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Abstract

Standard numerical optimization approaches require several restrictions. So do exact optimiza-
tion methods such as the Linear Programming approach appeal for linearity and Nelder-Mead for
unimodality of the loss function. One method to relax these assumptions is the Simulated An-
nealing approach, which reduces the risk of getting trapped in a local optimum. However, the
standard implementation still requires regular parameter spaces and continuous loss functions. To
address this issue, we implemented a version of the Simulated Annealing method that is able to
deal with irregular and complex parameter spaces as well as with non-continuous and sophisti-
cated loss functions. Moreover, in order to gain fast but reliable solutions, we included steps to
shrink the parameter space during the iterations. All these steps are summarized in the R package
optimization, which we will introduce in the following article. We also included generic and real
world applications in order to test our approach.
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1. Introduction

As early computer-based optimization methods developed simultaneously with the first digital com-
puters (Corana, Marchesi, Martini, and Ridella 1987), numerous optimization methods for various
purposes are available today (Wegener 2005). One of the main challenges in Operations Research is
therefore to match the optimization problem with a reasonable method. The complexity of the prob-
lem determines possible methods. Optimization procedures in general can be distinguished into exact
methods and heuristics (Kirkpatrick, Gelatt, Vecchi et al. 1983). For simple optimization problems,
exact methods are often meaningful tools of choice. If all assumptions on model loss and restrictions
are met, these methods will obligatorily find the exact solution without need for further parameters.
They are the easiest way of solving optimization problems. The Linear Simplex Method (Dantzig,
Fulkerson, and Johnson 1959) is one example that only needs the loss-function and optional restric-
tions as model input. If, however, any of the model assumptions, e.g. linearity, is violated, exact
methods are unable to solve problems in a valid way. With developing computer power, heuristics like
the Savings-Algorithm (Clarke and Wright 1964) and metaheuristics like Simulated Annealing (SA)
(Kirkpatrick et al. 1983) became popular. They enable solving more complex optimization problems.
Metaheuristics are a generalization of heuristics with aim to be even more flexible and efficient (Blum
and Roli 2003) so that they can solve complex optimization problems, such as nonlinear problems. Di-
rect search methods like the Nelder-Mead (NM) algorithm are comparatively efficient methods which
directly converge to the functions optimum and need relatively few settings (Geiger and Kanzow 1999).
Random search methods are able to cope with multimodal objective functions. On the one hand, de-
pending on the method of choice, more or fewer assumptions on the loss function can be neglected. On
the other hand, heuristics and metaheuristics will always solve problems approximately. Precision of
the solution depends on the optimization method and further parameters. There is even no guarantee
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of approximating the actual optimum since the solution also depends, contrary to exact methods, on
parameterizations (Blum and Roli 2003). Defining proper parameters is thus a crucial point of those
methods. The complexity of parameterization will by trend increase with the flexibility of the method
while efficiency tends to decrease. The efficiency and accuracy of such models is strongly sensitive to
their parameter specification (Corana et al. 1987). Heuristics are often programmed for multi-purpose
usage such that there is a suitable method for many optimization problems. For complex optimization
problems, however, multi-purpose optimizers often fail to find solutions. Additionally, multi-purpose
optimizers are usually not suitable or not efficient for highly complex problems like problems with re-
stricted parameter space. Whenever general-purpose optimizers are too restrictive or inflexible to solve
a problem properly, specific methods are advantageous. They offer many variable parameters and can
thus be parameterized in a way that is very specific to the optimization problem. They represent the
most flexible and the most complex optimization methods (Blum and Roli 2003).

SA (Kirkpatrick et al. 1983) is known to be one of the oldest and most flexible metaheuristic meth-
ods, though the term metaheuristic was established after publication of SA (Blum and Roli 2003). It is
known to be better suited to multimodal loss functions with a very high number of covariates than many
other methods (Corana et al. 1987). The method has been applied in many studies of several fields such
as chemistry (Agostini, Soares-Pinto, Moret, Osthoff, and Pascutti 2006), econometrics (Ingber 1993)
or forest sciences (Baskent and Jordan 2002; Boston and Bettinger 1999). Since its first implemen-
tation by Kirkpatrick et al. (1983), many authors have modified the algorithm in order to adopt it for
specific problems (e.g. DeSarbo, Oliver, and Rangaswamy 1989; Goffe et al. 1996) or more general
applications (e.g. Xiang, Gubian, Suomela, and Hoeng 2013). It combines systematic and stochastic
components, and thus enables escaping local optima. It is hence typically used for global optimization
of multimodal functions. As it offers many options, SA can be seen a hybrid method between a general
optimizer (when default values are chosen) and a problem specific optimization algorithm (Wegener
2005). Corana et al. (1987) developed a dynamic adoption method for the variation of the stochastic
component during the optimization process. Their modification affects the efficiency as well as the
accuracy of the SA algorithm. It has potential to substantially improve the method. Pronzato, Walter,
Venot, and Lebruchec (1984) suggests decreasing the search-domain of the stochastic component with
increasing number of iterations. The stochastic component in general is the most sensitive part of the
method since it determines the loss variables modification during the iterations.

