Package ‘mombf’

June 7, 2019

Type Package
Version 2.2.4
Date 2019-06-06
Title Bayesian Model Selection and Averaging for Non-Local and Local Priors
Author David Rossell, John D. Cook, Donatello Telesca, P. Roebuck
Maintainer David Rossell <rosselldavid@gmail.com>
Depends R (>= 2.14.0), methods, mvtnorm, ncvreg, mgcv
Imports Rcpp (>= 0.12.16), mclust, survival
Suggests parallel
LinkingTo Rcpp, RcppArmadillo
Description Bayesian model selection and averaging for regression and mixtures for non-local and selected local priors.
License GPL (>= 2)
URL http://mombf.r-forge.r-project.org/
LazyLoad yes
normaliwish.R normmix.R nlpMarginal.R pmomLM.R pmomPM.R
testfunction.R zellnerLM.R
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-06-07 19:00:02 UTC

R topics documented:

bbPrior ... 2
bfnormmix .. 4
bbPrior

Priors on model space for variable selection problems

Description

unifPrior implements a uniform prior (equal a priori probability for all models). binomPrior implements a Binomial prior. bbPrior implements a Beta-Binomial prior.

Usage

unifPrior(sel, logscale=TRUE, groups=1:length(sel),
 constraints=lapply(1:length(unique(groups)), function(z) integer(0)))

binomPrior(sel, prob=.5, logscale=TRUE, probconstr=prob, groups=1:length(sel),
 constraints=lapply(1:length(unique(groups)), function(z) integer(0)))

bbPrior(sel, alpha=1, beta=1, logscale=TRUE, alpacheck=alpha,
 betaconstr=beta, groups=1:length(sel),
 constraints=lapply(1:length(unique(groups)), function(z) integer(0)))
Arguments

- **sel** Logical vector indicating which variables are included in the model
- **logscale** Set to TRUE to return the log-prior probability.
- **groups** Group that each variable belongs to (e.g. dummy indicators for categorical variables with >2 categories). The idea is that all variables in a group are jointly added/removed from the model. By default all variables are assumed to be in separate groups
- **constraints** List with length equal to the number of groups (distinct elements in groups). Element j in the list should indicate any hierarchical constraints on the group, for instance constraints[[3]]==c(1,2) indicates that group 3 can only be included in the model if groups 1 and 2 are also in the model. This can be used to enforce that an interaction can only be in the model if the main effects are also in the model.
- **prob** Success probability for the Binomial prior
- **probconstr** Success probability for the Binomial prior for groups that are subject to constraints
- **alpha** First parameter of the Beta-Binomial prior, which is equivalent to specifying a Beta(alpha,beta) prior on prob.
- **beta** First parameter of the Beta-Binomial prior, which is equivalent to specifying a Beta(alpha,beta) prior on prob.
- **alphaconstr** Same as alpha for the groups that are subject to constraints
- **betaconstr** Same as beta for the groups that are subject to constraints

Value

Prior probability of the specified model

Author(s)

David Rossell

Examples

```r
library(mombf)
sel <- c(TRUE, TRUE, FALSE, FALSE)
unifPrior(sel, logscale=FALSE)
binomPrior(sel, prob=.5, logscale=FALSE)
bbPrior(sel, alpha=1, beta=1, logscale=FALSE)
```
bfnormmix

Number of Normal mixture components under Normal-IW and Non-local priors

Description

Posterior sampling and Bayesian model selection to choose the number of components k in multivariate Normal mixtures.

bfnormmix computes posterior probabilities under non-local MOM-IW-Dir(q) priors, and also for local Normal-IW-Dir(q.niw) priors. It also computes posterior probabilities on cluster occupancy and posterior samples on the model parameters for several k.

Usage

bfnormmix(x, k=1:2, mu0=rep(0, ncol(x)), g, nu0, S0, q=3, q.niw=1, B=10^4, burnin= round(B/10), logscale=TRUE, returndraws=TRUE, verbose=TRUE)

Arguments

x
n x p input data matrix
k
Number of components
mu0
Prior on mu[j] is N(mu0, g Sigma[j])
g
Prior on mu[j] is N(mu0, g Sigma[j]). This is a critical MOM-IW prior parameter that specifies the separation between components deemed practically relevant. It defaults to assigning 0.95 prior probability to any pair of mu's giving a bimodal mixture, see details
S0
Prior on Sigma[j] is IW(Sigma_j; nu0, S0)
u0
Prior on Sigma[j] is IW(Sigma_j; nu0, S0)
q
Prior parameter in MOM-IW-Dir(q) prior
q.niw
Prior parameter in Normal-IW-Dir(q.niw) prior
B
Number of MCMC iterations
burnin
Number of burn-in iterations
logscale
If set to TRUE then log-Bayes factors are returned
returndraws
If set to TRUE the MCMC posterior draws under the Normal-IW-Dir prior are returned for all k
verbose
Set to TRUE to print iteration progress

Details

The likelihood is

\[p(x[i] | mu, Sigma, eta) = \sum_j eta_j N(x[i], mu_j, Sigma_j) \]

The Normal-IW-Dir prior is
The MOM-IW-Dir prior is
\[d(\mu, \Sigma) \propto \prod_j \text{Dir}(\eta_j; q) \prod_j \text{N}(\mu_j; \mu_0, g \Sigma_j) \text{IW}(\Sigma_j; \nu_0, S_0) \]
where
\[d(\mu, \Sigma) = \prod_j< (\mu_j - \mu_l)' A (\mu_j - \mu_l) \]
and \(A \) is the average of \(\Sigma_1^{-1}, \ldots, \Sigma_k^{-1} \). Note that one must have \(q > 1 \) for the MOM-IW-Dir to define a non-local prior.

By default, the prior parameter \(g \) is set such that
\[P((\mu_j - \mu_l)' A (\mu_j - \mu_l) < 4) = 0.05. \]

The reasonale when \(\Sigma[j]=\Sigma[l] \) and \(\eta[j]=\eta[l] \) then \((\mu[j] - \mu[l])' A (\mu[j] - \mu[l]) > 4 \) corresponds to a bimodal density. That is, the default \(g \) focuses 0.95 prior prob on a degree of separation between components giving rise to a bimodal mixture density.

\texttt{bfnormmix} computes posterior model probabilities under the MOM-IW-Dir and Normal-IW-Dir priors using MCMC output. As described in Fuquene, Steel and Rossell (2018) the estimate is based on the posterior probability that one cluster is empty under each possible \(k \).

\textbf{Value}

A list with elements

- \(k \) Number of components
- \(\text{pp.momiw} \) Posterior probability of \(k \) components under a MOM-IW-Dir(\(q \)) prior
- \(\text{pp.niw} \) Posterior probability of \(k \) components under a Normal-IW-Dir(\(q.niw \)) prior
- \(\text{probempty} \) Posterior probability that any one cluster is empty under a MOM-IW-Dir(\(q.niw \)) prior
- \(\text{bf.momiw} \) Bayes factor comparing 1 vs \(k \) components under a MOM-IW-Dir(\(q \)) prior
- \(\text{logpen} \) log of the posterior mean of the MOM-IW-Dir(\(q \)) penalty term
- \(\text{logbf.niw} \) Bayes factor comparing 1 vs \(k \) components under a Normal-IW-Dir(\(q.niw \)) prior

\textbf{Author(s)}

David Rossell

\textbf{References}

Fuquene J., Steel M.F.J., Rossell D. On choosing mixture components via non-local priors. 2018.\texttt{arXiv}

\textbf{Examples}

\begin{verbatim}
x <- matrix(rnorm(100*2),ncol=2)
bfnormmix(x=x,k=1:3)\end{verbatim}
Description

dalapl evaluates the probability density function, palapl the cumulative probability function and ralapl generates random draws.

Usage

dalapl(x, th=0, scale=1, alpha=0, logscale=FALSE)

palapl(x, th=0, scale=1, alpha=0)

ralapl(n, th=0, scale=1, alpha=0)

Arguments

x Vector of values at which to evaluate the pdf/cdf

n Number of random draws

th Location parameter (mode)

scale Scale parameter (proportional to variance)

alpha Asymmetry parameter, must be between -1 and 1

logscale If TRUE the log-pdf is returned

Details

For x<=th the asymmetric Laplace pdf is

0.5*exp(-abs(th-x)/(sqrt(scale)*(1+alpha))/sqrt(scale))

and for x>th it is

0.5*exp(-abs(th-x)/(sqrt(scale)*(1-alpha))/sqrt(scale))

Value

dalapl returns the density function, palapl the cumulative probability, ralapl random draws.

