for a non-standardised model: merely the population size at the point of
maximal attenuation (i.e. largest negative deviation from lambda-max).

max.att uses a simulation technique, using project to project the dynamics of the model be-
fore evaluating minimum projected density over all t. conv.accuracy and conv.iterations are
passed to convt, which is used to find the point of model convergence in order to ensure maximal
attenuation is correctly captured in model projection.

maxatt will not work for imprimitive or reducible matrices.

Value

If vector="n", the bound on maximal attenuation of A.
If vector is specified, the case-specific maximal attenuation of the model.
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If return.N=TRUE, return.t=TRUE and/or return.stage=TRUE, a list with possible components:

maxatt the bound on or case-specific maximal attenuation

N the population size at the point of maximal attenuation, including the effects of initial population
size and asymptotic growth. NOTE that N is not indicative of minimum possible population
size for a non-standardised model: merely the population size at the point of maximal attenu-
ation (i.e. largest negative deviation from lambda-max).

t the projection interval at which maximal attenuation is achieved.

stage (only if vector="n"), the stage that achieves the bound on maximal attenuation.

References

• Neubert & Caswell (1997) Ecology, 78, 653-665.

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

• Townley & Hodgson (2008) J. Appl. Ecol., 45, 1836-1839.

See Also

Other TransientIndices: Kreiss(), inertia(), maxamp(), reac()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(3,1,1) )

# Calculate the bound on maximal attenuation of A
maxatt(A)

# Calculate the bound on maximal attenuation of A and
# return the stage that achieves it
maxatt(A, return.stage=TRUE)

# Calculate case-specific maximal attenuation of A
# and initial
maxatt(A, vector=initial)

# Calculate case-specific maximal attenuation of A
# and initial and return realised population size and the
# time at which it is achieved
maxatt(A, vector=initial, return.N=TRUE, return.t=TRUE)
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Pbear Polar bear matrices

Description

Matrix projection model for the polar bear Ursus maritimus, with 5 matrices corresponding to years
2001-2005. The matrices are based on a population in the southern Beaufort Sea. During 2001-
2003, ice conditions were classified as "good", but in 2004-2005, ice conditions were classified as
"poor". Poor ice conditions lead to worse population performance. Stages are based on age and
reproductive status:
Stage-1: 2-year-old
Stage 2: 3-year-old
Stage 3: 4-year-old
Stage 4: adult (5+ years old), available to breed
Stage 5: adult, with cub (0-1 years old)
Stage 6: adult, with yearling (1-2 years old).

Usage

data(Pbear)

Format

List object containing matrices.

Details

The population structure is c(0.106, 0.068, 0.106, 0.461, 0.151, 0.108))

References

• Hunter et al. (2010) Ecology, 91, 2883-2897.

Examples

#read in data
data(Pbear)
Pbear
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plot.tfa Plot transfer function

Description

Plot a transfer function

Usage

## S3 method for class 'tfa'
plot(x, xvar = NULL, yvar = NULL, ...)

Arguments

x an object of class ’tfa’ (transfer function analysis) created using tfa_lambda or
tfa_inertia.

xvar, yvar (optional) the variables to plot on the x and y axes. May be "p", "lambda" or
"inertia". Defaults to xvar="p" and yvar="lambda" for objects created us-
ing tfa_lambda and xvar="p" and yvar="inertia" for objects created using
tfa_inertia.

... arguments to be passed to methods: see par and plot.

Details

plot.tfa plots transfer functions (class tfa) created using tfa_lambda or tfa_inertia.

See Also

Constructor functions: tfa_lambda, tfa_inertia

Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate the transfer function of A[3,2] given a range of lambda
evals <- eigen(A)$values
lmax <- which.max(Re(evals))
lambda <- Re(evals[lmax])
lambdarange <- seq(lambda-0.1, lambda+0.1, 0.01)
( transfer <- tfa_lambda(A, d=c(0,0,1), e=c(0,1,0), lambdarange=lambdarange) )

# Plot the transfer function
plot(transfer)

# Create an initial stage structure
( initial <- c(1,3,2) )
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# Calculate the transfer function of upper bound on inertia
# given a perturbation to A[3,2]
( transfer<-tfa_inertia(A, d=c(0,0,1), e=c(0,1,0), bound="upper",

prange=seq(-0.6,0.4,0.01)) )

# Plot the transfer function (defaults to inertia ~ p)
plot(transfer)

# Plot inertia against lambda
plot(transfer, xvar="lambda", yvar="inertia")

plot.tfam Plot transfer function

Description

Plot a matrix of transfer functions

Usage

## S3 method for class 'tfam'
plot(x, xvar = NULL, yvar = NULL, mar = c(1.1, 1.1, 0.1, 0.1), ...)

Arguments

x an object of class ’tfam’ (transfer function analysis matrix) created using tfam_lambda
or tfam_inertia.

xvar, yvar (optional) the variables to plot on the x and y axes. May be "p", "lambda"
or "inertia". Defaults to xvar="p" and yvar="lambda" for objects created
using tfam_lambda, and xvar="p" and yvar="inertia" for objects created
using tfam_inertia.

mar the margin limits on the plots: see par

... arguments to be passed to methods: see par and plot.

Details

plot.tfam plots matrices of transfer functions (class tfam) created using tfam_lambda or tfam_inertia.
The plot is laid out to correspond with the nonzero entries of the matrix used to generate the transfer
functions, for easy visual comparison of how perturbation affects different matrix elements.

See Also

Constructor functions: tfam_lambda, tfam_inertia
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Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate the matrix of transfer functions using default arguments
( tfmat<-tfam_lambda(A) )

# Plot the matrix of transfer functions
plot(tfmat)

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the matrix of transfer functions for inertia and
# specified initial stage structure using default arguments
( tfmat2<-tfam_inertia(A,vector=initial) )

# Plot the result (defaults to inertia ~ p)
plot(tfmat2)

# Plot inertia ~ lambda
plot(tfmat2, xvar="lambda", yvar="inertia")

popdemo-deprecated Deprecated functions in the popdemo package

Description

Deprecated functions in the popdemo package

Usage

Cohen.cumulative(...)
convergence.time(...)
inertia.tfa(...)
inertia.tfamatrix(...)
inertia.tfsens(...)
inertia.tfsensmatrix(...)
is.matrix_ergodic(...)
is.matrix_irreducible(...)
is.matrix_primitive(...)
Keyfitz.delta(...)
projection.distance(...)
tfa(...)
tfamatrix(...)
tfsens(...)
tfsensmatrix(...)
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minCS(...)
reactivity(...)
firststepatt(...)

Arguments

... Parameters to be passed to the new function versions

Details

Many functions have become deprecated as of popdemo_1.0-0 (meaning they will stop working at
some point in the future). In most cases, this is because functions needed to be re-named. For now
the older function names will work but issue a warning, but you should use the new function names
wherever possible. Please update your code, and I’m sorry for the inconvenience!

Avoiding S3 troubles Most deprecated functions needed to be renamed because they included a
period in the function name: the new function names don’t use periods, which is a better
approach for playing nicely with the S3 object-oriented system (see Hadley Wickham’s OO
field guide for more info). These are:

Cohen.cumulative now called CohenD
convergence.time now called convt

inertia.tfa now called tfa_inertia
inertia.tfamatrix now called tfam_inertia

inertia.tfsens now called tfs_inertia
inertia.tfsensmatrix now called tfsm_inertia

is.matrix_ergodic now called isErgodic
is.matrix_irreducible now called isIrreducible
is.matrix_primitive now called isPrimitive

Keyfitz.delta now called KeyfitzD
projection.distance now called projectionD

Consistency Some other functions have been renamed to keep consistency with new functions, and
also to further avoid problems with S3 methods by making sure classes and functions don’t
have the same names:

tfa now called tfa_lambda
tfamatrix now called tfam_lambda

tfsens now called tfs_lambda
tfsensmatrix now called tfsm_lambda

Hidden functions Some functions have been made internal (they’re "hidden" but you can still use
them):

minCS now called .minCS
tf now called .tf

http://adv-r.had.co.nz/OO-essentials.html
http://adv-r.had.co.nz/OO-essentials.html
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Merged functions Two functions are deprecated because they have been merged into one:

reactivity,firststepatt now handled by reac.

Before, reactivity handled first-timestep amplification and firststepatt handled first-
timestep attenuation. This is silly, because a projection EITHER amplifies OR attenuates
in the first timestep. Desptite the semantics, reac now deals with both amplification and
attenuation in the first timestep, everything that was calculable in the previous two functions
is also calculable in the one new function.

project Project population dynamics

Description

Project dynamics of a specified population matrix projection model.