The R software environment provides a platform for the simple and effective distribution of statisti-
cal models to a large user community (Xiang et al. 2013). Thus, not surprisingly, several optimization
packages of high quality can currently be purchased via Comprehensive R Archive Network (Theussl
and Borchers 2016), where even the SA method is recently listed five times. However, we believe
that there is need for a specific stochastic optimization package for complex optimization problems.
A package coping with very flexible user definable loss functions with multiple options could be an
advantageous extension for R. There is demand for specifically definable optimization problems. We
therefore present the package optimization which is basically a modified version of SA. We used the
properties of SA to program a stochastic optimization method for specific purposes. We therefore fo-
cused on flexibility and implemented many user specifiable parameters. Our method is, in its default
configuration, usually not immediately efficient but flexibly adoptable to specific purposes. The main
advantages of the package are the possibilities to specifically adjust covariate changing rules as well as
the robustness of the loss function. For example, the changing rule allows the user to define an integer
parameter space. The loss function can return any value; even NA or NaN are possible. Several further
user specifications help to parameterize the model in a problem-specific way, so that the user can influ-
ence accuracy and speed in very detailed ways. It is also the first R function where the improvements
of Corana et al. (1987) and Pronzato et al. (1984) are implemented into an SA based optimization
software. This means that the search domain of the stochastic component of SA dynamically shrinks
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with increasing iterations. We also implemented a generic plot function for post-hoc inspection of the
model convergence assessment and the solution quality.

In the following, we briefly introduce the algorithm methodologically and explain the most relevant
parameters. We show in four examples in which ways our model is favorable against standard meth-
ods and explain how it can be parameterized. We develop two examples illustrating the basic model
behavior with a focus on the covariate changing rule. Additionally, we include suggestions on how
to adopt the numerous options to specific problems. Two practical examples where our function is
recently used underpin the relevance of our specific-purpose optimization method. One of them, the
optimization of forest harvesting schedules, is a relatively complex example which cannot be solved
with any other optimization function in the R framework.

2. The package optimization

In this section, we explain the theory of our SA interpretation and the resulting parameters.

2.1. Method

Since the basic idea of classic SA is derived from the physical process of metal annealing, the
nomenclature of SA comes particularly from metallurgy. Just as the classic SA, our function is com-
posed of an inner for loop and an outer while loop (Kirkpatrick et al. 1983). The number of iterations
in both loops can be defined by the user. To enhance performance, the loops are written in C++ using
Rcpp (Eddelbuettel 2013). For better overview, we displayed the important steps of our function in a
pseudocode (Algorithm 1).

Inner loop

The function of the inner for loop (Algorithm 1, lines 4 to 29) is to draw covariate combinations
stochastically and to compare the returns. The loop repeats ninner times. The first operation of the inner
loop (line 5) is saving the covariate combinations of the last inner iteration as x j. In the first iteration
x j is the vector with user defined initial covariates.

In the second step (line 6), the covariates are changed. This changing process marks an essential
difference between our approach and the other SA based method in the R framework. The shape and
behavior of the variation process may be defined by the user and may be dynamic. Suggestions and
examples for specifying this variation, which is a user defined R function, will be given in the following
sections. The variation function vf is used to create a temporary vector of covariates xi∗. Besides the
former covariate combination x j, the variation function can depend on a vector with random factors
rf and the temperature t. Since rf and t change over time, the variation function can have dynamic
components. Adjustment of rf and t is done in the outer loop which will be explained explicitly in
the following subsection. In the classical SA approach, the covariates xi∗ are generated by adding or
subtracting a uniformly distributed random number to x j (Kirkpatrick et al. 1983). The range of the
uniform random number is, in our function, determined by rf whereas rf is relative to x j. A random
factor of 0.1 and a covariate expression of three e.g. leads to a uniform random number between 2.7
and 3.3. This standard variation function is also default in our approach. A very simple exemplary
modification of the variation function could be a normally distributed random number with mean x j

and standard deviation rf.