Author(s)

David Rossell

Examples

library(mombf)
e <- ralapl(n=10^4, th=1, scale=2, alpha=0.5)
thseq <- seq(min(e), max(e), length=1000)
hist(e, main='', breaks=30, prob=TRUE)
lines(thseq, dalapl(thseq, th=1, scale=2, alpha=0.5), col=2)
ddir
Dirichlet density

Description
Evaluate the density of a Dirichlet distribution

Usage
```
ddir(x, q, logscale=TRUE)
```

Arguments
- `x`: Vector or matrix containing the value at which to evaluate the density. If a matrix, the density is evaluated for each row. Rows are renormalized to ensure they add up to 1
- `q`: Dirichlet parameters. Must have the same length as `ncol(x)`, or length 1 (in which case a symmetric Dirichlet density is evaluated)
- `logscale`: For `logscale==TRUE`, `dimom` returns the natural log of the prior density

Value
Density of a Dirichlet(q) distribution evaluated at each row of `x`

Author(s)
David Rossell

Examples
```
library(mombf)
x = matrix(c(1/3,2/3,.5,.5),nrow=2,byrow=TRUE)
ddir(x, q=2)
```

diwish
Density for Inverse Wishart distribution

Description
`diwish` returns the density for the inverse Wishart(nu,S) evaluated at Sigma.

Usage
```
diwish(Sigma, nu, S, logscale=FALSE)
```
Arguments

Sigma Positive-definite matrix
nu Degrees of freedom of the inverse Wishart
S Scale matrix of the inverse Wishart
logscale If logscale==TRUE the log-density is returned

Value

Inverse Wishart(nu,S) density evaluated at Sigma

Author(s)

David Rossell

See Also

dpostNIW for the Normal-IW posterior density

Examples

library(mombf)
Sigma= matrix(c(2,1,1,2),nrow=2)
diwish(Sigma,nu=4,S=diag(2))

dmom Non-local prior density, cdf and quantile functions.

Description

dmom, dimom and demom return the density for the moment, inverse moment and exponential moment priors. pmom, pimom and pemom return the distribution function for the univariate moment, inverse moment and exponential moment priors (respectively). qmom and qimom return the quantiles for the univariate moment and inverse moment priors. dmomigmarg returns the marginal density implied by a MOM(x;tau*phi)*Invgamma(phi;a/2,b/2), pmomigmarg its cdf. Analogously demomigmarg and demomigmarg for eMOM(x;tau*phi)*Invgamma(phi;a/2,b/2)

Usage

dmom(x, tau, a.tau, b.tau, phi=1, r=1, V1, baseDensity='normal', nu=3, logscale=FALSE, penalty='product')
dimom(x, tau=1, phi=1, V1, logscale=FALSE, penalty='product')
demom(x, tau, a.tau, b.tau, phi=1, logscale=FALSE)

pmom(q, V1 = 1, tau = 1)
pimom(q, V1 = 1, tau = 1, nu = 1)
pemom(q, tau, a.tau, b.tau)
In the univariate setting, \(x \) is a vector with the values at which to evaluate the density. In the multivariate setting it is a matrix with an observation in each row.

\(q \) Vector of quantiles.

\(p \) Vector of probabilities.

\(\Sigma \) Scale matrix (ignored if \(\text{penalty} \) \(\text{'product'} \)). Defaults to 1 in univariate setting and the identity matrix in the multivariate setting.

\(\tau \) Prior dispersion parameter is \(\tau*\phi \). See details.

\(a, \tau \) If \(\tau \) is left missing, an Inverse Gamma\((a,\tau/2,b,\tau/2) \) is placed on \(\tau \). In this case \(\text{dmom} \) and \(\text{demom} \) return the density marginalized with respect to \(\tau \).

\(b, \tau \) See \(a, \tau \).

\(\phi \) Prior dispersion parameter is \(\tau*\phi \). See details.

\(r \) Prior power parameter for \(\text{MOM} \) prior is \(2*r \).

\(\text{baseDensity} \) For \(\text{baseDensity} \) \(\text{'normal'} \) a Normal \(\text{MOM} \) prior is used, for \(\text{baseDensity} \) \(\text{'laplace'} \) a Laplace \(\text{MOM} \) prior, for \(\text{baseDensity} \) \(\text{'t'} \) a T \(\text{MOM} \) prior with \(\nu \) degrees of freedom is used.

\(\nu \) Prior parameter indicating the degrees of freedom for the quadratic T \(\text{MOM} \) and \(\text{iMOM} \) prior densities. The tails of the inverse moment prior are proportional to the tails of a multivariate T with \(\nu \) degrees of freedom.

\(\text{penalty} \) \(\text{penalty} \) \(\text{'product'} \) indicates that product \(\text{MOM/iMOM} \) should be used. \(\text{penalty} \) \(\text{'quadratic'} \) indicates quadratic \(\text{iMOM} \). See Details.

\(\text{logscale} \) For \(\text{logscale} \) \(\text{TRUE} \), \(\text{dmom} \) returns the natural log of the prior density.

\(a \) The marginal prior on \(\phi \) is \(IG(a/2,b/2) \).

\(b \) The marginal prior on \(\phi \) is \(IG(a/2,b/2) \).

Details

For \(\text{type} \) \(\text{'quadratic'} \) the density is as follows. Define the quadratic form \(q(\theta) = (\theta-\theta_0)'*\text{solve}(\Sigma)*(\theta-\theta_0)/(\tau*\phi) \). The normal moment prior density is proportional to \(q(\theta)*\text{dmvnorm}(\theta,\theta_0,\tau*\phi*\Sigma) \). The T moment prior is proportional to \(q(\theta)*\text{dmvt}(\theta,\theta_0,\tau*\phi*\Sigma,\nu) \). The inverse moment prior density is proportional to \(q(\theta)*\exp(-Q*\text{nu}/2)*exp(-1/q(\theta)) \).

\(\text{pmom} \), \(\text{pimom} \) and \(\text{qimom} \) use closed-form expressions, while \(\text{qmom} \) uses \(\text{nlminb} \) to find quantiles numerically. Only the univariate version is implemented. In this case the product \(\text{MOM} \) is equivalent to the quadratic \(\text{MOM} \). The same happens for the \(\text{iMOM} \).

\(\text{dmomigmarg} \) returns the marginal density

\(p(x) = \int \text{MOM}(x;0,\tau*\phi) IG(\phi;a/2,b/2) \, d\phi \)
Value

Prior density, cumulative distribution function or quantile.

Author(s)

David Rossell

References

See http://rosselldavid.googlepages.com for technical reports.

Examples

evaluate and plot the moment and inverse moment priors
library(mombf)
tau <- 1
thseq <- seq(-3,3,length=1000)
plot(thseq,dmom(thseq,tau=tau),type='l',ylab='Prior density')
lines(thseq, dimom(thseq,tau=tau), lty=2, col=2)

dpostNIW Posterior Normal-IWishart density

Description

dpostNIW evaluates the posterior Normal-IWishart density at (mu,Sigma). rpostNIW draws independent samples. This posterior corresponds to a Normal model for the data

\[x[i] \sim N(\mu, \Sigma) \text{ iid } i=1,\ldots,n \]

under conjugate priors

\[\mu \mid \Sigma \sim N(\mu_0, g \Sigma) \quad \Sigma \sim IW(nu_0, S_0) \]

Usage

\[\text{dpostNIW}(mu, Sigma, x, g=1, mu0=rep(0,length(mu)), nu0=nrow(Sigma)+1, S0, logscale=FALSE) \]

\[\text{rpostNIW}(n, x, g=1, mu0=0, nu0, S0, precision=FALSE) \]
Arguments

- **mu**: Vector of length p
- **Sigma**: p x p positive-definite covariance matrix
- **x**: n x p data matrix (individuals in rows, variables in columns)
- **g**: Prior dispersion parameter for mu
- **mu0**: Prior mean for mu
- **nu0**: Prior degrees of freedom for Sigma
- **S0**: Prior scale matrix for Sigma, by default set to I/nu0
- **logscale**: set to TRUE to get the log-posterior density
- **n**: Number of samples to draw
- **precision**: If set to TRUE, samples from the precision matrix (inverse of Sigma) are returned instead

Value

dpostNIW returns the Normal-IW posterior density evaluated at (mu,Sigma).

rpostNIW returns a list with two elements. The first element are posterior draws for the mean. The second element are posterior draws for the covariance (or its inverse if precision==TRUE). Only lower-diagonal elements are returned (Sigma[lower.tri(Sigma,diag=TRUE)]).

