nnmf: Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a technique to factorize a matrix with nonnegative values into the product of two matrices. Parallel computing is an option to enhance the speed and high-dimensional and large scale (and/or sparse) data are allowed. Relevant papers include: Wang Y. X. and Zhang Y. J. (2012). Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1336-1353 <doi:10.1109/TKDE.2012.51> and Kim H. and Park H. (2008). Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 30(2), 713-730 <doi:10.1137/07069239X>.

Version: 1.0
Depends: R (≥ 4.0)
Imports: ClusterR, Matrix, osqp, parallel, quadprog, Rfast, Rfast2, Rglpk, sparcl, stats
Published: 2026-01-09
DOI: 10.32614/CRAN.package.nnmf (may not be active yet)
Author: Michail Tsagris [aut, cre]
Maintainer: Michail Tsagris <mtsagris at uoc.gr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: nnmf results

Documentation:

Reference manual: nnmf.html , nnmf.pdf

Downloads:

Package source: nnmf_1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): nnmf_1.0.tgz, r-oldrel (arm64): nnmf_1.0.tgz, r-release (x86_64): nnmf_1.0.tgz, r-oldrel (x86_64): nnmf_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=nnmf to link to this page.