After generating xi∗, the boundaries are checked (lines 7 to 15). If all entries in xi∗ are within their
respective boundaries, the response is calculated. Otherwise the invalid entries of xi∗ are drawn again
until all entries are valid. According to Corana et al. (1987), the number of invalid trials can be useful
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1 initialize t, vf with user specifications
2 calculate f (x0) with initial parameter vector x0
3 while t > tmin do
4 for i in 1: ninner do
5 x j← xi−1
6 call the variation function to generate xi∗ in dependence of x j, rf and t
7 check if all entries in xi∗ are within the boundaries
8 if all xi valid then
9 calculate f (xi∗)

10 else
11 while any(xi∗ invalid) do
12 call the variation function again
13 count and store invalid combinations
14 end
15 end
16 if f (xi∗)< f (x j) then
17 xi← xi∗; f (xi)← f (xi∗)
18 else
19 calculate Metropolis Probability M (Equation 1)
20 if uniformly distributed random number [0,1] < M then
21 xi← xi∗; f (xi)← f (xi∗)
22 else
23 xi← x j; f (xi)← f (x j)
24 end
25 end
26 if threshold accepting criterion fulfilled then
27 break inner loop
28 end
29 end
30 reduce t for the next iteration
31 rf adaptation for the next iteration
32 end
33 return optimized parameter vector, function value and some additional information

Algorithm 1: Pseudocode of the optim_sa function in the optimization package exemplary for a
minimization.
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information in order to assess the quality of the search domain. The numbers of invalid trials are
thus counted and stored (line 13) in order to make this information accessible for the outer loop. The
count of valid and invalid trials is not reset after each inner loop repetition. Both are only initialized in
iteration one of the inner loop and increase until the last iteration.

Next step is the comparison of loss function returns (lines 16 and 17). If the return of current
variables combination f (xi∗) is better than f (x j), xi∗ and f (xi∗) are stored into xi and f (xi), so xi are
the initial covariates for the next iteration. The core idea of the classical SA approach is to cope with
the problem of local optima. Thus, even if f (xi∗) is worse than f (x j), there is a chance of storing
xi∗ into xi (lines 18 to 25). The likelihood of keeping worse responses depends on the Metropolis
probability M (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953).

M = exp
(
−| f (i∗)− f ( j) |

kt

)
, (1)

with k being a user definable constant. We adopted this strategy from classic SA without modifications.
M decreases with decreasing temperature t (Equation 1). The likelihood of keeping worse responses
thus depends on the same parameters for the whole inner loop (lines 19 and 24). t does not change
during the entire inner loop. The likelihood of keeping worse values is thus equal for each response
until the inner loop is completed. Modification of t is part of the outer loop which will be explained in
the next paragraph. If a worse result is chosen the former optimal covariate combination is, of course,
stored before it is overwritten since otherwise there is a sound chance of overwriting the actual global
optimum. More details of the Metropolis probability can i.a. be found in Kirkpatrick et al. (1983) and
Metropolis et al. (1953).

Storing the information on development of covariates and response can help improving the perfor-
mance of SA (Lin, Haley, and Sparks 1995; Hansen 2012). We implemented a threshold accepting
strategy (Dueck and Scheuer 1990) into our SA interpretation (lines 26 to 28). This criterion is the
only module that allows reducing the inner loop repetitions without direct user influence. It is simply
a vector where the absolute differences of f (xi) and f (x j) are stored. If the response oscillates for a
user defined number of repetitions within a user defined threshold, the inner loop breaks.

Outer loop

The main functions of the outer while loop (Algorithm 1, lines 3 to 32) are calling the inner loop
(lines 4 to 29) and modifying the parameters that are needed in the inner loop (lines 30 and 31).
Therefore t and rf only change after completely finishing an inner loop. The outer loop repeats until t
is smaller than the user defined minimum temperature t0.

After finishing the inner loop, firstly t is adjusted (line 30). t is necessary for the stochastic part in
the inner loop (line 19, Equation 1). In our function, t decreases per definition as it is calculated by
multiplying the temperature of the current iteration by r which is a user defined real number between
0 and 1. The number of outer loop repetitions is thus implied by initial temperature t0, tmin and r.