Author(s)

David Rossell

See Also

diwish for the inverse Wishart prior density, marginalNIW for the integrated likelihood under a Normal-IW prior

Examples

```r
#Simulate data
x = matrix(rnorm(100),ncol=2)
#Evaluate posterior at data-generating truth
mu = c(0,0)
Sigma = diag(2)
dpostNIW(mu,Sigma,x=x,g=1,nu0=4,log=FALSE)
```
eprod

Expectation of a product of powers of Normal or T random variables

Description

Compute the mean of \(\text{prod}(x)^{\text{power}} \) when \(x \) follows \(T_{\text{dof}}(\mu,\sigma) \) distribution (dof= -1 for multivariate Normal).

Usage

\[
\text{eprod}(m, S, \text{power} = 1, \text{dof} = -1)
\]

Arguments

- **m**: Location parameter
- **S**: Scale matrix. For multivariate T with dof>2 the covariance is \(S \times \text{dof}/(\text{dof}-2) \). For the multivariate Normal the covariance is \(S \).
- **power**: Power that the product is raised to
- **dof**: Degrees of freedom of the multivariate T. Set to -1 for the multivariate Normal.

Details

The calculation is based on the computationally efficient approach by Kan (2008).

Value

Expectation of the above-mentioned product

Author(s)

John Cook

References

Examples

```r
# Check easy independence case
m <- c(0,3); S <- matrix(c(2,0,0,1),ncol=2)
eprod(m, S, power=2)

(m[1]^2+S[1][1])*(m[2]^2+S[2][2])
```
Description

Montgomery and Peck (1982) illustrated variable selection techniques on the Hald cement data and gave several references to other analysis. The response variable y is the *heat evolved* in a cement mix. The four explanatory variables are ingredients of the mix, i.e., x_1: *tricalcium aluminate*, x_2: *tricalcium silicate*, x_3: *tetracalcium alumino ferrite*, x_4: *dicalcium silicate*. An important feature of these data is that the variables x_1 and x_3 are highly correlated ($\text{corr}(x_1,x_3)=-0.824$), as well as the variables x_2 and x_4 (with $\text{corr}(x_2,x_4)=-0.975$). Thus we should expect any subset of (x_1,x_2,x_3,x_4) that includes one variable from highly correlated pair to do as any subset that also includes the other member.

Usage

data(hald)

Format

hald is a matrix with 13 observations (rows) and 5 variables (columns), the first column is the dependent variable. y.hald and x.hald are also availables.

Source

Description

The argument z can be used to specify cluster allocations. If left missing then the usual marginal likelihood is computed, else it is computed conditional on the clusters (this is equivalent to the product of marginal likelihoods across clusters).

Usage

marginalNIW(x, xbar, samplecov, n, z, g, mu0=rep(0, ncol(x)), mu0=ncol(x)+4, S0, logscale=TRUE)
Arguments

- **x**: Data matrix (individuals in rows, variables in columns). Alternatively you can leave missing and specify `xbar`, `samplecov` and `n` instead.
- **xbar**: Either a vector with column means of `x` or a list where each element corresponds to the column means for each cluster.
- **samplecov**: Either the sample covariance matrix `cov(x)` or a list where each element contains the covariance for each cluster.
- **n**: Either an integer indicating the sample size `nrow(x)` or a vector indicating the cluster counts `table(z)`.
- **z**: Optional argument specifying cluster allocations.
- **g**: Prior dispersion parameter for `mu`.
- **mu0**: Prior mean for `mu`.
- **nu0**: Prior degrees of freedom for `Sigma`.
- **S0**: Prior scale matrix for `Sigma`, by default set to `I/nu0`.
- **logscale**: set to `TRUE` to get the log-posterior density.

Details

The function computes

\[
p(x) = \int p(x | mu, Sigma) p(mu, Sigma) \, dmu \, dSigma
\]

where \(p(x[i]) = N(x[i]; mu, Sigma) \) iid \(i = 1, ..., n \)

\(p(mu \, | \, Sigma) = N(mu; mu0, g \, Sigma) \)

\(p(Sigma) = IW(Sigma; nu0, S0) \)

Value

If `z` is missing the integrated likelihood under a Normal-IW prior. If `z` was specified then the product of integrated likelihoods across clusters.

Author(s)

David Rossell

See Also

dpostNIW for the posterior Normal-IW density.

Examples

```r
# Simulate data
x = matrix(rnorm(100), ncol = 2)

# Integrated likelihood under correct model
marginalNIW(x, g = 1, nu0 = 4, log = FALSE)

# Integrated likelihood under random cluster allocations
z = rep(1:2, each = 25)
marginalNIW(x, z = z, g = 1, nu0 = 4, log = FALSE)
```
mixturebf-class

Class "mixturebf"

Description
Stores the output of Bayesian model selection for mixture models, e.g. as produced by function `bfnormmix`.

Methods are provided for retrieving the posterior probability of a given number of mixture components, posterior means and posterior samples of the mixture model parameters.

Objects from the Class
Typically objects are automatically created by a call to `bfnormmix`.

Slots
The class has the following slots:

- **postprob** data.frame containing posterior probabilities for different numbers of components (k) and log-posterior probability of a component being empty (contain no individuals)
- **p** Number of variables in the data to which the model was fit
- **n** Number of observations in the data to which the model was fit
- **priorpars** Prior parameters used when fitting the model
- **postpars** Posterior parameters for a 1-component mixture, e.g. for a Normal mixture the posterior is $N(\mu_1, \Sigma/\text{prec}) \text{IW}(n u_1, S_1)$
- **mcmc** For each considered value of k, posterior samples for the parameters of the k-component model are stored

Methods

- **coef** Computes posterior means for all parameters
- **show** signature(object = "mixturebf"): Displays general information about the object.
- **postProb** signature(object = "mixturebf"): Extracts posterior model probabilities, Bayes factors and posterior probability of a cluster being empty
- **postSamples** signature(object = "mixturebf"): Extracts posterior samples

Author(s)

David Rossell

References

modelSelection

Bayesian variable selection for linear models via non-local priors.

Description

Bayesian model selection for linear, asymmetric linear, median and quantile regression under non-local or Zellner priors. p > n can be handled.

modelSelection enumerates all models when feasible and uses a Gibbs scheme otherwise. See rnlp for posterior samples for the coefficients.

modelsearchBlockDiag seeks the highest posterior probability model using an iterative block search.

Usage

modelSelection(y, x, data = NULL, smoothterms = FALSE, nknots = 9, groups = 1:ncol(x), constraints = TRUE, center = TRUE, scale = TRUE, enumerate = TRUE, includevars = rep(FALSE, ncol(x)), maxvars = 5000, thinning = 1, burnin = round(niter / 10), family = 'normal', priorCoef, priorGroup, priorDelta = modelbbprior(1, 1), priorConstraints = priorDelta, priorVar = igprior(NP1, NP1), priorSkew = momprior(tau = 0.348), phi, deltaini = rep(FALSE, ncol(x)), initSearch = 'greedy', method = 'auto', hess = 'asympt', optimMethod = 'CDA', B = 10^5, Xtxprecomp = ifelse(ncol(x) < 10^4, TRUE, FALSE), verbose = TRUE)

modelsearchBlockDiag(y, x, priorCoef = momprior(tau = 0.348), priorDelta = modelbbprior(1, 1), priorVar = igprior(0.01, 0.01), blocksize = 10, maxiter = 10, maxvars = 100, maxlogmargdrop = 20, maxenum = 10, verbose = TRUE)

Arguments

y

Either a formula with the regression equation or a vector with observed responses. The response can be either continuous or of class Surv (survival outcome). If y is a formula then x, groups and constraints are automatically created.

x

Design matrix with linear covariates for which we want to assess if they have a linear effect on the response. Ignored if y is a formula.