Usage

project(
A,
vector = "n",
time = 100,
standard.A = FALSE,
standard.vec = FALSE,
return.vec = TRUE,
Aseq = "unif",
Astart = NULL,
draws = 1000,
alpha.draws = "unif",
PREcheck = TRUE

)

Arguments

A a matrix, or list of matrices. If A is a matrix, then project performs a ’deter-
ministic’ projection, where the matrix does not change with each timestep. If
A is a list of matrices, then project performs a ’stochastic’ projection where
the matrix varies with each timestep. The sequence of matrices is determined
using Aseq. Matrices must be square, non-negative and numeric. If A is a list,
all matrices must have the same dimension. ’Projection’ objects inherit names
from A: if A is a matrix, stage names (in mat and vec slots) are inherited from its
column names..
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vector (optional) a numeric vector or matrix describing the age/stage distribution(s)
used to calculate the projection. Single population vectors can be given either
as a numeric vector or one-column matrix. Multiple vectors are specified as a
matrix, where each column describes a single population vector. Therefore the
number of rows of the matrix should be equal to the matrix dimension, whilst
the number of columns gives the number of vectors to project. vector may
also take either "n" (default) to calculate the set of stage-biased projections (see
details), or "diri" to project random population vectors drawn from a dirichlet
distribution (see details).

time the number of projection intervals.

standard.A (optional) if TRUE, scales each matrix in A by dividing all elements by the dom-
inant eigenvalue. This standardises asymptotic dynamics: the dominant eigen-
value of the scaled matrix is 1. Useful for assessing transient dynamics.

standard.vec (optional) if TRUE, standardises each vector to sum to 1, by dividing each vector
by its sum. Useful for assessing projection relative to initial population size.

return.vec (optional) if TRUE, returns the time series of demographic (st)age vectors as well
as overall population size.

Aseq (optional, for stochastic projections only) the sequence of matrices in a stochas-
tic projection. Aseq may be either:

• "unif" (default), which results in every matrix in A having an equal, random
chance of being chosen at each timestep.

• a square, nonnegative left-stochastic matrix describing a first-order Markov
chain used to choose the matrices. The transitions are defined COLUM-
NWISE: each column j describes the probability of choosing stage (row) i
at time t+1, given that stage (column) j was chosen at time t. Aseq should
have the same dimension as the number of matrices in A.

• a numeric vector giving a specific sequence which corresponds to the ma-
trices in A.

• a character vector giving a specific sequence which corresponds to the
names of the matrices in A.

Astart (optional) in a stochastic projection, the matrix with which to initialise the pro-
jection (either numeric, corresponding to the matrices in A, or character, corre-
sponding to the names of matrices in A). When Astart = NULL (the default), a
random initial matrix is chosen.

draws if vector="diri", the number of population vectors drawn from dirichlet.

alpha.draws if vector="diri", the alpha values passed to rdirichlet: used to bias draws
towards or away from a certain population structure.

PREcheck many functions in popdemo first check Primitivity, Reducibility and/or Ergod-
icity of matrices, with associated warnings and/or errors if a matrix breaks any
assumptions. Set PREcheck=FALSE if you want to bypass these checks.

Details

If vector is specified, project will calculate population dynamics through time by projecting this
vector / these vectors through A. If multiple vectors are specified, a separate population projection
is calculated for each.
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If vector="n", project will automatically project the set of ’stage-biased’ vectors of A. Effectively,
each vector is a population consisting of all individuals in one stage. These projections are achieved
using a set of standard basis vectors equal in number to the dimension of A. The vectors have every
element equal to 0, except for a single element equal to 1, i.e. for a matrix of dimension 3, the set of
stage-biased vectors are: c(1,0,0), c(0,1,0) and c(0,0,1). Stage-biased projections are useful
for seeing how extreme transient dynamics can be.

If vector="diri", project draws random population vectors from the dirichlet distribution. draws
gives the number of population vectors to draw. alpha.draws gives the parameters for the dirichlet
and can be used to bias the draws towards or away from certain population structures. The default
is alpha.draws="unif", which passes rep(1,dim) (where dim is the dimension of the matrix),
resulting in an equal probability of any random population vector. Relative values in the vector give
the population structure to focus the distribution on, and the absolute value of the vector entries
(and their sum) gives the strength of the distribution: values greater than 1 make it more likely to
draw from nearby that population structure, whilst values less than 1 make it less likely to draw
from nearby that population structure.

Projections returned are of length time+1, as the first element represents the population at t=0.

Projections have their own plotting method (see Projection-plots) to enable easy graphing.

In addition to the examples below, see the "Deterministic population dynamics" and "Stochastic
population dynamics" vignettes for worked examples that use the project function.

Value

A Projection-class item. ’Projection’ objects inherit from a standard array, and can be treated
as such. Therefore, if if vector is specified, the ’Projection’ object will behave as:

• if a single vector is given, a numeric vector of population sizes of length time+1

• if multiple vectors are given, a numeric matrix of population projections where each column
represents a single population projection and is of length time+1

• if vector="n", a numeric matrix of population projections where each column represents a
single stage-biased projection and is of length time+1.

• if vector="diri", a numeric matrix of population projections where each column represents
projection of a single vector draw and each column is of length time+1

See documentation on Projection-class objects to understand how to access other slots (e.g.
(st)age vectors through the population projection) and for S4 methods (e.g. plotting projections).
Some examples for understanding the structure of 3D arrays returned when return.vec=TRUE:
when projecting a 3 by 3 matrix for >10 time intervals (see examples), element [11,3,2] represents
the density of stage 3 at time 10 for either vector 2 (multiple vectors), stage-bias 2 (vector="n") or
draw 2 (vector="diri"); note that because element 1 represents t=0, then t=10 is found at element
11. The vector [,3,2] represents the time series of densities of stage 3 in the projection of vector 2
/ stage-bias 2 / draw 2. The matrix [„2] represents the time series of all stages in the projection of
vector 2 / stage-bias 2 / draw 2.

Note that the projections inherit the labelling from A and vector, if it exists. Both stage and vector
names are taken from the COLUMN names of A and vector respectively. These may be useful for
selecting from the projection object, and for labelling graphs when plotting Projection objects.
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See Also

Projection-class Projection-plots

Examples

### USING PROJECTION OBJECTS

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Project stage-biased dynamics of A over 70 intervals
( pr <- project(A, vector="n", time=70) )
plot(pr)

# Access other slots
vec(pr) #time sequence of population vectors
bounds(pr) #bounds on population dynamics
mat(pr) #matrix used to create projection
Aseq(pr) #sequence of matrices (more useful for stochastic projections)
projtype(pr) #type of projection
vectype(pr) #type of vector(s) initiating projection

# Extra information on the projection
nproj(pr) #number of projections
nmat(pr) #number of matrices (more usefulk for stochastic projections)
ntime(pr) #number of time intervals

# Select the projection of stage 2 bias
pr[,2]

# Project stage-biased dynamics of standardised A over 30 intervals
( pr2 <- project(A, vector="n", time=30, standard.A=TRUE) )
plot(pr2)

#Select the projection of stage 2 bias
pr2[,2]

# Select the density of stage 3 in bias 2 at time 10
vec(pr2)[11,3,2]

# Select the time series of densities of stage 2 in bias 1
vec(pr2)[,2,1]

#Select the matrix of population vectors for bias 2
vec(pr2)[,,2]

# Create an initial stage structure
( initial <- c(1,3,2) )

# Project A over 50 intervals using a specified population structure
( pr3 <- project(A, vector=initial, time=50) )
plot(pr3)
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# Project standardised dynamics of A over 10 intervals using
# standardised initial structure and return demographic vectors
( pr4 <- project(A, vector=initial, time=10, standard.vec=TRUE,

standard.A=TRUE, return.vec=TRUE) )
plot(pr4)

# Select the time series for stage 1
vec(pr4)[,1]

### DETERMINISTIC PROJECTIONS

# Load the desert Tortoise matrix
data(Tort)

# Create an initial stage structure
Tortvec1 <- c(8, 7, 6, 5, 4, 3, 2, 1)

# Create a projection over 30 time intervals
( Tortp1 <- project(Tort, vector = Tortvec1, time = 10) )

# plot p1
plot(Tortp1)
plot(Tortp1, bounds = TRUE) #with bounds

# new display parameters
plot(Tortp1, bounds = TRUE, col = "red", bty = "n", log = "y",

ylab = "Number of individuals (log scale)",
bounds.args = list(lty = 2, lwd = 2) )

# multiple vectors
Tortvec2 <- cbind(Tortvec1, c(1, 2, 3, 4, 5, 6, 7, 8))
plot(project(Tort, vector = Tortvec2), log = "y")
plot(project(Tort, vector = Tortvec2), log = "y", labs = FALSE) #no labels

# dirichlet distribution
# darker shading indicates more likely population size
Tortshade <- project(Tort, time = 30, vector = "diri", standard.A = TRUE,

draws = 500, alpha.draws = "unif")
plot(Tortshade, plottype = "shady", bounds = TRUE)

### STOCHASTIC PROJECTIONS
# load polar bear data
data(Pbear)

# project over 50 years with uniform matrix selection
Pbearvec <- c(0.106, 0.068, 0.106, 0.461, 0.151, 0.108)
p2 <- project(Pbear, Pbearvec, time = 50, Aseq = "unif")

# stochastic projection information
Aseq(p2)
projtype(p2)
nmat(p2)
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# plot
plot(p2, log = "y")

Projection-class ’Projection’ object S4 class

Description

Projection objects are created using the project function. Primarily, they contain overall popula-
tion size over time: they can be treated as a vector (single population projection) or matrix (multiple
population projections; see information on slot ".Data" below). They also contain further informa-
tion on the population projection. These extra pieces of information are described below in the
"Slots" section, and the methods for accessing them appear below. These are:

vec access population vectors

bounds access bounds on population dynamics

mat access projection matrix/matrices used to create projection(s)

Aseq access projection matrix sequence used to create projection(s)

projtype find out projection type

vectype access type of vector used to initiate population projection(s)

Other methods for accessing basic information from the projection are:

nproj access projection matrix/matrices used to create projection

nmat number of projection matrices used to create projection(s)

ntime number of time intervals

Plotting and display methods for ’Projection’ objects can be found on the Projection-plots page.