Afterwards rf changes (line 31). The dynamic adaption of rf after Corana et al. (1987) and Pronzato
et al. (1984) is another major novelty of our function. As each covariate can have its own random factor,
rf is a vector of the same size as xi. rf is needed for the covariate variation in the inner loop (lines 6 and
12). Dividing the numbers of invalid trials distinctively for each covariate by the total number of trials
of the respective covariate gives the ratio of invalid trials for each covariate. The numbers of invalid
trials are counted in line 13. According to Corana et al. (1987), this ratio of invalid trials can be used
to find a trade-off between accuracy and the size of the search domain. They argue that if only valid
covariate combinations are drawn, the search domain could be too small for multimodal problems. For
this, the ratio of invalid trials in the current iteration is used to generate the rf for the following outer
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loop repetition. They suggest ratios between 0.4 and 0.6. If any observed ratio of invalid trials is <
0.4 or > 0.6, the respective random factors are modified following the suggested equation by Corana
et al. (1987). This strategy allows an adjustment of rf for the next iteration. Pronzato et al. (1984)
who developed the Adaptive Random Search method, propose a time decreasing search domain. Thus
they suggest a search domain adjustment that does not depend on former information, as Corana et al.
(1987) did, but on the number of iterations. They argue that the search domain should be wide at the
beginning to give the algorithm the chance to cope with local optima, and small in the end to allow
higher precisions. Later iterations thus require smaller search domains than earlier iterations. We
integrated the idea of Pronzato et al. (1984) into the dynamic search domain adjustment of (Corana
et al. 1987) by linearly shrinking the favorable range of ratios from the suggested ratios from {0.4,
0.6} to {0.04, 0.06}. As mentioned in the inner loop explanations, the variation function can be user
defined (lines 6 and 12). The user thus has the option to define flexibly in which way t and rf influence
the covariate variation. Per default, the search domain around the covariates shrinks by trend as the
number of outer loop iterations increases.

As optim_sa shall be able to solve very specific optimization problems, several parameters can be
defined by the user. The quality of solution and speed of convergence will thus substantially depend
on accurate parametrization. In the following, we will explain the most important parameters briefly
and make suggestions for useful specification. A complete parameter list can be found in the package
help.

• fun: Loss function to be optimized. The statement is without default. The function must depend
on a vector of covariates and return one numeric value. There are no assumptions on covariates
and return. The covariates do not even need to be continuous. Missing (NA) or undefined (NaN)
returns are also allowed. Any restriction on the parameter space, e.g. specific invalid covariate
values within the boundaries, can be directly integrated into the loss function by simply returning
NA. We will include more specific information on this in the practical examples.

• start: Numeric vector with initial covariate combination. This statement has no default. It must
be ensured that at least the initial covariate combination leads to a defined numeric response. The
loss function at the initial variables combination must therefore return a defined numeric value.
This might be relevant when the starting values are determined stochastically.

• trace: If TRUE, the last inner loop iteration of each outer loop iteration is stored as a row in the
trace matrix. This might help evaluating the solutions quality. However, storing interim results
increases calculation time by up to 10 %. Disabling trace can thus improve efficiency when
the convergence of an optimization problem is known to be stable.

• lower, upper: Numeric vector with lower boundaries of the covariates. The boundaries are
needed since the dynamic rf adjustment (Corana et al. 1987; Pronzato et al. 1984) depends on
the number of invalid covariate combinations.

• control: A list with optional further parameters.

All parameters in the list with control arguments have a default value. They are pre-parameterized
for loss functions of medium complexity. control arguments are:

• vf: Variation function that allows the user to restrict the parameter space. This is one of the most
important differences to classic SA. The function determines the variation of covariates during
the iterations. It is allowed to depend on rf, temperature and the vector of covariates of the
current iteration. The variation function is a crucial element of optim_sa which enables flexible
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programming. It is (next to the loss function itself) the second possibility to define restrictions.
The parameter space of the optimization program can be defined by vf. Per default, the covari-
ates are changed by a continuous, uniformly distributed random number. It must be considered
that defining specific rf can increase the calculation time. The default rf is a compiled C++
function whereas user specified rf must be defined as R functions. User specified rf are e.g.
useful for optimization problems with non-continuous parameter space.

• rf: Numeric vector with random factors. The random factors determine the range of the random
number in the variation function vf relative to the dimension of the function variables. The rf

can be stated separately for each variable. Default is a vector of ones. If dyn_rf is enabled, the
entries in rf change dynamically over time.

• dyn_rf: Boolean variable that indicates if the rf shall change dynamically over time to ensure
increasing precision with increasing numbers of iterations. rf determines whether the adjust-
ments of Corana et al. (1987) and Pronzato et al. (1984) are enabled (see method section for
theoretical background). dyn_rf ensures a relatively wide search domain at the beginning of
the optimization process that shrinks over time. Disabling dyn_rf can be useful when rf with
high performance are known. The development of rf is documented in the trace matrix. Eval-
uation of former optimizations with dynamic rf can thus help finding efficient and reasonable
fixed rf. Self-specified vf may not depend on rf. In this cases activating dyn_rf will not have
any advantage.

• t0: Initial temperature. The temperature directly influences the likelihood of accepting worse
responses and thus the stochastic part of the optimization. t0 should be adopted to the loss
function complexity. Higher temperatures lead to a higher ability of coping with local optima
but also to more time-consuming function calls.