See Also

See also bfnormmix

Examples

showClass("mixturebf")
modelSelection

- **data**: If `y` is a formula then `data` should be a data frame containing the variables in the model.
- **smoothterms**: Formula for non-linear covariates (cubic splines), `modelSelection` assesses if the variable has no effect, linear or non-linear effect. `smoothterms` can also be a design matrix or data.frame containing linear terms, for each column `modelSelection` creates a spline basis and tests no/linear/non-linear effects.
- **nknots**: Number of spline knots. For cubic splines the non-linear basis adds knots-4 coefficients for each linear term, we recommend setting `nknots` to a small/moderate value.
- **groups**: If variables in `x` such be added/dropped in groups, `groups` indicates the group that each variable corresponds to (by default each variable goes in a separate group).
- **constraints**: Constraints on the model space. List with length equal to the number of groups; if `group[[i]]`=`c(j,k)` then group `i` can only be in the model if groups `j` and `k` are also in the model.
- **center**: If TRUE, `y` and `x` are centered to have zero mean. Dummy variables corresponding to factors are NOT centered.
- **scale**: If TRUE, `y` and columns in `x` are scaled to have variance=1. Dummy variables corresponding to factors are NOT scaled.
- **enumerate**: Default is TRUE if there’s less than 15 variable groups. If TRUE all models with up to `maxvars` are enumerated, else Gibbs sampling is used to explore the model space.
- **includevars**: Logical vector of length `ncol(x)` indicating variables that should always be included in the model, i.e. variable selection is not performed for these variables.
- **maxvars**: When `enumerate`==TRUE only models with up to `maxvars` variables enumerated (defaults to all variables). In `modelsearchBlockDiag` a sequence of models is defined from 1 up to `maxvars`.
- **niter**: Number of Gibbs sampling iterations.
- **thinning**: MCMC thinning factor, i.e. only one out of each thinning iterations are reported. Defaults to `thinning`=1, i.e. no thinning.
- **burnin**: Number of burn-in MCMC iterations. Defaults to `.1*niter`. Set to 0 for no burn-in.
- **family**: Residual distribution. Possible values are 'normal', 'two-piece normal', 'laplace', 'two-piece laplace', or 'auto'. For the latter the residual distribution is inferred from the data. 'laplace' corresponds to median regression and 'two-piece laplace' to quantile regression. See argument `priorSkew`.
- **priorCoef**: Prior on coefficients, created by `momprior`, `imomprior`, `emomprior` or `zellnerprior`. Prior dispersion is on coefficients/sqrt(scale) for Normal and two-piece Normal, and on coefficients/sqrt(2*scale) for Laplace and two-piece Laplace.
- **priorGroup**: Prior on grouped coefficients (e.g. categorical predictors with >2 categories, splines). Created by `groupmomprior`, `groupemomprior`, `groupimomprior` or `groupzellnerprior`.
- **priorDelta**: Prior on model space. Use `modelbbprior()` for Beta-Binomial prior, `modelbinomprior(p)` for Binomial prior with prior inclusion probability `p`, `modelcomplexprior` for Complexity prior, or `modelunifprior()` for Uniform prior.
priorConstraints
Prior distribution on the number of terms subject to hierarchical constraints that are included in the model

priorVar
Inverse gamma prior on scale parameter. For Normal outcomes variance=scale, for Laplace outcomes variance=2*scale

priorSkew
Either a fixed value for tanh(alpha) where alpha is the asymmetry parameter or a prior on tanh(alpha). For family='twopiecelaplace' setting alpha=a is equivalent to performing quantile regression for the quantile (1+a)/2. Ignored if family is 'normal' or 'laplace'.

phi
Residual variance. Typically this is unknown and therefore left missing. If specified argument priorVar is ignored

deltaini
Logical vector of length ncol(x) indicating which coefficients should be initialized to be non-zero. Defaults to all variables being excluded from the model

initSearch
Algorithm to refine deltaini. initSearch='greedy' uses a greedy Gibbs sampling search. initSearch='SCAD' sets deltaini to the non-zero elements in a SCAD fit with cross-validated regularization parameter. initSearch='none' leaves deltaini unmodified

method
Method to compute marginal likelihood. The default is to use closed-form expressions whenever possible (only available for pMOM priors with up to 15 covariates) and Laplace approximations otherwise. method='Laplace' for Laplace approx, method='plugin' for BIC-type approximation, method='MC' for Importance Sampling, method='Hybrid' for Hybrid Laplace-IS (only available for pMOM prior). See Details.

hess
Method to estimate the hessian in the Laplace approximation to the integrated likelihood under Laplace or asymmetric Laplace errors. When hess='asymp' the asymptotic hessian is used, hess='asympDiagAdj' a diagonal adjustment is applied (see Rossell and Rubio for details).

optimMethod
Algorithm to maximize objective function when method=='Laplace' or method=='MC'. optimMethod=='LMA' uses modified Newton-Raphson algorithm, 'CDA' coordinate descent algorithm

B
Number of samples to use in Importance Sampling scheme. Ignored if method=='Laplace'

XtXprecomp
Set to TRUE to pre-compute the Gram matrix x'x upfront (saves time), to FALSE to compute and store elements only as needed (saves memory)

verbose
Set verbose=TRUE to print iteration progress

blocksize
Maximum number of variables in a block. Careful, the cost of the algorithm is of order 2*blocksize

maxiter
Maximum number of iterations, each iteration includes a screening pass to add and subtract variables

maxlogmargdrop
Stop the sequence of models when the drop in log p(y|model) is greater than maxlogmargdrop. This option avoids spending unnecessary time exploring overly large models

maxenum
If the posterior mode found has less than maxenum variables then do a full enumeration of all its submodels
Details

Let delta be the vector indicating inclusion/exclusion of each column of x in the model. The Gibbs algorithm sequentially samples from the posterior of each element in delta conditional on all the remaining elements in delta and the data. To do this it is necessary to evaluate the marginal likelihood for any given model. These have closed-form expression for the MOM prior, but for models with >15 variables these are expensive to compute and Laplace approximations are used instead (for the residual variance a log change of variables is used, which improves the approximation). For other priors closed forms are not available, so by default Laplace approximations are used. For the iMOM prior we also implement a Hybrid Laplace-IS which uses a Laplace approximation to evaluate the integral wrt beta and integrates wrt phi (residual variance) numerically.

It should be noted that Laplace approximations tend to under-estimate the marginal densities when the MLE for some parameter is very close to 0. That is, it tends to be conservative in the sense of excluding more variables from the model than an exact calculation would.

Finally, method=='plugin’ provides a BIC-type approximation that is faster than exact or Laplace methods, at the expense of some accuracy. In non-sparse situations where models with many variables have large posterior probability method=='plugin’ can be substantially faster.

For more details on the methods used to compute marginal densities see Johnson & Rossell (2012).

modelsearchBlockDiag uses the block search method described in Papaspiliopoulos & Rossell. Briefly, spectral clustering is run on X’X to cluster variables into blocks of blocksize and subsequently the Coolblock algorithm is used to define a sequence of models of increasing size. The exact integrated likelihood is evaluated for all models in this path, the best model chosen, and the scheme iteratively repeated to add and drop variables until convergence.

Value

Object of class msfit, which extends a list with elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>postSample</td>
<td>matrix with posterior samples for the model indicator. postSample[i,j]==1 indicates that variable j was included in the model in the MCMC iteration i</td>
</tr>
<tr>
<td>postOther</td>
<td>postOther returns posterior samples for parameters other than the model indicator, i.e. basically hyper-parameters. If hyper-parameters were fixed in the model specification, postOther will be empty.</td>
</tr>
<tr>
<td>margpp</td>
<td>Marginal posterior probability for inclusion of each covariate. This is computed by averaging marginal post prob for inclusion in each Gibbs iteration, which is much more accurate than simply taking colMeans(postSample)</td>
</tr>
<tr>
<td>postMode</td>
<td>Model with highest posterior probability amongst all those visited</td>
</tr>
<tr>
<td>postModeProb</td>
<td>Unnormalized posterior prob of posterior mode (log scale)</td>
</tr>
<tr>
<td>postProb</td>
<td>Unnormalized posterior prob of each visited model (log scale)</td>
</tr>
<tr>
<td>priors</td>
<td>List with priors specified when calling modelSelection</td>
</tr>
</tbody>
</table>

Author(s)

David Rossell
References

Papaspiliopoulos O., Rossell, D. Scalable Bayesian variable selection and model averaging under block orthogonal design. 2016

See Also

msfit-class for details on the output. postProb to obtain posterior model probabilities. coef.msfit for Bayesian model averaging estimates and intervals. predict.msfit for BMA estimates and intervals for user-supplied covariate values. rnlp to obtain posterior samples for the coefficients. nlpmarginal to compute marginal densities for a given model.