Usage

vec(object)

## S4 method for signature 'Projection'
vec(object)

bounds(object)

## S4 method for signature 'Projection'
bounds(object)

mat(object, ...)

## S4 method for signature 'Projection'
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mat(object, return = "simple")

Aseq(object)

## S4 method for signature 'Projection'
Aseq(object)

projtype(object)

## S4 method for signature 'Projection'
projtype(object)

vectype(object)

## S4 method for signature 'Projection'
vectype(object)

nproj(object)

## S4 method for signature 'Projection'
nproj(object)

nmat(object)

## S4 method for signature 'Projection'
nmat(object)

ntime(object)

## S4 method for signature 'Projection'
ntime(object)

show(object)

## S4 method for signature 'Projection'
show(object)

Arguments

object an object of class "Projection" generated using project

... further arguments (see method, below)
return either "simple", "list", or "array": used for accessing the ’mat’ slot from a Pro-

jection object. Note that only list or array can be used for stochastic projections,
which have more than one matrix.

Details

In addition to the examples below, see the "Deterministic population dynamics" and "Stochastic
population dynamics" vignettes for worked examples that use the ’Projection’ objects.
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Slots

.Data One or more time series of population sizes. ’Projection’ objects inherit from a standard
array, and can be treated as such. Therefore, if vector is specified, the ’Projection’ object
will behave as:

• if a single vector is given, a numeric vector of population sizes of length time+1

• if multiple vectors are given, a numeric matrix of population projections where each
column represents a single population projection and is of length time+1

• if vector="n", a numeric matrix of population projections where each column represents
a single stage-biased projection and is of length time+1.

• if vector="diri", a numeric matrix of population projections where each column repre-
sents projection of a single vector draw and each column is of length time+1.

vec Age- or stage-based population vectors. vec will be:

• If a single vector is specified, a numeric matrix of demographic vectors from projec-
tion of vector through A. Each column represents the densities of one life (st)age in the
projection.

• If multiple vectors are specified, a three-dimensional array of demographic vectors from
projection of the set of initial vectors through A. The first dimension represents time (and
is therefore equal to time+1). The second dimension represents the densities of each
stage (and is therefore equal to the dimension of A). The third dimension represents each
individual projection (and is therefore equal to the number of initial vectors given).

• If vector="n", a three-dimensional array of demographic vectors from projection of the
set of stage-biased vectors through A. The first dimension represents time (and is therefore
equal to time+1). The second dimension represents the densities of each stage (and is
therefore equal to the dimension of A). The third dimension represents each individual
stage-biased projection (and is therefore also equal to the dimension of A).

• Ifvector="diri", a three-dimensional array of demographic vectors from projection of
the dirichlet vector draws projected through A. The first dimension represents time (and is
therefore equal to time+1). The second dimension represents the densities of each stage
(and is therefore equal to the dimension of A). The third dimension represents projection
of each population draw (and is therefore equal to draws).

Some examples for understanding the structure of 3D arrays returned when return.vec=TRUE:
when projecting a 3 by 3 matrix for >10 time intervals, element [11,3,2] represents the density
of stage 3 at time 10 for either vector 2 (multiple vectors), stage-bias 2 (vector="n") or draw
2 (vector="diri"); note that because element 1 represents t=0, then t=10 is found at element
11. The vector [,3,2] represents the time series of densities of stage 3 in the projection of
vector 2 / stage-bias 2 / draw 2. The matrix [„2] represents the time series of all stages in the
projection of vector 2 / stage-bias 2 / draw 2.

Note that the projections inherit the labelling from A and vector, if it exists. Both stage
and vector names are taken from the COLUMN names of A and vector respectively. These
may be useful for selecting from the projection object, and are used when labelling plots of
Projection objects containing multiple population projections.

Set return.vec = FALSE when calling project to prevent population vectors from being
saved: in this case, vec is equal to numeric(0). This may be necessary when projecting
large numbers of vectors, as is the case when vector = "diri".
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bounds The bounds on population dynamics (only for deterministic projections). These represent
the maximum and minimum population sizes achieveable at each time interval of the projec-
tion. bounds is a matrix with 2 columns (lower and upper bounds, in that order), and the
number of rows is equal to time + 1.

mat The matrix/matrices used in the population projection. In their raw form mat is always a
three-dimensional array, where the third dimension is used to index the different matrices.
However, by using the mat() accessor function below, it is possible to choose different ways
of representing the matrices (matrix, list, array).

Aseq The sequence of matrices used in the projection. For deterministic projections (where there is
only 1 matrix) this will always be rep(1, time). For stochastic projections (with more than
1 matrix), if Aseq is given to project as a numeric or character vector then this slot will take
that value. If a matrix describing a random markov process is passed, the Aseq slot will be a
single random chain.

projtype The type of projection. Either "deterministic" (single matrix; time-invariant), or "stochas-
tic" (multiple matrices; time-varying).

vectype The type of vector passed to project. May be "single" (one vector; one population
projection), "multiple" (more than one vector; several population projections), "bias" (stage-
biased vectors; vector = "n"), or "diri" (vectors drawn from the dirichlet distribution; vector
= "diri").

See Also

project Projection-plots

Examples

### USING PROJECTION OBJECTS

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Project stage-biased dynamics of A over 70 intervals
( pr <- project(A, vector="n", time=70) )
plot(pr)

# Access other slots
vec(pr) #time sequence of population vectors
bounds(pr) #bounds on population dynamics
mat(pr) #matrix used to create projection
Aseq(pr) #sequence of matrices (more useful for stochastic projections)
projtype(pr) #type of projection
vectype(pr) #type of vector(s) initiating projection

# Extra information on the projection
nproj(pr) #number of projections
nmat(pr) #number of matrices (more usefulk for stochastic projections)
ntime(pr) #number of time intervals

# Select the projection of stage 2 bias
pr[,2]
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# Project stage-biased dynamics of standardised A over 30 intervals
( pr2 <- project(A, vector="n", time=30, standard.A=TRUE) )
plot(pr2)

#Select the projection of stage 2 bias
pr2[,2]

# Select the density of stage 3 in bias 2 at time 10
vec(pr2)[11,3,2]

# Select the time series of densities of stage 2 in bias 1
vec(pr2)[,2,1]

#Select the matrix of population vectors for bias 2
vec(pr2)[,,2]

# Create an initial stage structure
( initial <- c(1,3,2) )

# Project A over 50 intervals using a specified population structure
( pr3 <- project(A, vector=initial, time=50) )
plot(pr3)

# Project standardised dynamics of A over 10 intervals using
# standardised initial structure and return demographic vectors
( pr4 <- project(A, vector=initial, time=10, standard.vec=TRUE,

standard.A=TRUE, return.vec=TRUE) )
plot(pr4)

# Select the time series for stage 1
vec(pr4)[,1]

Projection-plots Plot methods for ’Projection’ objects

Description

This page describes print and plot methods for Projection-class. Example code is below, or
worked examples using these methods are available in the "Deterministic population dynamics"
and "Stochastic population dynamics" vignettes.

Usage

plot(x, y, ...)

## S4 method for signature 'Projection,missing'
plot(
x,
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y,
bounds = FALSE,
bounds.args = NULL,
labs = TRUE,
plottype = "lines",
ybreaks = 20,
shadelevels = 100,
...

)

Arguments

x an object of class "Projection" generated using project

y not used

... arguments to be passed to methods: see par and plot.

bounds logical: indicates whether to plot the bounds on population density.

bounds.args A list of graphical parameters for plotting the bounds if bounds=T. The name
of each list element indicates the name of the argument. Could include, e.g.
list(lwd=2,lty=3,col="darkred").

labs logical: if TRUE, the plot includes more than one projection and plottype="lines",
then lines are automatically labelled according to the names contained in the
’projection’ object.

plottype for projections generated from dirichlet draws (see project), plottype has
two options. "lines" will plot each projection as a separate line. "shady"
will plot shaded contours showing the probabilities of population densities over
over time, calculated across the set of projections from dirichlet draws. By
default this shaded plot is a gradient of black to white (with black representing
higher probabilities), but this can be overridden by using the ’col’ argument (see
examples).

ybreaks if plottype="shady", gives the number of breaks on the y axis for generating
the grid for the shade plot. A larger number of breaks means a finer resolution
grid for the shading.

shadelevels if plottype="shady" and a palette of colours is not specified using ’col’, then
shadelevels gives the number of colour/shading levels to use when generat-
ing the black and white shade plot. A larger number of levels means a finer
resolution on the shade plot of population density (see examples).