• t_min: Numeric value that determines the temperature where outer loop stops. As there is
practically no chance of leaving local optima in iterations with low temperature t_min mainly
affects accuracy of the solution. Higher t_min yields to lower accuracy and fewer function calls.

• nlimit: Integer value which determines the maximum number of inner loop iterations. If the
break criterion in the inner loop is not fulfilled, nlimit is the exact number of inner loop repe-
titions. It is therefore an important parameter for determining the number of iterations.

• r: Numeric value that determines the reduction of the temperature at the end of each outer
loop. Slower temperature reduction leads to an increasing number of function calls. It should be
parameterized with respect to nlimit. High nlimit in combination with low r lead to many
iterations with the same acceptance likelihood of worse responses. Low nlimit in combination
with r near 1, by contrast, lead to a continuously decreasing acceptance likelihood of worse
responses. It is thus the second crucial parameter for determining the number of iterations.

3. Examples

To show the benefits of our optimization package, we build four examples explaining where the
optim_sa function can be advantageous.

3.1. Himmelblau Function with continuous parameter space
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Himmelblau’s function (Equation 2) (Himmelblau 1972) was chosen as an initial example since
it is a very simple multimodal equation and widely known in operations research. It has four equal
minimum values (min( f (x1,x2)) = 0)) at {-2.8, 3.1}, {3.0, 2.0}, {3.6, -1.8} and {-3.8, -3.3}. In order
to display the basic behavior of optim_sa, it was compared with two other SA methods from the
stats package (R Core Team 2017). Himmelblau’s function is relatively simple. Therefore we also
included the NM optimization method (Nelder and Mead 1965) which is a default of optim from the
stats package, to examine the advantages of stochastic search against direct search.

f (x1,x2) = (x2
1 + x2−11)2 +(x1 + x2

2−7)2 (2)

We performed 10,000 repetitions with each function in order to investigate the quality and speed of
the solutions using parameters for relatively simple optimization problems for all examined methods.
The optimizations were performed having the following parameters:

R> # stats package: optim (NM)

R> stats::optim(fn = hi, par = c(10, 10), method = "Nelder-Mead")

R> # optimization package: optim_sa

R> optimization::optim_sa(fun = hi, start = (c(10, 10)), trace = TRUE,

+ lower = c(-40, -40), upper = c(40, 40),

+ control = list(t0 = 500, nlimit = 50, r = 0.85,

+ rf = 3, ac_acc = 0.1, dyn_rf = TRUE))

R> # stats package: optim (SA)

R> stats::optim(fn = hi, par = c(10, 10), method = "SANN",

+ control = list(tmax = 500, reltol = 0.1, temp = 50, trace = TRUE))

Since we have a multimodal optimization problem with multiple equal solutions, the evaluation of
solutions quality is composed of response accuracy and covariate combination. With fixed starting
parameters, the methods should be able to find all possible solutions. We parameterized the functions
from the example such that thy fulfill a defined accuracy threshold. We defined the optimization
problem to be solved properly when the responses of the 10,000 repetitions were in mean ≤ 0.01. We
also looked at the frequency distribution of the covariate combination after minimization. Subsequent
to the investigation of quality, we also compared the efficiencies by measuring calculation times using
microbenchmark (Mersmann 2015) and the iterations frequencies.

It became clear that parameterization of NM was quite simple. It only needed a vector with starting
values. The other functions required a larger number of settings. With view to accuracy each method
performed well. All functions returned in mean of 10,000 calls responses with values ≤ 0.01. Re-
garding frequency distribution, the functions performed differently (Table 1). optim_sa and optim

(SA) returned all possible solutions. The combination {-3.8, -3.3} was consistently least frequent. As
optim (NM) is a direct search method, it only returned one solution {-3.8, -3.3}. Further investiga-
tion revealed the solutions of optim (NM) to be sensitive to the starting values. If optim (NM) was
parameterized with randomly drawn starting values, all four results would have been possible. Thus
one advantage of optim_sa and optim (SA) against direct search methods, like optim (NM), is its
independence from starting values. Random search methods are advantageous for solving multimodal
optimization problems.