Examples

```r
# Simulate data
x <- matrix(rnorm(100*3), nrow=100, ncol=3)
theta <- matrix(c(1,1,0), ncol=1)
y <- x %*% theta + rnorm(100)

# Specify prior parameters
priorCoef <- momprior(tau=0.348)
priorDelta <- modelunifprior()

# Alternative model space prior: 0.5 prior prob for including any covariate
priorDelta <- modelbinomprior(p=0.5)

# Alternative: Beta-Binomial prior for model space
priorDelta <- modelbbprior(alpha=p=1, beta=p=1)

# Model selection
fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE, priorCoef=priorCoef, priorDelta=priorDelta)
postProb(fit1) # posterior model probabilities
fit1$margpp # posterior marginal inclusion prob
coef(fit1) # BMA estimates, 95% intervals, marginal post prob
```
Description

`mombf` computes moment Bayes factors to test whether a subset of regression coefficients are equal to some user-specified value. `imombf` computes inverse moment Bayes factors. `zellnerbf` computes Bayes factors based on the Zellner-Siow prior (used to build the moment prior).

Usage

```r
mombf(lm1, coef, g, prior.mode, baseDensity='normal', nu=3, theta0, logbf=FALSE, B=10^5)
imombf(lm1, coef, g, prior.mode, nu = 1, theta0, method='adapt', nquant=100, B = 10^5)
```

Arguments

- `lm1`: Linear model fit, as returned by `lm1`.
- `coef`: Vector with indexes of coefficients to be tested. e.g. `coef=c(2, 3)` and `theta0=c(0, 0)` tests `coef(lm1)[2]=coef(lm1)[3]=0`.
- `g`: Vector with prior parameter values. See `dmom` and `dimom` for details.
- `prior.mode`: If specified, `g` is set such that the prior mode is `prior.mode`.
- `baseDensity`: Density upon which the Mom prior is based. `baseDensity='normal'` results in the normal Mom prior, `baseDensity='t'` in the t Mom prior with `nu` degrees of freedom.
- `nu`: For `mombf`, `nu` specifies the degrees of freedom of the t Mom prior. It is ignored unless `baseDensity='t'`. `nu` defaults to 3. For `imombf`, `nu` specifies the degrees of freedom for the inverse moment prior (see `dimom` for details). Defaults to `nu=1`, which Cauchy-like tails.
- `theta0`: Null value for the regression coefficients. Defaults to 0.
- `logbf`: If `logbf=TRUE` the natural logarithm of the Bayes factor is returned.
- `method`: Numerical integration method to compute the bivariate integral (only used by `imombf`). For `method='adapt'`, the inner integral is evaluated (via `integrate`) at a series of `nquant` quantiles of the residual variance posterior distribution, and then averaged as described in Johnson (1992). Set `method='MC'` to use Monte Carlo integration.
- `nquant`: Number of quantiles at which to evaluate the integral for known `sigma`. Only used if `method='adapt'`.
- `B`: Number of Monte Carlo samples to estimate the T Mom and the inverse moment Bayes factor. Only used in `mombf` if `baseDensity='t'`. Only used in `imombf` if `method='MC'`.

Details

These functions actually call `momunknown` and `imomunknown`, but they have a simpler interface. See `dmom` and `dimom` for details on the moment and inverse moment priors. The Zellner-Siow g-prior is given by `dmvnorm(theta,theta0,n*g*V1)`.
momknown

Value

mombf returns the moment Bayes factor to compare the model where \(\theta_A = \theta_0 \) with the null model where \(\theta = \theta_0 \). Large values favor the alternative model; small values favor the null. imombf returns inverse moment Bayes factors. zellnerbf returns Bayes factors based on the Zellner-Siow g-prior.

Author(s)

David Rossell

References

See Also

momunknown, imomunknown, and zbfunknown for another interface to compute Bayes factors. momknown, imomknown, and zbfknown to compute Bayes factors assuming that the dispersion parameter is known, and for approximate Bayes factors for GLMs

Examples

```r
# compute Bayes factor for Hald's data
data(hald)

# Set g so that interval (-0.2,0.2) has 5% prior probability
# (in standardized effect size scale)
priorp <- .05; q <- .2
gmom <- priorp2g(priorp=priorp,q=q,prior='normalMom')
gimom <- priorp2g(priorp=priorp,q=q,prior='iMom')
mombf(lm1,coef=2,g=gmom) # moment BF
imombf(lm1,coef=2,g=gimom,B=10^5) # inverse moment BF
zellnerbf(lm1,coef=2,g=1) # BF based on Zellner's g-prior
```

Bayes factors for moment, inverse moment and Zellner-Siow g-prior.
momknown and momunknown compute moment Bayes factors for linear models when σ^2 is known and unknown, respectively. The functions can also be used to compute approximate Bayes factors for generalized linear models and other settings. imomknown, imomunknown compute inverse moment Bayes factors. zbfknown, zbfunknown compute Bayes factors based on the Zellner-Siow g-prior.

Usage

momknown(theta1hat, V1, n, g = 1, theta0, sigma, logbf = FALSE)
momunknown(theta1hat, V1, n, nuisance.theta, g = 1, theta0, ssr, logbf = FALSE)
imomknown(theta1hat, V1, n, nuisance.theta, g = 1, nu = 1, theta0, sigma, method='adapt', B=10^5)
imomunknown(theta1hat, V1, n, nuisance.theta, g = 1, nu = 1, theta0, ssr, method='adapt', nquant = 100, B = 10^5)
zbfknown(theta1hat, V1, n, g = 1, theta0, sigma, logbf = FALSE)
zbfunknown(theta1hat, V1, n, nuisance.theta, g = 1, theta0, ssr, logbf = FALSE)

Arguments

theta1hat Vector with regression coefficients estimates.
V1 Matrix proportional to the covariance of theta1hat. For linear models, the covariance is $\sigma^2 \cdot V1$.
n Sample size.
nuisance.theta Number of nuisance regression coefficients, i.e. coefficients that we do not wish to test for.
ssr Sum of squared residuals from a linear model call.
g Prior parameter. See dmom and dimom for details.
theta0 Null value for the regression coefficients. Defaults to 0.
sigma Dispersion parameter is σ^2.
logbf If logbf==TRUE the natural logarithm of the Bayes factor is returned.
nu Prior parameter for the inverse moment prior. See dimom for details. Defaults to nu==1, which Cauchy-like tails.
method Numerical integration method (only used by imomknown and imomunknown). Set method='adapt' in imomknown to integrate using adaptive quadrature of functions as implemented in the function integrate. In imomunknown the integral is evaluated as in imomknown at a series of nquant quantiles of the posterior for sigma, and then averaged as described in Johnson (1992). Set method='MC' to use Monte Carlo integration.
nquant Number of quantiles at which to evaluate the integral for known sigma.
B Number of Monte Carlo samples to estimate the inverse moment Bayes factor. Ignored if method!= 'MC'.
Details

See `dmom` and `dimom` for details on the moment and inverse moment priors. The Zellner-Siow g-prior is given by `dmvnorm(theta,theta0,n*g*V1)`.

Value

`momknown` and `momunknown` return the moment Bayes factor to compare the model where `theta != theta0` with the null model where `theta == theta0`. Large values favor the alternative model; small values favor the null. `imomknown` and `imomunknown` return inverse moment Bayes factors. `zbfknown` and `zbfunknown` return Bayes factors based on the Zellner-Siow g-prior.

Author(s)

David Rossell

References

See http://rosselldavid.googlepages.com for technical reports.

See Also

`mombf` and `imombf` for a simpler interface to compute Bayes factors in linear regression

Examples

```r
# simulate data from probit regression
set.seed(4*2*2008)
n <- 50; theta <- c(log(2),0)
x <- matrix(NA,nrow=n,ncol=2)
x[,1] <- rnorm(n,0,1); x[,2] <- rnorm(n,.5*x[,1],1)
p <- pnorm(x[,1]*theta[1]+x[,2]+theta[2])
y <- rbinom(n,1,p)

# fit model
glm1 <- glm(y~x[,1]+x[,2],family=binomial(link = "probit"))
thetahat <- coef(glm1)
V <- summary(glm1)$cov.scaled

# compute Bayes factors to test whether x[,1] can be dropped from the model
g <- .5
bfmom.1 <- momknown(thetahat[2],V[2,2],n=n,g=g,sigma=1)
bfimom.1 <- imomknown(thetahat[2],V[2,2],n=n,nuisance.theta=2,g=g,sigma=1)
bfmom.1
bfimom.1
```

`momknown`
msfit-class

Class "msfit"

Description

Stores the output of Bayesian variable selection, as produced by function `modelSelection`. The class extends a list, so all usual methods for lists also work for `msfit` objects, e.g. accessing elements, retrieving names etc.

Some additional methods are provided for printing information on screen, computing posterior probabilities or sampling from the posterior of regression coefficients, as indicated below.

