4/17/2019

In collaboration with Fong Chan @tinyheero, the latest release (v
0.2.0) of `plotGMM`

includes substantial updates with
easy-to-use tools for visualizing output from Gaussian mixture
models:

`plot_GMM`

: The main function of the package,`plot_GMM`

allows the user to simply input the name of a`mixEM`

class object (from fitting a Gaussian mixture model (GMM) using the`mixtools`

package), as well as the number of components,`k`

, that were used in the original GMM fit. The result is a clean`ggplot2`

class object showing the density of the data with overlaid mixture weight component curves.`plot_cut_point`

: Gaussian mixture models (GMMs) are not only used for uncovering clusters in data, but are also often used to derive cut points, or lines of separation between clusters in feature space (see the Benaglia et al. 2009 reference in the package documentation for more). The`plot_cut_point`

function plots data densities with the overlaid cut point (the mean of the calculated`mu`

) from`mixEM`

class objects, which are GMM’s fit using the`mixtools`

package.`plot_mix_comps`

: This is a custom function for users interested in manually overlaying the components from a Gaussian mixture model. This allows for clean, precise plotting constraints, including mean (`mu`

), variance (`sigma`

), and mixture weight (`lambda`

) of the components. The function superimposes the shape of the components over a`ggplot2`

class object. Importantly, while the`plot_mix_comps`

function is used in the main`plot_GMM`

function in our`plotGMM`

package, users can use the`plot_mix_comps`

function to build their own custom plots.

`plot_GMM`

```{r } mixmdl <- mixtools::normalmixEM(faithful$waiting, k = 2)

plot_GMM(mixmdl, 2)

```
### Plotting Cut Points from GMMs using `plot_cut_point` (with amerika color palette)
```{r }
mixmdl <- mixtools::normalmixEM(faithful$waiting, k = 2)
plot_cut_point(mixmdl, plot = TRUE, color = "amerika") # produces plot
plot_cut_point(mixmdl, plot = FALSE) # produces only cut point value
```

`plot_mix_comps`

function in a custom
`ggplot2`

plot```{r } library(plotGMM) library(magrittr) library(ggplot2) library(mixtools)

set.seed(576) mixmdl <- normalmixEM(faithful$waiting, k = 2)

`plot_mix_comps`

functiondata.frame(x = mixmdl\(x) %>% ggplot() + geom_histogram(aes(x, ..density..), binwidth = 1, colour = "black", fill = "white") + stat_function(geom = "line", fun = plot_mix_comps, args = list(mixmdl\)mu[1], mixmdl\(sigma[1], lam = mixmdl\)lambda[1]), colour = “red”, lwd = 1.5) + stat_function(geom = “line”, fun = plot_mix_comps, args = list(mixmdl\(mu[2], mixmdl\)sigma[2], lam = mixmdl$lambda[2]), colour = “blue”, lwd = 1.5) + ylab(“Density”) ```