As all functions were practically able to minimize Equation 2, comparison of calculation times
appeared to be another important point for quality assessment. As expected, the direct search method
optim (NM) was by far faster than all stochastic methods (Figure 1, left). The two functions able
to cope with equally valued optima (optim (SA) and optim_sa; Table 1) were significantly slower
(Figure 1, left). We parameterized the functions such that they fulfill our accuracy requirements. The
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Table 1: Relative frequencies of covariate combinations in % after optimization of Example 5.1 for the four examined
methods. Number of repetitions: 10,000. We used the parameters given in the example, only the trace options was
deactivated.

result (rounded)
{-2.8, 3.1} {3.0, 2.0} {3.6, -1.8} {-3.8, -3.3}

method

optim_sa 22.19 33.49 28.05 16.27
optim (SA) 25.91 30.89 24.08 19.12
optim (NM) 0.00 0.00 0.00 100.00

parameterizations in the examples should thus be near to the most efficient parameterizations for the
given problem with the expected accuracy.

Another way of comparing algorithms’ efficiencies is to examine the frequency of necessary itera-
tions solving the optimization problem. Again, optim (NM) performed best (Figure 1, right). optim
(SA) required the most repetitions by far. Only optim_sa showed varying frequencies because op-

tim_sa was, given the displayed parameters, the only function where the inner loop broke due to the
threshold accepting criterion. optim (SA) always iterated till the user specified limit. It could be
seen that optim_sa performed well when compared to established SA based optimization function.
optim_sa is slower but it requires less iterations. The calculation of valid parameter combinations
(Algorithm 1, lines 7 to 15) leads to multiple function calls within one iteration. For this, one iteration
of optim_sa can last longer than one iteration of the other methods. The number of function calls is
not necessarily equal to the number of iterations when dyn_rf is activated. The dyn_rf which adopts
the search domain dynamically to specific loss functions on the one hand thus leads to longer calcula-
tion times on the other hand. Improved flexibility therefore again corresponds with longer calculation
time.

To conclude, all functions were generally able to solve the problem. The flexible stochastic search-
grid of optim (SA) and optim_sa enabled archiving each of the four solutions. Practically, if users
are in doubt whether a problem has multiple solutions with equal responses, optim (SA) and op-

tim_sa can simply be repeated without re-parameterization. If well-specified, they will return all
possible solutions. They thus have advantages for complex multimodal problems of that kind but are
also slower. Due to the multiple additional options, which all have to be called in the code, optim_sa
is slowest. This example clearly reveals that higher flexibility and generality leads to significantly
higher calculation times. Specific algorithms have advantages for more complex problems while more
general functions are useful for optimization problems with simple responses.

3.2. Himmelblau Function with discrete parameter space

A second example illustrating the advantage of flexibly defining the parameter spaces also bases on
the function by Himmelblau (1972). It is an exemplary optimization problem which cannot be solved
with any other examined method. If a user is interested in integer covariate combinations only, simply
rounding the solution is usually not satisfying since the solution could be non-feasible or non-optimal
(Cardoso, Salcedo, de Azevedo, and Barbosa 1997). The flexible variation function vf of our models
allows searching for integer temporary solutions only and thus searching for the global integer solution.
vf can be used to restrict the parameter space to the specific problem. The following simple example
shows a variation rule for an exemplary integer programming problem. The simple var_fun_int

from the following example returns a vector of integer covariates varying in dimension of vf around
the passed covariates para_0. The fun_length must be passed explicitly, although it is implicitly
given by the length of para_0 because it might help simplifying the function vf. Dependence of rf
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Figure 1: Calculation times and frequencies of iterations of the four examined optimization algorithms in Example 5.1.
Note that the y-axis of the left diagram is truncated for reasons of presentation. optim_sa showed 101 and optim (SA) 70
outliers between four and seven milliseconds. The frequency of iterations represents the total number of iterations. Thus, for
the SA methods, all inner loops repetitions are counted. The packages parameterization are shown in the example code.

and temp can be implemented. Optimization problems do not always need a dynamic component. If
vf need not be dynamic, i.e. if the stochastic part shall be fixed during the entire iterations, temp and
rf can separately be disabled by passing NA for the respective parameter. If vf does not depend on rf,
the option dyn_rf will not be useful any more. It should be disabled in such cases to save computation
time.

R> # stats package: optim (NM)

R> stats::optim(fn = hi, par = c(10, 10), method = "Nelder-Mead")

R> # optimization package: optim_sa

R> optimization::optim_sa(fun = hi, start = (c(10, 10)), trace = TRUE,

+ lower = c(-40, -40), upper = c(40, 40),

+ control = list(t0 = 500, nlimit = 50, r = 0.85,

+ rf = 3, ac_acc = 0.1, dyn_rf = TRUE))

R> # stats package: optim (SA)

R> stats::optim(fn = hi, par = c(10, 10), method = "SANN",

+ control = list(tmax = 500, reltol = 0.1, temp = 50, trace = TRUE))