Objects from the Class

Typically objects are automatically created by a call to `modelSelection`. Alternatively, objects can be created by calls of the form `new("msfit", x)` where `x` is a list with the adequate elements (see slots).

Slots

The class extends a list with elements:

- `postSample` matrix with posterior samples for the model indicator. `postSample[i,j]` indicates that variable `j` was included in the model in the MCMC iteration `i`.
- `postOther` returns posterior samples for parameters other than the model indicator, i.e. basically hyper-parameters. If hyper-parameters were fixed in the model specification, `postOther` will be empty.
- `margpp` Marginal posterior probability for inclusion of each covariate. This is computed by averaging marginal post prob for inclusion in each Gibbs iteration, which is much more accurate than simply taking `colMeans(postSample)`.
- `postMode` Model with highest posterior probability amongst all those visited
- `postModeProb` Unnormalized posterior prob of posterior mode (log scale)
- `postProb` Unnormalized posterior prob of each visited model (log scale)
- `family` Residual distribution, i.e. argument `family` when calling `modelSelection`
- `p` Number of variables
- `priors` Priors specified when calling `modelSelection`
- `ystd` For internal use. Stores the response variable, standardized if `center` or `scale` were set to `TRUE`
- `xstd` For internal use. Stores the covariates, standardized if `center` or `scale` were set to `TRUE`
- `stdconstants` For internal use. If `center` or `scale` were set to `TRUE`, stores the sample mean and standard deviation of the outcome and covariates
- `call` Stores info about the call, the formula used (if any), splines used etc.
Methods

- **coef**: Obtains posterior means and intervals via Bayesian model averaging.
- **predict**: Obtains posterior means and intervals for given covariate values. These are posterior intervals for the mean, not posterior predictive intervals for the outcome.
- **show**: signature(object = "msfit"): Displays general information about the object.
- **postProb**: signature(object = "msfit"): Extracts posterior model probabilities.
- **rnlp**: signature(object = "msfit"): Obtain posterior samples for regression coefficients.

Author(s)

David Rossell

References

See Also

See also `modelSelection` and `rnlp`.

Examples

```r
showClass("msfit")
```

msPriorSpec-class

Class `"msPriorSpec"

Stores the prior distributions to be used for Bayesian variable selection in normal regression models. This class can be used to specify the prior on non-zero regression coefficients, the model indicator or the nuisance parameters.

Usage

```r
momprior(tau, tau.adj=10^6, r=1)
imomprior(tau, tau.adj=10^6)
emomprior(tau, tau.adj=10^6)
zellnerprior(tau, tau.adj=10^6)

groupmomprior(tau, tau.adj=10^6)
groupimomprior(tau, tau.adj=10^6)
groupemomprior(tau, tau.adj=10^6)
```
groupzellnerprior(\(\tau, \tau.\, adj=10^6\))

modelunifprior()
modelbinomprior(p=0.5)
modelbbprior(\(\alpha.p=1, \beta.p=1\))
modelcomplexprior(c=1)

\(\text{igprior}(\alpha=.01, \lambda=.01) \)

Arguments

- \(\tau\) Prior dispersion parameter for covariates undergoing selection
- \(\tau.\, adj\) Prior variance in Normal prior for covariates not undergoing selection
- \(r\) MOM prior parameter is \(2*r\)
- \(p\) Prior inclusion probability for binomial prior on model space
- \(\alpha.p\) Beta-binomial prior on model space has parameters \(\alpha.p, \beta.p\)
- \(\beta.p\) Beta-binomial prior on model space has parameters \(\alpha.p, \beta.p\)
- \(c\) Under the Complexity prior the prior probability of having \(k\) variables in the model is proportional to \(1/c^k\)
- \(\alpha\) Inverse gamma prior has parameters \(\alpha/2, \lambda/2\)
- \(\lambda\) Inverse gamma prior has parameters \(\alpha/2, \lambda/2\)

Details

DISCUSSION OF PRIOR ON PARAMETERS

Let \(\beta=(\beta_1,...,\beta.p)\) be the regression coefficients for individual variables and \(\delta=(\delta_1,...,\delta.q)\) those for grouped variables (e.g. factors or smooth terms in modelSelection).

 momentos, emomtost, inmomtost and zellnerprior are priors on \(\beta\). For further information see the vignette.

groupzellnerprior is the prior density on \(\delta\)

\[
p_\text{z}(\delta) = \text{prod}_j N(\delta_j; 0, (\tau/\text{ncol}(X_j)) (X_j'X_j)^{-1})
\]

where \(X_j\) are the design matrix columns associated to \(\delta_j\). A default \(\tau=nrow(X_j)\) mimics the unit information prior and implies that the ratio of variance explained by \(X_j\) / residual variance is expected to be 1 a priori.

groupmomprior adds a quadratic MOM penalty

\[
p_\text{m}(\delta) = p_\text{z}(\delta) \text{prod}_j \delta_j'X_j'X_j\delta_j \text{ncol}(X_j)/\tau
\]

and analogously for eMOM and iMOM.

DISCUSSION OF PRIOR ON MODELS

Under the uniform prior, the prior probability of any model is 1 / number of models.

Under the Binomial, Beta-Binomial and Complexity priors a model with \(k\) out of \(K\) active variables has prior probability \(P(Z=k) / (K \text{ choose } k)\), where where \(Z \sim \text{Binomial}(K,p), Z \sim \text{BetaBinomial}(K,\alpha.p,\beta.p)\) or for the Complexity prior \(P(Z=k)\) proportional to \(1/K^*(c*k)\).
Objects from the Class

Objects can be created by calls of the form `new("msPriorSpec", ...), but it is easier to use creator functions.

For priors on regression coefficients use `momprior`, `imomprior` or `emomprior`. For prior on model space `modelunifprior`, `modelbinomprior` `modelbbprior`, or `modelcomplexprior`. For prior on residual variance use `igprior`.

Slots

`priortype`: Object of class "character". "coefficients" indicates that the prior is for the non-zero regression coefficients. "modelIndicator" that it is for the model indicator, and "nuisancePars" that it is for the nuisance parameteres. Several prior distributions are available for each choice of `priortype`, and these can be specified in the slot `priordistr`.

`priordistr`: Object of class "character". If `priortype="coefficients"`, `priordistr` can be equal to "pMOM", "piMOM", "peMOM" or "zellner" (product moment, product inverse moment, product exponential moment or Zellner prior, respectively). If `priortype="modelIndicator"`, `priordistr` can be equal to "uniform" or "binomial" to specify a uniform prior (all models equally likely a priori) or a binomial prior, or to "complexity" for the Complexity prior of Castillo et al 2015. For a binomial prior, the prior inclusion probability for any single variable must be specified in slot `priorParms["p"]`. For a beta-binomial prior, the Beta hyper-prior parameters must be in `priorParms["alpha.p"]` and `priorParms["beta.p"]`. For the Complexity prior, the prior parameter must be in the slot `priorParms["c"]`. If `priortype="nuisancePars"`, `priordistr` must be equal to "invgamma". This corresponds to an inverse gamma distribution for the residual variance, with parameters specified in the slot `priorParms`.

`priorParms`: Object of class "vector", where each element must be named. For `priorDistr=='pMOM'`, there must be an element "r" (MOM power is 2r). For any `priorDistr` there must be either an element "tau" indicating the prior dispersion or elements "a.tau" and "b.tau" specifying an inverse gamma hyper-prior for "tau". Optionally, there may be an element "tau.adj" indicating the prior dispersion for the adjustment variables (i.e. not undergoing variable selection). If not defined, "tau.adj" is set to 0.001 by default. For `priorDistr=='binomial'`, there must be either an element "p" specifying the prior inclusion probability for any single covariate, or a vector with elements "alpha.p" and "beta.p" specifying a Beta(alpha.p,beta.p) hyper-prior on p. For `priorDistr=='invgamma'` there must be elements "alpha" and "lambda". The prior for the residual variance is an inverse gamma distribution with parameters .5*alpha and .5*lambda.

Methods

No methods defined with class "msPriorSpec" in the signature.

Note

When new instances of the class are created a series of check are performed to ensure that a valid prior specification is produced.

Author(s)

David Rossell
References

See Also

See also modelSelection for an example of defining an instance of the class and perform Bayesian model selection.

Examples

showClass("msPriorSpec")

nlpmarginals

Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors

Description

The marginal density of the data, i.e. the likelihood integrated with respect to the given prior distribution on the regression coefficients of the variables included in the model and an inverse gamma prior on the residual variance.

nlpMarginal is the general function, the remaining ones correspond to particular cases and are kept for backwards compatibility with old code, and will be deprecated in the future.