Details

plot plot a Projection object

See Also

project Projection-class
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Examples

### Desert tortoise matrix
data(Tort)

# Create an initial stage structure
Tortvec1 <- c(8, 7, 6, 5, 4, 3, 2, 1)

# Create a projection over 30 time intervals
( Tortp1 <- project(Tort, vector = Tortvec1, time = 10) )

# plot p1
plot(Tortp1)
plot(Tortp1, bounds = TRUE) #with bounds

# new display parameters
plot(Tortp1, bounds = TRUE, col = "red", bty = "n", log = "y",

ylab = "Number of individuals (log scale)",
bounds.args = list(lty = 2, lwd = 2) )

# multiple vectors
Tortvec2 <- cbind(Tortvec1, c(1, 2, 3, 4, 5, 6, 7, 8))
plot(project(Tort, vector = Tortvec2), log = "y")
plot(project(Tort, vector = Tortvec2), log = "y", labs = FALSE) #no labels

# dirichlet distribution
# darker shading indicates more likely population size
Tortshade <- project(Tort, time = 30, vector = "diri", standard.A = TRUE,

draws = 500, alpha.draws = "unif")
plot(Tortshade, plottype = "shady", bounds = TRUE)

### STOCHASTIC PROJECTIONS
# load polar bear data
data(Pbear)

# project over 50 years with uniform matrix selection
Pbearvec <- c(0.106, 0.068, 0.106, 0.461, 0.151, 0.108)
p2 <- project(Pbear, Pbearvec, time = 50, Aseq = "unif")

# stochastic projection information
Aseq(p2)
projtype(p2)
nmat(p2)

# plot
plot(p2, log = "y")

### USING PROJECTION OBJECTS

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Project stage-biased dynamics of A over 70 intervals
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( pr <- project(A, vector="n", time=70) )
plot(pr)

# Access other slots
vec(pr) #time sequence of population vectors
bounds(pr) #bounds on population dynamics
mat(pr) #matrix used to create projection
Aseq(pr) #sequence of matrices (more useful for stochastic projections)
projtype(pr) #type of projection
vectype(pr) #type of vector(s) initiating projection

# Extra information on the projection
nproj(pr) #number of projections
nmat(pr) #number of matrices (more usefulk for stochastic projections)
ntime(pr) #number of time intervals

# Select the projection of stage 2 bias
pr[,2]

# Project stage-biased dynamics of standardised A over 30 intervals
( pr2 <- project(A, vector="n", time=30, standard.A=TRUE) )
plot(pr2)

#Select the projection of stage 2 bias
pr2[,2]

# Select the density of stage 3 in bias 2 at time 10
vec(pr2)[11,3,2]

# Select the time series of densities of stage 2 in bias 1
vec(pr2)[,2,1]

#Select the matrix of population vectors for bias 2
vec(pr2)[,,2]

# Create an initial stage structure
( initial <- c(1,3,2) )

# Project A over 50 intervals using a specified population structure
( pr3 <- project(A, vector=initial, time=50) )
plot(pr3)

# Project standardised dynamics of A over 10 intervals using
# standardised initial structure and return demographic vectors
( pr4 <- project(A, vector=initial, time=10, standard.vec=TRUE,

standard.A=TRUE, return.vec=TRUE) )
plot(pr4)

# Select the time series for stage 1
vec(pr4)[,1]

### DETERMINISTIC PROJECTIONS
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# Load the desert Tortoise matrix
data(Tort)

# Create an initial stage structure
Tortvec1 <- c(8, 7, 6, 5, 4, 3, 2, 1)

# Create a projection over 30 time intervals
( Tortp1 <- project(Tort, vector = Tortvec1, time = 10) )

# plot p1
plot(Tortp1)
plot(Tortp1, bounds = TRUE) #with bounds

# new display parameters
plot(Tortp1, bounds = TRUE, col = "red", bty = "n", log = "y",

ylab = "Number of individuals (log scale)",
bounds.args = list(lty = 2, lwd = 2) )

# multiple vectors
Tortvec2 <- cbind(Tortvec1, c(1, 2, 3, 4, 5, 6, 7, 8))
plot(project(Tort, vector = Tortvec2), log = "y")
plot(project(Tort, vector = Tortvec2), log = "y", labs = FALSE) #no labels

# dirichlet distribution
# darker shading indicates more likely population size
Tortshade <- project(Tort, time = 30, vector = "diri", standard.A = TRUE,

draws = 500, alpha.draws = "unif")
plot(Tortshade, plottype = "shady", bounds = TRUE)

### STOCHASTIC PROJECTIONS
# load polar bear data
data(Pbear)

# project over 50 years with uniform matrix selection
Pbearvec <- c(0.106, 0.068, 0.106, 0.461, 0.151, 0.108)
p2 <- project(Pbear, Pbearvec, time = 50, Aseq = "unif")

# stochastic projection information
Aseq(p2)
projtype(p2)
nmat(p2)

# plot
plot(p2, log = "y")

projectionD Calculate projection distance

Description

Calculate projection distance for a population matrix projection model.
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Usage

projectionD(A, vector)

Arguments

A a square, irreducible, non-negative numeric matrix of any dimension.

vector a numeric vector or one-column matrix describing the age/stage distribution
used to calculate the distance.

Details

projectionD (Haridas & Tuljapurkar 2007) is the difference between the reproductive value of a
population with demographic distribution given by vector and the reproductive value of a popula-
tion in stable state.

projectionD will not work for reducible matrices and returns a warning for imprimitive matrices
(although will not function for imprimitive matrices with nonzero imaginary components in the
dominant eigenpair).

Value

Projection distance.

References

• Haridas & Tuljapurkar (2007) Ecol. Lett., 10, 1143-1153.

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

See Also

Other DistanceMeasures: CohenD(), KeyfitzD()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate projection distance
projectionD(A, vector=initial)
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R2Matlab Convert matrices into Matlab style strings

Description

Convert R objects of class matrix into character strings that represent the matrix in a Matlab style

Usage

R2Matlab(A, noquote = FALSE)

Arguments

A a numeric matrix of any dimension

noquote (optional) if noquote=TRUE then the returned character vector is printed without
quotes.

Details

Matlab reads matrices using a unique one-line notation that can prove useful for storage in databases
and importing multiple matrices into a program at once, amongst other applications. This nota-
tion is by row, with "[" and "]" to specify the beginning and end of the matrix respectively, ";" to
specify a new row and a space between each matrix element. Thus, the R matrix created using
matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) is equivalent to [0 1 2;0.5 0.1
0;0 0.6 0.6].

R2Matlab takes an R object of class matrix converts it into a Matlab-style character string that may
be useful for exporting into databases.

Value

Object of class character representing A in a Matlab style.

See Also

Matlab2R

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Code the matrix in a Matlab style
R2Matlab(A)

# Print without quotes
R2Matlab(A, noquote=TRUE)
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reac Calculate reactivity and first-timestep attenuation

Description

Calculate reactivity (first-timestep amplification) and first-timestep attenuation for a population ma-
trix projection model.

Usage

reac(A, vector = "n", bound = NULL, return.N = FALSE)

Arguments

A a square, non-negative numeric matrix of any dimension
vector (optional) a numeric vector or one-column matrix describing the age/stage dis-

tribution used to calculate a ’case-specific’ reactivity/ first-timestep attenuation
bound (optional) specifies whether an upper or lower bound should be calculated (see

details).
return.N (optional) if TRUE, returns population size in the first time interval (including

effects of asymptotic growth and initial population size), alongside standardised
reactivity/first-timestep attenuation.

Details

reac returns a standardised measure of first-timestep amplification or attenuation, discounting the
effects of both initial population size and asymoptotic growth (Stott et al. 2011).

If vector="n" then either bound="upper" or bound="lower" must be specified, which calculate
the upper or lower bound on first-timestep amplification and attenuation (i.e. the largest and small-
est values that reactivity and first-timestep attenuation may take) respectively. Specifying vector
overrides calculation of a bound, and will yield a ’case-specific’ reactivity/first-timestep attenuation.

If return.N=T then the function also returns realised population size (including the effects of
asymptotic growth and initial population size).

reac works with imprimitive and irreducible matrices, but returns a warning in these cases.

NOTE: reac replaces reactivity and firststepatt as of version 1.0-0. Although semantically
’reactivity’ and ’first-timestep attenuation’ are different (the former is an amplification in the first
timestep and the latter an attenuation in the first timestep), as a population matrix projection model
EITHER amplifies OR attenuates in the first timestep, it made no sense to have two separate func-
tions to calculate one thing (transient dynamics in the first timestep).

Value

If vector="n", the upper bound on reactivity of A if bound="upper" and the lower bound on first-
timestep attenuation of A if bound="lower".
If vector is specified, the ’case-specific’ reactivity or first-timestep attenuation of the model.

If return.N=TRUE, a list with components:
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reac the bound on or case-specific reactivity or first-timestep attenuation

N the population size at the first timestep, including the effects of initial population size and asymp-
totic growth.

References

• Neubert & Caswell (1997) Ecology, 78, 653-665.

• Stott et al. (2011) Ecol. Lett., 14, 959-970.

• Townley & Hodgson (2008) J. Appl. Ecol., 45, 1836-1839.

