## ----message = FALSE---------------------------------------------------------- library(dplyr) library(photosynthesis) # Read in your data dat = system.file("extdata", "A_Ci_Q_data_1.csv", package = "photosynthesis") |> read.csv() |> rename(A_net = A, J_etr = ETR, C_i = Ci, PPFD = Qin, phi_PSII = PhiPS2) # Note: there will be issues here if the alpha value used for calculating ETR is # off, if GammaStar is incorrect, if Rd is incorrect. fit = fit_g_mc_variableJ(dat, gamma_star = 46, R_d = 0.153, usealpha_Q = TRUE, alpha_Q = 0.84, beta_Q = 0.5, P = 84) # Note that many g_mc values from this method can be unreliable # ggplot(fit, aes(x = CO2_s, y = g_mc, colour = reliable)) + # labs(x = expression(CO[2]~"("*mu*mol~mol^{-1}*")"), # y = expression(g[m]~"(mol"~m^{-2}~s^{-1}~Pa^{-1}*")")) + # geom_point(size = 2) + # theme_bw() + # theme(legend.position = 'bottom') # Plot QAQC graph according to Harley et al. 1992 # ggplot(fit, aes(x = CO2_s, y = dCcdA, colour = reliable)) + # labs(x = expression(CO[2]~"("*mu*mol~mol^{-1}*")"), # y = expression(delta*C[c]*"/"*delta*A)) + # geom_hline(yintercept = 10) + # geom_point(size = 2) + # theme_bw() + # theme(legend.position = 'bottom') # ggplot(fit, aes(x = dCcdA, y = g_mc, colour = reliable)) + # labs(x = expression(delta*C[c]*"/"*delta*A), # y = expression(g[m]~"(mol"~m^{-2}~s^{-1}~Pa^{-1}*")")) + # geom_point(size = 2) + # theme_bw() + # theme(legend.position = 'bottom')