Usage

nlpMarginal(sel, y, x, family="normal", priorCoef=momprior(tau=0.348), priorVar=igprior(alpha=0.01, lambda=0.01), priorSkew=momprior(tau=0.348), method='auto', hess='asympt', optimMethod='CDA', B=10^5, logscale=TRUE, Xtx, ytx)

pimomMarginalK(sel, y, x, phi, tau=1, method='Laplace', B=10^5, logscale=TRUE, Xtx, ytx)

pimomMarginalU(sel, y, x, alpha=0.001, lambda=0.001, tau=1, method='Laplace', B=10^5, logscale=TRUE, Xtx, ytx)

pmomMarginalK(sel, y, x, phi, tau, r=1, method='auto', B=10^5, logscale=TRUE, Xtx, ytx)

pmomMarginalU(sel, y, x, alpha=0.001, lambda=0.001, tau=1, r=1, method='auto', B=10^5, logscale=TRUE, Xtx, ytx)
Arguments

- `sel` Vector with indexes of columns in `x` to be included in the model
- `y` Vector with observed responses
- `x` Design matrix with covariates. Only the columns specified in `sel` are included in the model, the rest are disregarded
- `family` Residual distribution. Possible values are 'normal', 'twopiecenameal', 'laplace', 'twopiecelaplace'
- `priorCoef` Prior on coefficients, created by `momprior`, `imomprior`, `emomprior` or `zellnerprior`. Prior dispersion is on coefficients/sqrt(scale) for Normal and two-piece Normal, and on coefficients/sqrt(2*scale) for Laplace and two-piece Laplace.
- `priorVar` Inverse gamma prior on scale parameter, created by `igprior()`. For Normal variance=scale, for Laplace variance=(2*scale)
- `priorSkew` Either a number fixing tanh(alpha) where alpha is the asymmetry parameter or a prior on residual skewness parameter, assumed to be of the same family as priorCoef. Ignored if family is 'normal' or 'laplace'.
- `method` Method to approximate the integral. `method='auto'` uses closed-form expressions whenever possible and Laplace approximations otherwise. `method='Laplace'` for Laplace approx. `method='MC'` for Monte Carlo
- `hess` Method to estimate the hessian in the Laplace approximation to the integrated likelihood under Laplace or asymmetric Laplace errors. When `hess='asym'` the asymptotic hessian is used, `hess='asymDiagAdj'` a diagonal adjustment is applied (see Rossell and Rubio for details).
- `optimMethod` Algorithm to maximize objective function when `method='Laplace'` or `method='MC'`. `optimMethod='LMA'` uses modified Newton-Raphson algorithm, 'CDA' coordinate descent algorithm
- `B` Number of Monte Carlo samples to use (ignored unless `method='MC'`)
- `logscale` If `logscale=TRUE` the log marginal density is returned.
- `XtX` Optionally, specify the matrix X'X. Useful when the function must be called a large number of times.
- `ytX` Optionally, specify the vector y'X. Useful when the function must be called a large number of times.
- `phi` Residual variance, assumed to be known by `pmomMarginalK` and `pmomMarginalK`
- `alpha` Prior for phi is inverse gamma alpha/2, lambda/2
- `lambda` Prior for phi is inverse gamma alpha/2, lambda/2
- `tau` Prior dispersion parameter for MOM and iMOM priors (see details)
- `r` Prior power parameter for MOM prior is 2*r

Details

The marginal density of the data is equal to the integral of \(N(y; x[,sel]*theta,phi*I) \) * \(pi(\theta,\phi|\tau) \) * IG(\(phi;alpha/2,lambda/2\)) with respect to theta, where pi(\(\theta,\phi|\tau\)) is a non-local prior and IG denotes the density of an inverse gamma.

`pmomMarginalK` and `pmomMarginalK` assume that the residual variance is known and therefore the inverse-gamma term in the integrand can be ommitted.

The product MOM and iMOM densities can be evaluated using the functions `dmom` and `dimom`.
pmomLM

Value

Marginal density of the observed data under the specified prior.

Author(s)

David Rossell

References

See Also

`modelSelection` to perform model selection based on product non-local priors. `momunknown`, `imomunknown`, `momknown`, `imomknown` to compute Bayes factors for additive MOM and iMOM priors

Examples

```r
x <- matrix(rnorm(100*2),ncol=2)
y <- x %*% matrix(c(.5,1),ncol=1) + rnorm(nrow(x))
pmomMarginalK(sel=1, y=y, x=x, phi=1, tau=1, method='Laplace')
pmomMarginalK(sel=1:2, y=y, x=x, phi=1, tau=1, method='Laplace')
```

Description

Variable selection for linear and probit models, providing a sample from the joint posterior of the model and regression coefficients. `pmomLM` and `pmomPM` implement product Normal MOM and heavy-tailed product MOM as prior distribution for linear and probit model coefficients (respectively). `emomLM` and `emomPM` set an eMOM prior.

`pplPM` finds the value of the prior dispersion parameter `tau` minimizing posterior expected predictive loss (Gelfand and Ghosh, 1998) for the Probit model, i.e. can be used to automatically set up `tau`.

`ppmodel` returns the proportion of visits to each model.
Usage

pmomLM(y, x, xadj, center=FALSE, scale=FALSE, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, priorVar, initSearch='greedy', verbose=TRUE)

pmomPM(y, x, xadj, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, initSearch='greedy', verbose=TRUE)

emomLM(y, x, xadj, center=FALSE, scale=FALSE, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, priorVar, initSearch='greedy', verbose=TRUE)

emomPM(y, x, xadj, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, initSearch='greedy', verbose=TRUE)

plPM(tauseq=exp(seq(log(.01),log(2),length=20)), kPen=1, y, x, xadj, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, priorVar, initSearch='greedy', mc.cores=1)

ppmodel(nlpfit)

Arguments

y Vector with observed responses. For pmomLM this must be a numeric vector. For pmomPM it can either be a logical vector, a factor with 2 levels or a numeric vector taking only two distinct values.

x Design matrix with all potential predictors which are to undergo variable selection.

xadj Design matrix for adjustment covariates, i.e. variables which are included in the model with probability 1. For instance, xadj can be used to force the inclusion of an intercept in the model.

center If center==TRUE, y and x are centered to have zero mean, therefore eliminating the need to include an intercept term in x

scale If scale==TRUE, y and columns in x are scaled to have standard deviation 1

niter Number of MCMC sampling iterations

thinning MCMC thinning factor, i.e. only one out of each thinning iterations are reported. Defaults to thinning=1, i.e. no thinning

burnin Number of burn-in MCMC iterations. Defaults to .1*niter. Set to 0 for no burn-in

priorCoef Prior distribution for the coefficients. Must be object of class mspriorSpec with slot priorType set to 'coefficients'. Possible values for slot priorDistr are 'pMOM', 'piMOM' and 'peMOM'

priorDelta Prior on model indicator space. Must be object of class mspriorSpec with slot priorType set to 'modelIndicator'. Possible values for slot priorDistr are 'uniform' and 'binomial'. For 'binomial', you can either set the prior probability 'p' or specify a Beta-binomial prior by specifying the parameters 'alpha.p','beta.p'.
priorVar Prior on residual variance. Must be object of class mspriorSpec with slot
\texttt{priorType} set to 'nuisancePars'. Slot \texttt{priordistr} must be equal to 'invgamma'.

initSearch Algorithm to refine \texttt{deltaini}. \texttt{initSearch} is a greedy Gibbs
sampling search. \texttt{initSearch} = 'SCAD' sets \texttt{deltaini} to the non-zero elements
in a SCAD fit with cross-validated regularization parameter. \texttt{initSearch} = 'none'
initializes to the null model with no variables in \texttt{x} included.

verbose Set \texttt{verbose} = TRUE to print iteration progress.

tauseq Grid of \texttt{tau} values for which the posterior predictive loss should be evaluated.

kPen Penalty term specifying the relative importance of deviations from the observed
data vs deviation from the posterior predictive. \texttt{kPen} can be set either to a nu-
meric value or to 'msize' to set penalty equal to the average model size. Loss
is \texttt{Dev(yp,yhat)} + \texttt{kPen*Dev(yhat,yobs)}, where \texttt{yp}: draw from post predictive,
\texttt{yobs}: observed data and \texttt{yhat} is \texttt{E(yp|yobs)}.

mc.cores Allows for parallel computing. \texttt{mc.cores} is the number of processors to use.
Setting \texttt{mc.cores} > 1 requires the \texttt{parallel} package.

nlpfit Non-local prior model fit, as returned by \texttt{pmomLM}, \texttt{pmomPM}, \texttt{emomLM} or \texttt{emomPM}.