Repeating the minimization function with the parameters from the example 10,000 times led to the
only integer solution {3, 2} in 95.6 % of the repetitions. The generic plot function of the optimiza-
tion package (Figure 2) helps interpreting the convergence and thus the solution quality as well as
the algorithm behavior. Since the example is 2-dimensional, a contour_plot (Figure 2, right) could
be created. It shows the state space of the Himmelblau function in continuously changing colors for
parameter spaces between -4 and 4. The results at the end of each outer loop iteration are shown as
points within the parameter space. It became obvious that only integer covariate combinations were
calculated during the entire optimization (Figure 2, right). Figure 2 additionally helps explaining the
stochastic part of the SA method. It becomes clear that though the response of iteration 10 (parameter
combination {0, 0}) was already quite near 0, following iteration ended with relatively worse inter-
mediate results. With response > 100, iteration 19 (parameter combination {2, -3}) was much worse
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than iteration 10. The likelihood of keeping worse solutions shrank over time till it became practically
0 after iteration 40 (Figure 2, left). For problems of such kind, 40 iterations therefore should be far
enough. This information could help the user parameterizing the function for the next problem of such
kind.

optim (SA) also provides possibility of defining a variation function via the gr statement. Using
the variation function from the example code with fixed rf, however, it was not possible to define ro-
bust parameters for solving an integer programming problem. optim_sa is thus advantageous against
all other examined functions when the parameter space of the optimization problem underlies extended
restrictions. It is the only function that enables global optimum integer search. To achieve this, the
user must define a changing rule in form of a R function. Users must thus examine their optimiza-
tion problem very carefully and translate it into suitable functions. Parameterization of optim_sa is
quite complex and time extensive but enables adopting the optimizer to problem specific needs. Other
restrictions such as mixed integer problems may be defined analogously. vf can thus be used to flex-
ibly restrict the parameter space. Further suggestions for interpretation can be found in the package
documentation.
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Figure 2: Exemplary examination plots created with the generic plot function. The left diagram shows the current optimal
response over iteration of the outer loop. The left diagram displays the succession of the covariate values. The star points the
covariate combination at optimum. The actual parameter space of the optimization is reduced for presentation purposes.

3.3. Structural vector autoregressive models with least dependent innovations

Vector autoregressive (VAR) models are used to examine dynamic structures of several time series
endogenously within one model. Usually, impulse response functions come to use for investigating
structural shocks in those multivariate time series systems. Those impulse responses need a decom-
position of the covariance matrix. The covariance matrix decomposition, however, is not unique. The
interaction between the time series variables in a VAR model are not directly calculable without fur-
ther assumptions or information. The idea behind structural VAR (SVAR) is to define strategies to
overcome this problem and enable unique impulse response definitions (Lütkepohl 2006).

Least dependent innovations is one of plenty possibilities to obtain unique decompositions of the
covariance matrix. The idea is to minimize a Cramer-von-Mises test statistic for stochastically inde-
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pendent structural errors (Genest, Quessy, and Remillard 2007). Basically, the structural errors are
multiplied with K(K− 1)/2 Givens rotation matrices with angles θ between 0 and 2π , until the test
statistic from equation 3 becomes minimal. K is the number of time series in the SVAR model, T the
number of observations and ε̃ are the rotated structural errors. An advantage of this method is, that it
is very liberal in sense of distribution assumptions (Herwartz 2014).

Bθ =
∫
(0,1)K

[
√

T

(
C(ε̃)−

K

∏
i=1

U(ε̃i)

)]2

dε̃ (3)

However, optimizing the test statistic is challenging, because the loss function has a large and unpre-
dictable number of local optima and an irregular state space. Moreover, the function shows a relatively
broad parameter space with very sensitive responses. It often reacts dramatically to small changes in
the rotation angles. One approach to solve the optimization problem is the grid optimization (Her-
wartz and Plödt 2015). Grid optimization is, however, inefficient in large samples and – depending on
the step size – sometimes unable to find the global optimum. Monte Carlo simulations have shown
that direct search and gradient based optimization algorithms usually fail to find the optimal rotation
angles. Performing several direct search optimizations sequentially with randomly changing starting
values can be lead to satisfying solutions. The strategy is, however, also very inefficient.

The irregular response pattern and the high demands on the solution precision are the main chal-
lenges. The combination of SA with the adaptive variation of the search seems to be promising for the
optimization problem. The relatively broad parameter variation at the beginning of the optimization
process should ensure adequate search-grid size while the stochastic component of the SA should be
able to tackle the irregular responses. Dynamically decreasing parameter variation is particular advan-
tageous for optimizing the rotation angles as sufficient parameter accuracy is crucial for the reliability
of the solution.