See Also

Other TransientIndices: Kreiss(), inertia(), maxamp(), maxatt()

Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create initial stage structures
( initial1 <- c(1,3,2) )
( initial2 <- c(3,1,1) )

# Calculate the upper bound on reactivity of A
reac(A, bound="upper")

# Calculate the lower bound on first-timestep attenuation of A
reac(A, bound="lower")

# Calculate case-specific reactivity of A
# when projected using specific demographic structure
# that amplifies
reac(A, vector=initial1)

# Calculate case-specific reactivity of A
# and initial1 and return realised population size
reac(A, vector=initial1, return.N=TRUE)

# Calculate case-specific first-timestep attenuation of A
# when projected using a specific demographic structure that
#attenuates
reac(A, vector=initial2)

# Calculate case-specific first-timestep attenuation of A
# and initial2 and return realised population size
reac(A, vector=initial2, return.N=TRUE)#'
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sens Calculate sensitivity matrix

Description

Calculate the sensitivity matrix for a population matrix projection model using eigenvectors.

Usage

sens(A, eval = "max", all = FALSE)

Arguments

A a square, non-negative numeric matrix of any dimension

eval the eigenvalue to evaluate. Default is eval="max", which evaluates the dom-
inant eigenvalue (the eigenvalue with largest REAL value: for imprimitive or
reducible matrices this may not be the first eigenvalue). Otherwise, specify-
ing e.g. eval=2 will evaluate sensitivity of the eigenvalue with second-largest
modulus.

all (optional) if FALSE, then only sensitivity values for observed transitions (nonzero
entries in A) are returned.

Details

sens uses the eigenvectors of A to calculate the sensitivity matrix of the specified eigenvalue, see
section 9.1 in Caswell (2001). Same method as sensitivity in popbio but can also evaluate
subdominant eigenvalues.

Value

A numeric (real or complex) matrix of equal dimension to A.

References

• Caswell (2001) Matrix Population Models 2nd ed. Sinauer.

See Also

Other PerturbationAnalyses: elas(), tfa_inertia(), tfa_lambda(), tfam_inertia(), tfam_lambda(),
tfs_inertia(), tfs_lambda()
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Examples

# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate sensitivities of dominant eigenvalue
sens(A)
# Calculate sensitivities of first subdominant eigenvalue,
# only for observed transitions
sens(A, eval=2, all=FALSE)

stoch Project population dynamics

Description

Analyse long-term dynamics of a stochastic population matrix projection model.

Usage

stoch(
A,
what = "all",
Aseq = "unif",
vector = NULL,
Astart = NULL,
iterations = 10000,
discard = 1000,
PREcheck = FALSE

)

Arguments

A a list of matrices. stoch uses project to perform a stochastic’ projection where
the matrix varies with each timestep. The sequence of matrices is determined us-
ing Aseq. Matrices must be square, non-negative and numeric, and all matrices
must have the same dimension.

what what should be returned. A character vector with possible entries "lambda" (to
calcualate stochastic growth), "var" (to calculate variance in stochastic growth)
and/or "all" (to calculate both).

Aseq the sequence of matrices in a stochastic projection. Aseq may be either:

• "unif" (default), which results in every matrix in A having an equal, random
chance of being chosen at each timestep.

• a square, nonnegative left-stochastic matrix describing a first-order markov
chain used to choose the matrices. This should have the same dimension as
the number of matrices in A.
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• a numeric vector giving a specific sequence which corresponds to the ma-
trices in A.

• a character vector giving a specific sequence which corresponds to the
names of the matrices in A.

vector (optional) a numeric vector describing the age/stage distribution used to calcu-
late the projection. If vector is not specified, a random vector is generated.
Long-term stochastic dynamics should usually be the same for any vector, al-
though if all the matrices in A are reducible (see isIrreducible), that may not
be the case.

Astart (optional) in a stochastic projection, the matrix with which to initialise the pro-
jection (either numeric, corresponding to the matrices in A, or character, corre-
sponding to the names of matrices in A). When Astart = NULL, a random initial
matrix is chosen.

iterations the number of projection intervals. The default is 1e+5.

discard the number of initial projection intervals to discard, to discount near-term effects
arising from the choice of vector. The default is 1e+3

PREcheck many functions in popdemo first check Primitivity, Reducibility and/or Ergod-
icity of matrices, with associated warnings and/or errors if a matrix breaks any
assumptions. Set PREcheck=FALSE if you want to bypass these checks.

Details

Calculates stochastic growth and its variance for a given stochastic population matrix projection
model.

Value

A numeric vector with two possible elements: "lambda" (the stochastic population growth rate) and
"var" (the variance in stochastic population growth rate). Values returned depend on what’s passed
to what.

Examples

# load the Polar bear data
( data(Pbear) )

# Find the stochastic growth for a time series with uniform probability of each
# matrix
( lambda_unif <- stoch(Pbear, what = "lambda", Aseq = "unif") )

# Find the variance in stochastic growth for a time series with uniform
# probability of each matrix
( var_unif <- stoch(Pbear, what = "var", Aseq = "unif") )

# Find stochastic growth and its variance for a time series with a sequence of
# matrices where "bad" years happen with probability q
q <- 0.5
prob_seq <- c(rep(1-q,3)/3, rep(q,2)/2)
Pbear_seq <- matrix(rep(prob_seq,5), 5, 5)
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( var_unif <- stoch(Pbear, what = "var", Aseq = Pbear_seq) )

tfam_inertia Transfer function Analysis

Description

Transfer function analysis of inertia of a population matrix projection model for all matrix elements.

Usage

tfam_inertia(
A,
bound = NULL,
vector = "n",
elementtype = NULL,
Flim = c(-1, 10),
Plim = c(-1, 10),
plength = 100,
digits = 1e-10

)

Arguments

A a square, primitive, nonnegative numeric matrix of any dimension

bound (optional) specifies whether the transfer funciton of an upper or lower bound on
inertia should be calculated (see details).

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution (’demographic structure’) used to calculate the transfer function of a
’case-specific’ inertia

elementtype (optional) a character matrix of the same dimension as A describing the structure
of A: "P" denotes elements bounded between 0 and 1, i.e. survival, growth,
regression; "F" denotes elements not bounded at 1, i.e. fecundity, fission; NA
denotes absent elements (see details).

Flim, Plim the perturbation ranges for "F" and "P" elements, expressed as a proportion of
their magnitude (see details).

plength the desired length of the perturbation ranges.

digits specifies which values of lambda should be excluded from analysis to avoid a
computationally singular system (see details).
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Details

tfam_inertia calculates an array of transfer functions of population inertia. A separate transfer
function for each nonzero element of A is calculated (each element perturbed independently of the
others). The function is most useful for use with the S3 method plot.tfam to visualise how pertur-
bations affect the life cycle transitions, and easily compare the (nonlinear) effect of perturbation to
different transitions on the dominant eigenvalue.

The sizes of the perturbations are determined by elementtype, Flim, Plim and plength. elementtype
gives the type of each element, specifying whether perturbations should be bounded at 1 (elementtype
= "P") or not (elementtype = "F"). If elementtype is not directly specified, the function assigns
its own types, with those in the first row attributed "F", and elsewhere in the matrix attributed "F"
if the value of the element >1 and "P" if the value of the element is <=1. Flim and Plim determine
the desired perturbation magnitude, expressed as a proportion of the magnitude of the elements
of A, whilst plength determines the length of the perturbation vector. For example, if an "F" el-
ement is equal to 0.5, Flim=c(-1,10) and plength=100 then the perturbation to that element is
seq(-1*0.5,10*0.5,100-1). The process is the same for "P" elements, except that these are trun-
cated to a maximum value of 1 (growth/survival elements cannot be greater than 1). Both "F" and
"P" elements are truncated to a minimum value of 0.

tfam_inertia uses tfa_inertia to calculate transfer functions. digits is passed to tfa_inertia
to prevent the problem of singular matrices (see details in tfa_inertia).

tfam_inertia will not work for reducible matrices.

Value

A list containing numerical arrays:

p perturbation magnitudes

lambda dominant eigenvalues of perturbed matrices

inertia inertias of perturbed matrices

The first and second dimensions of the arrays are equivalent to the first and second dimensions of
A. The third dimension of the arrays are the vectors returned by tfa_inertia. e.g. $inertia[3,2,]
selects the inertia values for the transfer function of element [3,2] of the matrix.

References

• Stott et al. (2012) Methods Ecol. Evol., 3, 673-684.

• Hodgson et al. (2006) J. Theor. Biol., 70, 214-224.