Practical application of optim_sa revealed its advantages. Using parameterizations for low perfor-
mance and high precision, like an initial temperature of 100,000, a maximum number of 10,000 inner
loops and temperature reductions between 0.7 and 0.9, still converged faster than all other investigated
methods. Sensitivity analysis of exemplary optimization problems confirmed the general applicability
of optim_sa. The function was able to find the actual global optimum sufficiently often.

3.4. Forest harvesting schedule optimization

Forestry is traditionally a knowledge-based field with optimization playing only a minor role. How-
ever, optimization methods are very interesting for intermediate-term forest planning. Their popularity
is increasing (Möhring 2010). While Linear Programs are nowadays used in some states, e.g. Fin-
land (Redsven, Hirvelä, Härkönen, Salminen, and Siitonen 2012), stochastic optimization programs
are quite novel in forestry for optimization of harvesting intensity (Kangas, Kurttila, Hujala, Eyvind-
son, and Kangas 2015). Our function is an integral part of the first stochastic optimization software
of forest operation in Germany and one of the first software solutions worldwide on single tree scale.
Optimization of forest harvesting planning represents an interesting and innovative practical example
where optim_sa is recently used. The optim_sa function is part a innovative forest development
simulation-optimization software for decision support of forest enterprises. The software is an opti-
mization add-on for the widely-used forest development simulation software WaldPlaner by Hansen
and Nagel (2014). WaldPlaner is a user front end for Tree Growth Open Source Software (TreeGrOSS),
which is a complex Java written tree growth and yield simulation software used to forecast the devel-
opments of forest management areas (forest stands) developed by Nagel (1996). It is a tool able to
simulate forest enterprises with hundreds of forest stands simultaneously where the smallest simula-
tion element is the single tree. Each tree in the system is simulated individually. Optimization of
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forest activities is, accordingly, not trivial since TreeGrOSS is a complex network of rules and func-
tions which are predominantly nonlinear. The entire optimization process is composed of TreeGrOSS,
optim_sa, an interface function to enable communication between TreeGrOSS and the optimizer as
well as a data warehouse. This multi-factorial composition implies high demand for flexibility of the
optimization function. The loss function, which represents in this example the interface between the
three elements of the optimization system, must be composed of R, Java (using rJava; Urbanek 2016)
and SQL (using RPostgreSQL; Conway, Eddelbuettel, Nishiyama, Prayaga, and Tiffin 2016). Main
tasks of the interface are enabling communication between TreeGrOSS and optimization algorithm
and rating the TreeGrOSS output in terms of costs and revenue such that the TreeGrOSS output is
translated into a response readable by the optimization algorithm. Flexibility of loss and variation
functions is hence a prerequisite for forest harvesting schedule optimization via TreeGrOSS simula-
tions. Each loss function call causes a TreeGrOSS simulation and a database operation. In order to
save time, parts of the loss are therefore programmed parallel. The concept of sustainability plays a
central role in forestry. Forests must be treated such that recent and further generations can benefit
from their economic, ecologic and social functions. Particular harvesting operations must not exceed
the sustainable wood growth. Each function call returns, next to the actual response, a sustainability
index. This index is used to restrict the optimization by returning NA responses whenever sustainability
is violated. Sustainability is hence an important restriction forest schedule optimization that further
increases complexity of the loss function as the loss partially returns invalid values.

The example again reveals the complexity of the problem and further reinforces the need for spe-
cific stochastic methods. Only optim_sa was able to solve the complex loss function of the forest
harvesting schedule problem. Sensitivity analysis using an exemplary forest enterprise comprised of
five forest sites, with known global maximum, reinforced reliability of optim_sa for harvesting opti-
mization. A solution sufficiently near the global maximum was found in arguable time on a standard
personal computer. To test the practical usability, the optimization system was additionally tested on a
real forest enterprise with 100 forest sites. The problem was solved using a high performance cluster
computer. The simulation-optimization approach calculated reasonable and reliable solutions.

4. Discussion and outlook

In conclusion, SA methods have considerable advantages over classical optimization procedures if
the loss function is non-linear, multimodal and partially undefined. Our simulated annealing approach
optimizes these functions quite well. It might not be faster than the standard simulated annealing
approach of the stats package (R Core Team 2017), but that was not its purpose. However, due to the
shrinkage of the parameter space and the extra stopping criteria it manages to require fewer steps than
the standard approach. Additionally, the main advantage of our new approach is to deal with irregular
parameter spaces, as well as with non-continuous and sophisticated loss functions, where the standard
approach reaches its limits. In our examples we show that problems with these characteristics exist
and that our algorithm solves these problems. Furthermore there are several examples of loss functions
in natural science where some combinations of variables are restricted and our approach shows its
benefits.
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