See Also

S3 plotting method: plot.tfam

Other TransferFunctionAnalyses: tfa_inertia(), tfa_lambda(), tfam_lambda(), tfs_inertia(),
tfs_lambda()

Other PerturbationAnalyses: elas(), sens(), tfa_inertia(), tfa_lambda(), tfam_lambda(),
tfs_inertia(), tfs_lambda()
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Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2))

# Calculate the matrix of transfer functions for the upper bound on
# inertia, using default arguments
( tfmat<-tfam_inertia(A,bound="upper") )

# Plot the transfer function using the S3 method (defaults to p
# and inertia in this case)
plot(tfmat)

# Plot inertia against lambda using the S3 method
plot(tfmat, xvar="lambda", yvar="inertia")

# Plot the transfer function of element [3,2] without the S3 method
par(mfrow=c(1,1))
par(mar=c(5,4,4,2)+0.1)
plot(tfmat$inertia[3,2,]~tfmat$p[3,2,],xlab="p",ylab="lambda",type="l")

# Create a new matrix with fission of adults
B <- A; B[2,3] <- 0.9; B

# Calculate the matrix of transfer functions for specified
# initial stage structure, using chosen arguments
# that give the exact structure of the new matrix
# and perturb a minimum of half the value of an element and
# a maximum of double the value of an element
( etype <- matrix(c(NA, "F", "F", "P", "P", "F", NA, "P", "P"),

ncol=3, byrow=TRUE) )
( tfmat2 <- tfam_inertia(B, vector=initial, elementtype=etype,

Flim=c(-0.5,2), Plim=c(-0.5,2)) )

# Plot the new matrix of transfer functions using the S3 method
plot(tfmat2)

tfam_lambda Transfer function analysis

Description

Transfer function analysis of the dominant eigenvalue of a population matrix projection model for
all matrix elements.
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Usage

tfam_lambda(
A,
elementtype = NULL,
Flim = c(-1, 10),
Plim = c(-1, 10),
plength = 100,
digits = 1e-10

)

Arguments

A a square, irreducible, nonnegative numeric matrix of any dimension

elementtype (optional) a character matrix of the same dimension as A describing the structure
of A: "P" denotes elements bounded between 0 and 1, i.e. survival, growth,
regression; "F" denotes elements not bounded at 1, i.e. fecundity, fission; NA
denotes absent elements (see details).

Flim, Plim the perturbation ranges for "F" and "P" elements, expressed as a proportion of
their magnitude (see details).

plength the desired length of the perturbation ranges.

digits specifies which values of lambda should be excluded from analysis to avoid a
computationally singular system (see details).

Details

tfam_lambda calculates an array of transfer functions of the dominant eigenvalue of A. A separate
transfer function for each nonzero element of A is calculated (each element perturbed independently
of the others). The function is most useful for use with the S3 method plot.tfam to visualise how
perturbations affect the life cycle transitions, and easily compare the (nonlinear) effect of perturba-
tion to different transitions on the dominant eigenvalue.

The sizes of the perturbations are determined by elementtype, Flim, Plim and plength. elementtype
gives the type of each element, specifying whether perturbations should be bounded at 1 (elementtype
= "P") or not (elementtype = "F"). If elementtype is not directly specified, the function assigns
its own types, with those in the first row attributed "F", and elsewhere in the matrix attributed "F"
if the value of the element >1 and "P" if the value of the element is <=1. Flim and Plim determine
the desired perturbation magnitude, expressed as a proportion of the magnitude of the elements
of A, whilst plength determines the length of the perturbation vector. For example, if an "F" el-
ement is equal to 0.5, Flim=c(-1,10) and plength=100 then the perturbation to that element is
seq(-1*0.5,10*0.5,100-1). The process is the same for "P" elements, except that these are trun-
cated to a maximum value of 1 (growth/survival elements cannot be greater than 1). Both "F" and
"P" elements are truncated to a minimum value of 0.

tfam_lambda uses tfa_lambda to calculate transfer functions. digits is passed to tfa_lambda to
prevent the problem of singular matrices (see details in tfa_lambda).

tfam_lambda will not work for reducible matrices.
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Value

A list containing numerical arrays:

p perturbation magnitudes

lambda dominant eigenvalues of perturbed matrices

The first and second dimensions of the arrays are equivalent to the first and second dimensions of
A. The third dimension of the arrays are the vectors returned by tfa_lambda. e.g. $lambda[3,2,]
selects the lambda values for the transfer function of element [3,2] of the matrix.

References

• Townley & Hodgson (2004) J. Appl. Ecol., 41, 1155-1161.

• Hodgson et al. (2006) J. Theor. Biol., 70, 214-224.

See Also

S3 plotting method: plot.tfa

Other TransferFunctionAnalyses: tfa_inertia(), tfa_lambda(), tfam_inertia(), tfs_inertia(),
tfs_lambda()

Other PerturbationAnalyses: elas(), sens(), tfa_inertia(), tfa_lambda(), tfam_inertia(),
tfs_inertia(), tfs_lambda()

Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate the matrix of transfer functions using default arguments
( tfmat<-tfam_lambda(A) )

# Plot the result using the S3 method
plot(tfmat)

# Plot the transfer function of element [3,2] without using the S3 method
par(mfrow=c(1,1))
par(mar=c(5,4,4,2)+0.1)
plot(tfmat$lambda[3,2,]~tfmat$p[3,2,],xlab="p",ylab="lambda",type="l")

# Create a new matrix with fission of adults
B <- A; B[2,3] <- 0.9; B

# Calculate the matrix of transfer functions using chosen arguments
# that give the exact structure of the new matrix
# and perturb a minimum of half the value of an element and
# a maximum of double the value of an element
( etype <- matrix(c(NA, "F", "F", "P", "P", "F", NA, "P", "P"),

ncol=3, byrow=TRUE) )
( tfmat2 <- tfam_lambda(B, elementtype=etype, Flim=c(-0.5,2),

Plim=c(-0.5,2)) )
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# Plot the new matrix of transfer functions using the S3 method
plot(tfmat2)

tfa_inertia Transfer function Analysis

Description

Transfer function analysis of inertia of a population matrix projection model using a specified per-
turbation structure.

Usage

tfa_inertia(A, d, e, vector = "n", bound = NULL, prange, digits = 1e-10)

Arguments

A a square, primitive, nonnegative numeric matrix of any dimension

d, e numeric vectors that determine the perturbation structure (see details).

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution (’demographic structure’) used to calculate the transfer function of a
’case-specific’ inertia

bound (optional) specifies whether the transfer funciton of an upper or lower bound on
inertia should be calculated (see details).

prange a numeric vector giving the range of perturbation magnitude (see details)

digits specifies which values of lambda should be excluded from analysis to avoid a
computationally singular system (see details).

Details

tfa_inertia calculates the transfer function of inertia of a population matrix projection model
given a perturbation structure (specified using d and e), and a range of desired perturbation mag-
nitude (prange). Currently tfa_inertia can only work with rank-one, single-parameter perturba-
tions (see Hodgson & Townley 2006).

If vector="n" then either bound="upper" or bound="lower" must be specified, which calculate
the transfer function of the upper or lower bound on population inertia (i.e. the largest and smallest
values that inertia may take) respectively. Specifying vector overrides calculation of a bound, and
will yield a transfer function of a ’case-specific’ inertia.

The perturbation structure is determined by d%*%t(e). Therefore, the rows to be perturbed are
determined by d and the columns to be perturbed are determined by e. The specific values in d
and e will determine the relative perturbation magnitude. So for example, if only entry [3,2] of a
3 by 3 matrix is to be perturbed, then d = c(0,0,1) and e = c(0,1,0). If entries [3,2] and [3,3]
are to be perturbed with the magnitude of perturbation to [3,2] half that of [3,3] then d = c(0,0,1)
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and e = c(0,0.5,1). d and e may also be expressed as numeric one-column matrices, e.g. d =
matrix(c(0,0,1), ncol=1), e = matrix(c(0,0.5,1), ncol=1). See Hodgson et al. (2006) for
more information on perturbation structures.

The perturbation magnitude is determined by prange, a numeric vector that gives the continuous
range of perterbation magnitude to evaluate over. This is usually a sequence (e.g. prange=seq(-0.1,0.1,0.001)),
but single transfer functions can be calculated using a single perturbation magnitude (e.g. prange=-0.1).
Because of the nature of the equation used to calculate the transfer function, prange is used to find a
range of lambda from which the perturbation magnitudes are back-calculated, and matched to their
orresponding inertia, so the output perturbation magnitude p will match prange in length and range
but not in numerical value (see Stott et al. 2012 for more information).

tfa_inertia uses the resolvent matrix in its calculation, which cannot be computed if any lambda
in the equation are equal to the dominant eigenvalue of A. digits specifies the values of lambda that
should be excluded in order to avoid a computationally singular system. Any values equal to the
dominant eigenvalue of A rounded to an accuracy of digits are excluded. digits should only need
to be changed when the system is found to be computationally singular, in which case increasing
digits should help to solve the problem.

tfa_inertia will not work for reducible matrices.

There is an S3 plotting method available (see plot.tfa and examples below)

Value

A list containing numerical vectors:

p perturbation magnitudes

lambda dominant eigenvalues of perturbed matrices

inertia inertias of perturbed matrices

(Note that p will not be exactly the same as prange when prange is specified, as the code calculates
p for a given lambda rather than the other way around, with prange only used to determine max,
min and number of lambda values to evaluate.)

References

• Stott et al. (2012) Methods Ecol. Evol., 3, 673-684.

• Hodgson et al. (2006) J. Theor. Biol., 70, 214-224.

See Also

S3 plotting method: plot.tfa

Other TransferFunctionAnalyses: tfa_lambda(), tfam_inertia(), tfam_lambda(), tfs_inertia(),
tfs_lambda()

Other PerturbationAnalyses: elas(), sens(), tfa_lambda(), tfam_inertia(), tfam_lambda(),
tfs_inertia(), tfs_lambda()
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Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the transfer function of upper bound on inertia
# given a perturbation to A[3,2]
( transfer<-tfa_inertia(A, d=c(0,0,1), e=c(0,1,0), bound="upper",

prange=seq(-0.6,0.4,0.01)) )

# Plot the transfer function using the S3 method (defaults to p
# and inertia in this case)
plot(transfer)

# Plot inertia against lambda using the S3 method
plot(transfer, xvar="lambda", yvar="inertia")

# Calculate the transfer function of case-specific inertia
# given perturbation to A[3,2] and A[3,3] with perturbation
# to A[3,2] half that of A[3,3]
( transfer2<-tfa_inertia(A, d=c(0,0,1), e=c(0,0.5,1), vector=initial,

prange=seq(-0.6,0.4,0.01)) )

# Plot inertia against p using the S3 method
plot(transfer2)

# Plot inertia against lambda without using the S3 method
plot(transfer$inertia~transfer$lambda,type="l",

xlab=expression(lambda),ylab="inertia")

tfa_lambda Transfer function analysis

Description

Transfer function analysis of the dominant eigenvalue of a population matrix projection model using
a specified perturbation structure.

Usage

tfa_lambda(A, d, e, prange = NULL, lambdarange = NULL, digits = 1e-10)

Arguments

A a square, irreducible, nonnegative numeric matrix of any dimension

d, e numeric vectors that determine the perturbation structure (see details).
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prange a numeric vector giving the range of perturbation magnitude (see details)
lambdarange a numeric vector giving the range of lambda values (asymptotic growth rates) to

be achieved (see details).
digits specifies which values of lambda should be excluded from analysis to avoid a

computationally singular system (see details).

Details

tfa_lambda calculates the transfer function of the dominant eigenvalue of a matrix (A), given a
perturbation structure (specified using d and e), and either a range of target values for asymptotic
population growth (lambdavalues) or a range of desired perturbation magnitude (prange). Cur-
rently tfa_lambda can only work with rank- one, single-parameter perturbations (see Hodgson &
Townley 2004).

The perturbation structure is determined by d%*%t(e). Therefore, the rows to be perturbed are
determined by d and the columns to be perturbed are determined by e. The specific values in d
and e will determine the relative perturbation magnitude. So for example, if only entry [3,2] of a
3 by 3 matrix is to be perturbed, then d = c(0,0,1) and e = c(0,1,0). If entries [3,2] and [3,3]
are to be perturbed with the magnitude of perturbation to [3,2] half that of [3,3] then d = c(0,0,1)
and e = c(0,0.5,1). d and e may also be expressed as numeric one-column matrices, e.g. d =
matrix(c(0,0,1), ncol=1), e = matrix(c(0,0.5,1), ncol=1). See Hodgson et al. (2006) for
more information on perturbation structures.

The perturbation magnitude is determined by prange, a numeric vector that gives the continuous
range of perterbation magnitude to evaluate over. This is usually a sequence (e.g. prange=seq(-0.1,0.1,0.001)),
but single transfer functions can be calculated using a single perturbation magnitude (e.g. prange=-0.1).
Because of the nature of the equation, prange is used to find a range of lambda from which the
perturbation magnitudes are back-calculated, so the output perturbation magnitude p will match
prange in length and range but not in numerical value (see value). Alternatively, a vector lambdarange
can be specified, representing a range of target lambda values from which the corresponding per-
turbation values will be calculated. Only one of either prange or lambdarange may be specified.

tfa_lambda uses the resolvent matrix in its calculation, which cannot be computed if any lambda
are equal to the dominant eigenvalue of A. digits specifies the values of lambda that should be
excluded in order to avoid a computationally singular system. Any values equal to the dominant
eigenvalue of A rounded to an accuracy of digits are excluded. digits should only need to be
changed when the system is found to be computationally singular, in which case increasing digits
should help to solve the problem.

tfa_lambda will not work for reducible matrices.

There is an S3 plotting method available (see plot.tfa and examples below)

Value

A list containing numerical vectors:

p the perturbation magnitude(s).
lambda the dominant eigenvalue(s) of the perturbed matrix(matrices).

(Note that p will not be exactly the same as prange when prange is specified, as the code calculates
p for a given lambda rather than the other way around, with prange only used to determine max,
min and number of lambda values to evaluate.)
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References

• Townley & Hodgson (2004) J. Appl. Ecol., 41, 1155-1161.

• Hodgson et al. (2006) J. Theor. Biol., 70, 214-224.

See Also

S3 plotting method: plot.tfa

Other TransferFunctionAnalyses: tfa_inertia(), tfam_inertia(), tfam_lambda(), tfs_inertia(),
tfs_lambda()

Other PerturbationAnalyses: elas(), sens(), tfa_inertia(), tfam_inertia(), tfam_lambda(),
tfs_inertia(), tfs_lambda()

Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate the transfer function of A[3,2] given a range of lambda
evals <- eigen(A)$values
lmax <- which.max(Re(evals))
lambda <- Re(evals[lmax])
lambdarange <- seq(lambda-0.1, lambda+0.1, 0.01)
( transfer <- tfa_lambda(A, d=c(0,0,1), e=c(0,1,0), lambdarange=lambdarange) )

# Plot the transfer function using the S3 method
plot(transfer)

# Calculate the transfer function of perturbation to A[3,2] and A[3,3]
# with perturbation to A[3,2] half that of A[3,3], given a range of
# perturbation values
p<-seq(-0.6,0.4,0.01)
( transfer2 <- tfa_lambda(A, d=c(0,0,1), e=c(0,0.5,1), prange=p) )

# Plot p and lambda without using the S3 method
plot(transfer$lambda~transfer$p, type="l", xlab="p", ylab=expression(lambda))

tfs_inertia Calculate sensitivity of inertia using transfer functions

Description

Calculate the sensitivity of population inertia of a population matrix projection model using differ-
entiation of the transfer function.
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Usage

tfs_inertia(A, d=NULL, e=NULL, vector="n", bound=NULL, startval=0.001,
tolerance=1e-10,return.fit=FALSE,plot.fit=FALSE)

tfsm_inertia(A,vector="n",bound=NULL,startval=0.001,tolerance=1e-10)

Arguments

A a square, primitive, nonnegative numeric matrix of any dimension

d, e numeric vectors that determine the perturbation structure (see details).

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution (’demographic structure’) used to calculate the transfer function of a
’case-specific’ inertia

bound (optional) specifies whether the transfer funciton of an upper or lower bound on
inertia should be calculated (see details).

startval tfs_inertia calculates the limit of the derivative of the transfer function as
lambda of the perturbed matrix approaches the dominant eigenvalue of A (see
details). startval provides a starting value for the algorithm: the smaller
startval is, the quicker the algorithm should converge.

tolerance the tolerance level for determining convergence (see details).

return.fit if TRUE (and only if d and e are specified), the lambda and sensitivity values
obtained from the convergence algorithm are returned alongside the sensitivity
at the limit.

plot.fit if TRUE then convergence of the algorithm is plotted as sensitivity~lambda.

Details

tfs_inertia and tfsm_inertia differentiate a transfer function to find sensitivity of population
inertia to perturbations.

tfs_inertia evaluates the transfer function of a specific perturbation structure. The perturbation
structure is determined by d%*%t(e). Therefore, the rows to be perturbed are determined by d and
the columns to be perturbed are determined by e. The values in d and e determine the relative
perturbation magnitude. For example, if only entry [3,2] of a 3 by 3 matrix is to be perturbed,
then d = c(0,0,1) and e = c(0,1,0). If entries [3,2] and [3,3] are to be perturbed with the mag-
nitude of perturbation to [3,2] half that of [3,3] then d = c(0,0,1) and e = c(0,0.5,1). d and e
may also be expressed as numeric one-column matrices, e.g. d = matrix(c(0,0,1), ncol=1), e =
matrix(c(0,0.5,1), ncol=1). See Hodgson et al. (2006) for more information on perturbation
structures.

tfsm_inertia returns a matrix of sensitivity values for observed transitions (similar to that obtained
when using sens to evaluate sensitivity of asymptotic growth), where a separate transfer function
for each nonzero element of A is calculated (each element perturbed independently of the others).

The formula used by tfs_inertia and tfsm_inertia cannot be evaluated at lambda-max, there-
fore it is necessary to find the limit of the formula as lambda approaches lambda-max. This is
done using a bisection method, starting at a value of lambda-max + startval. startval should be
small, to avoid the potential of false convergence. The algorithm continues until successive sensi-
tivity calculations are within an accuracy of one another, determined by tolerance: a tolerance
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of 1e-10 means that the sensitivity calculation should be accurate to 10 decimal places. However, as
the limit approaches lambda-max, matrices are no longer invertible (singular): if matrices are found
to be singular then tolerance should be relaxed and made larger.

For tfs_inertia, there is an extra option to return and/or plot the above fitting process using
return.fit=TRUE and plot.fit=TRUE respectively.

Value

For tfs_inertia, the sensitivity of inertia (or its bound) to the specified perturbation structure. If
return.fit=TRUE a list containing components:

sens the sensitivity of inertia (or its bound) to the specified perturbation structure

lambda.fit the lambda values obtained in the fitting process

sens.fit the sensitivity values obtained in the fitting process.
For tfsm_inertia, a matrix containing sensitivity of inertia (or its bound) to each separate
element of A.

References

• Stott et al. (2012) Methods Ecol. Evol., 3, 673-684.

See Also

Other TransferFunctionAnalyses: tfa_inertia(), tfa_lambda(), tfam_inertia(), tfam_lambda(),
tfs_lambda()

Other PerturbationAnalyses: elas(), sens(), tfa_inertia(), tfa_lambda(), tfam_inertia(),
tfam_lambda(), tfs_lambda()

Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the sensitivity matrix for the upper bound on inertia
tfsm_inertia(A, bound="upper",tolerance=1e-7)

# Calculate the sensitivity of simultaneous perturbation to
# A[1,2] and A[1,3] for specified initial stage structure
# and return and plot the fitting process
tfs_inertia(A, d=c(1,0,0), e=c(0,1,1), vector=initial,tolerance=1e-7,

return.fit=TRUE,plot.fit=TRUE)
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tfs_lambda Calculate sensitivity using transfer functions

Description

Calculate the sensitivity of the dominant eigenvalue of a population matrix projection model using
differentiation of the transfer function.

Usage

tfs_lambda(A, d=NULL, e=NULL, startval=0.001, tolerance=1e-10,
return.fit=FALSE, plot.fit=FALSE)

tfsm_lambda(A, startval=0.001, tolerance=1e-10)

Arguments

A a square, nonnegative numeric matrix of any dimension.

d, e numeric vectors that determine the perturbation structure (see details).

startval tfs_lambda calculates the limit of the derivative of the transfer function as
lambda of the perturbed matrix approaches the dominant eigenvalue of A (see
details). startval provides a starting value for the algorithm: the smaller
startval is, the quicker the algorithm should converge.

tolerance the tolerance level for determining convergence (see details).

return.fit if TRUE the lambda and sensitivity values obtained from the convergence algo-
rithm are returned alongside the sensitivity at the limit.

plot.fit if TRUE then convergence of the algorithm is plotted as sensitivity~lambda.

Details

tfs_lambda and tfsm_lambda differentiate a transfer function to find sensitivity of the dominant
eigenvalue of A to perturbations. This provides an alternative method to using matrix eigenvectors to
calculate the sensitivity matrix and is useful as it may incorporate a greater diversity of perturbation
structures.

tfs_lambda evaluates the transfer function of a specific perturbation structure. The perturbation
structure is determined by d%*%t(e). Therefore, the rows to be perturbed are determined by d and
the columns to be perturbed are determined by e. The values in d and e determine the relative
perturbation magnitude. For example, if only entry [3,2] of a 3 by 3 matrix is to be perturbed,
then d = c(0,0,1) and e = c(0,1,0). If entries [3,2] and [3,3] are to be perturbed with the mag-
nitude of perturbation to [3,2] half that of [3,3] then d = c(0,0,1) and e = c(0,0.5,1). d and e
may also be expressed as numeric one-column matrices, e.g. d = matrix(c(0,0,1), ncol=1), e =
matrix(c(0,0.5,1), ncol=1). See Hodgson et al. (2006) for more information on perturbation
structures.

tfsm_lambda returns a matrix of sensitivity values for observed transitions (similar to that obtained
when using sens to evaluate sensitivity using eigenvectors), where a separate transfer function for
each nonzero element of A is calculated (each element perturbed independently of the others).



tfs_lambda 63

The formula used by tfs_lambda and tfsm_lambda cannot be evaluated at lambda-max, therefore it
is necessary to find the limit of the formula as lambda approaches lambda-max. This is done using
a bisection method, starting at a value of lambda-max + startval. startval should be small,
to avoid the potential of false convergence. The algorithm continues until successive sensitivity
calculations are within an accuracy of one another, determined by tolerance: a tolerance of 1e-
10 means that the sensitivity calculation should be accurate to 10 decimal places. However, as the
limit approaches lambda-max, matrices are no longer invertible (singular): if matrices are found to
be singular then tolerance should be relaxed and made larger.

For tfs_lambda, there is an extra option to return and/or plot the above fitting process using
return.fit=TRUE and plot.fit=TRUE respectively.

Value

For tfs_lambda, the sensitivity of lambda-max to the specified perturbation structure. If return.fit=TRUE
a list containing components:

sens the sensitivity of lambda-max to the specified perturbation structure

lambda.fit the lambda values obtained in the fitting process

sens.fit the sensitivity values obtained in the fitting process.
For tfsm_lambda, a matrix containing sensitivity of lambda-max to each element of A.

References

• Hodgson et al. (2006) J. Theor. Biol., 70, 214-224.

See Also

Other TransferFunctionAnalyses: tfa_inertia(), tfa_lambda(), tfam_inertia(), tfam_lambda(),
tfs_inertia()

Other PerturbationAnalyses: elas(), sens(), tfa_inertia(), tfa_lambda(), tfam_inertia(),
tfam_lambda(), tfs_inertia()

Examples

# Create a 3x3 matrix
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Calculate the sensitivity matrix
tfsm_lambda(A)

# Calculate the sensitivity of simultaneous perturbation to
# A[1,2] and A[1,3]
tfs_lambda(A, d=c(1,0,0), e=c(0,1,1))

# Calculate the sensitivity of simultaneous perturbation to
# A[1,2] and A[1,3] and return and plot the fitting process
tfs_lambda(A, d=c(1,0,0), e=c(0,1,1),

return.fit=TRUE, plot.fit=TRUE)
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Tort Desert tortoise matrix

Description

Matrix Projection Model for the desert tortoise Gopherus agassizii with medium fecundity. The
matrix is based on a population in the Western Mojave desert. Stages are based on age and size
(carapace length in mm):
Stage 1: Yearling (age 0-1)
Stage 2: Juvenile 1 (<60 mm)
Stage 3: Juvenile 2 (90-99mm)
Stage 4: Immature 1 (100-139mm)
Stage 5: Immature 2 (140-179mm)
Stage 6: Subadult (180-207mm)
Stage 7: Adult 1 (208-239mm)
Stage 8: Adult 2 (>240mm).

Usage

data(Tort)

Format

Object of class matrix

References

• Doak et al. (1994) Ecol. Appl., 4, 446-460.

Examples

# read in data and view
data(Tort)
Tort

truelambda Calculate asymptotic growth

Description

Calculate the true asymptotic growth of a population matrix projection model from the model pro-
jection

Usage

truelambda(A, vector = "n", accuracy = 1e-07, iterations = 1e+05)
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Arguments

A a square, non-negative numeric matrix of any dimension

vector (optional) a numeric vector or one-column matrix describing the age/stage dis-
tribution used to calculate the projection.

accuracy the accuracy with which to determine convergence on asymptotic growth, ex-
pressed as a proportion (see details).

iterations the maximum number of iterations of the model before the code breaks. For
slowly-converging models and/or high specified convergence accuracy, this may
need to be increased.

Details

truelambda works by simulating the given model and manually determining growth when conver-
gence to the given accuracy is reached. Convergence on an asymptotic growth is deemed to have
been reached when the growth of the model stays within the window determined by accuracy for
10*s iterations of the model, with s equal to the dimension of A. For example, projection of an 8
by 8 matrix with convergence accuracy of 1e-2 is deemed to have converged on asymptotic growth
when 10*8=80 consecutive iterations of the model have a growth within 1-1e-2=0.99 (i.e. 99%)
and 1+1e-2=1.01 (i.e. 101%) of each other.

If vector is specified, then the asymptotic growth of the projection of vector through A is returned.
If vector="n" then asymptotic growths of the set of ’stage-biased’ vectors are calculated. These
projections are achieved using a set of standard basis vectors equal in number to the dimension of
A. These have every element equal to 0, except for a single element equal to 1, i.e. for a matrix of
dimension 3, the set of stage-biased vectors are: c(1,0,0), c(0,1,0) and c(0,0,1).

Asymptotic growth should be equal to the dominant eigenvalue of the matrix. For non-ergodic
models this may not be the case: asymptotic growth will depend on the population structure that’s
projected. truelambda provides a means to check what the true asymptotic growth of a non-ergodic
model is.

Value

If vector is specified, a numeric vector of length 2 giving the range in which asymptoticgrowth of
the model lies.

If vector is not specified, a 2-column matrix with each row giving the range in which asymptotic
growth lies for its corresponding stage-biased projection: the number of rows is equal to the dimen-
sion of A; the first row is the range when projecting [1,0,0,...], the second entry is the range when
projecting [0,1,0,...], etc.

References

• Stott et al. (2010) Methods Ecol. Evol., 1, 242-252.

See Also

Other ConvergenceMeasures: convt(), dr()
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Examples

# Create a 3x3 irreducible PPM
( A <- matrix(c(0,0,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )

# Create an initial stage structure
( initial <- c(1,3,2) )

# Calculate the true asymptotic growth of the stage-biased
# projections of A
truelambda(A)

# Calculate the true asymptotic growth of the projection of
# A and initial
truelambda(A, vector=initial)

# Create a 3x3 reducible, nonergodic PPM
B<-A; B[3,2] <- 0; B

# Calculate the true asymptotic growth of the 3 stage-biased
# projections of B
truelambda(B)
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