Details

The implemented MCMC scheme makes proposals from the joint posterior of \((\texttt{delta}[i],\texttt{theta}[i])\)
given all other parameters and the data, where \texttt{delta}[i] is the indicator for inclusion/exclusion of
covariate \texttt{i} and \texttt{theta}[i] is the coefficient value. In contrast with some model fitting options im-
plemented in \texttt{modelSelection}, here the scheme is exact. However, sampling the coefficients can
adversely affect the mixing when covariates are very highly correlated. In practice, the mixing
seems to be reasonably good for correlations up to 0.9.

\texttt{pmomPM} uses the scheme of Albert & Chib (1993) for probit models.

Value

\texttt{pmomLM} and \texttt{pmomPM} returns a list with elements

- \texttt{postModel} matrix with posterior samples for the model indicator. \texttt{postModel}[i,j]==1
 indicates that variable \texttt{j} was included in the model in the MCMC iteration \texttt{i}

- \texttt{postCoef1} matrix with posterior samples for coefficients associated to \texttt{x}

- \texttt{postCoef2} matrix with posterior samples for coefficients associated to \texttt{xadj}

- \texttt{postPhi} vector with posterior samples for residual variance

- \texttt{postOther} \texttt{postOther} returns posterior samples for other parameters, i.e. basically hyper-
 parameters. Currently the prior precision parameter \texttt{tau}

- \texttt{margpp} Marginal posterior probability for inclusion of each covariate. This is computed
 by averaging marginal post prob for inclusion in each MCMC iteration, which
 is much more accurate than simply taking \texttt{colMeans(postModel)}

\texttt{pplPM} returns a list with elements

- \texttt{optfit} Probit model fit using \texttt{tauopt}. It is the result of a call to \texttt{pmomPM}.
PPL data.frame indicating for each value in tauseq the posterior predictive loss (PPL=G+P), the goodness-of-fit (G) and penalty terms (P)

, the average number of covariates in the model (msize) including xadj and the smoothed sPPL obtained via a gam fit.

tauopt Value of tau minimizing the PPL

Author(s)
David Rossell, Donatello Telesca

References

See Also
For more details on the prior specification see mspriorspec-class To compute marginal densities for a given model see pmomMarginalK, pmomMarginalU, pimomMarginalK, pimomMarginalU.

Examples

#Simulate data
x <- matrix(rnorm(100*3),nrow=100,ncol=3)
xadj <- rep(1,nrow(x))
theta <- matrix(c(1,1,0),ncol=1)
y <- 10*xadj + x %*% theta + rnorm(100)

#Beta-binomial prior on model space
priorDelta <- modelbbprior(alpha.p=1,beta.p=1)

#Non-informative prior on residual variance
priorVar <- igprior(alpha=.01,lambda=.01)

#Product MOM prior with tau=0.3 on x coefficients
#Non-informative prior on xadj coefficients
priorCoef <- momprior(tau=0.3, tau.adj=10^6)$
mom <- pmomLM(y=y,x=x,xadj=xadj,center=FALSE,scale=FALSE, niter=1000,
priorCoef=priorCoef,priorDelta=priorDelta,priorVar=priorVar)
round(coIMeans(mom$postModel),2)
round(coIMeans(mom$postCoef1),2)
round(coIMeans(mom$postCoef2),2)
postModeOrtho

Bayesian model selection and averaging under block-diagonal $X'X$ for linear models.

Description

postModeOrtho is for diagonal $X'X$, postModeBlockDiag for the more general block-diagonal $X'X$, where X is the matrix with predictors.

Both functions return the model of highest posterior probability of any given size using an efficient search algorithm. This sequence of models includes the highest posterior probability model (HPM). Posterior model probabilities, marginal variable inclusion probabilities and Bayesian model averaging estimates are also provided. The unknown residual variance is integrated out using an exact deterministic algorithm of low computational cost (see details in reference).

Usage

```r
postModeOrtho(y, x, priorCoef=momprior(tau=0.348), priorDelta=modelbpprior(1,1), priorVar=igprior(0.01,0.01), bma=FALSE, includeModels, maxvars=100)

postModeBlockDiag(y, x, blocks, priorCoef=zellnerprior(tau=nrow(x)), priorDelta=modelbinomnprior(p=1/ncol(x)),priorVar=igprior(0.01,0.01), bma=FALSE, maxvars=100, momcoef)
```
Arguments

y
Outcome

x
Matrix with predictors. If an intercept is desired x should include a column of 1’s.

blocks
Factor or integer vector of length ncol(x) indicating the block that each column in x belongs to.

priorCoef
Prior distribution for the coefficients. Object created with momprior, mumoprior, emomprior or zellnerprior.

priorDelta
Prior on model space. Use modelbbprior() for Beta-Binomial prior, modelbinomprior(p) for Binomial prior with prior inclusion probability p, modelcomplexprior for Complexity prior, or modelunifprior() for Uniform prior.

priorVar
Inverse gamma prior on residual variance, created with igprior()

bma
Set to TRUE to obtain marginal inclusion probabilities and Bayesian model averaging parameter estimates for each column of x.

includeModels
Models that should always be included when computing posterior model probabilities. It must be a list, each element in the list corresponds to a model and must be a logical or numeric vector indicating the variables in that model.

maxvars
The search for the HPM is restricted to models with up to maxvars variables (note: posterior model probabilities and BMA are valid regardless of maxvars).

momcoef
Optional argument containing pre-computed coefficients needed to obtain the marginal likelihood under the pMOM prior. A first call to postModeBlockDiag returns these coefficients, thus this argument is useful to speed up successive calls.

Details

The first step is to list a sequence of models with 0,...,maxvars variables which, under fairly general conditions listed in Papaspiliopoulos & Rossell (2016), is guaranteed to include the HPM. Then posterior model probabilities are computed for all these models to determine the HPM, evaluate the marginal posterior of the residual variance on a grid, and subsequently compute the marginal density \(p(y) \) via adaptive quadrature. Finally this adaptive grid is used to compute marginal inclusion probabilities and Bayesian model averaging estimates. For more details see Papaspiliopoulos & Rossell (2016).

Value

List with elements

models
data.frame indicating the variables included in the sequence of models found during the search of the HPM, and their posterior probabilities. The model with highest posterior probability in this list is guaranteed to be the HPM.

phi
data.frame containing an adaptive grid of \(\phi \) (residual variance) values and their marginal posterior density \(p(\phi|y) \).

logpy
log-marginal density \(p(y) \), i.e. normalization constant of \(p(\phi|y) \).
postModeOrtho

bma Marginal posterior inclusion probabilities and Bayesian model averaging estimates for each column in x.

postmean.model Coefficient estimates conditional on each of the models in models

momcoef If a MOM prior was specified in priorCoef, momcoef stores some coefficients needed to compute its marginal likelihood

Author(s)

David Rossell

References

Papaspiliopoulos O., Rossell D. Scalable Bayesian variable selection and model averaging under block-orthogonal design. 2016

Examples

#Simulate data
set.seed(1)
p <- 400; n <- 410
x <- scale(matrix(rnorm(n*p),nrow=n,ncol=p),center=TRUE, scale=TRUE)
S <- cov(x)
e <- eigen(cov(x))
x <- t(t(x %*% e$vectors)/sqrt(e$values))
th <- c(rep(0,p-3),c(.5,.75,1)); phi <- 1
y <- x %*% matrix(th,ncol=1) + rnorm(n, sd=sqrt(phi))

#Fit
priorCoef=zelnerprior(tau=1); priorDelta=modelbinomprior(p=1/p); priorVar=igprior(0.01,0.01)
pm.zell <- postModeOrtho(y,x,priorCoef=priorCoef,priorDelta=priorDelta,priorVar=priorVar,
bma=TRUE)

#Best models
head(pm.zell$models)

#Posterior probabilities for sequence of models
nvars <- sapply(strsplit(as.character(pm.zell$models$modelid),split=','),length)
plot(nvars,pm.zell$models$ppp,ylab='post prob',xlab='number of vars', ylim=0:1,xlim=c(0,50))

#Marginal posterior of phi
plot(pm.zell$phi,type='l',xlab='phi',ylab=p(phi|y'))

#Marginal inclusion prob & BMA estimates
plot(pm.zellbmamargpp,ylab='Marginal inclusion prob')
plot(pm.zellbmacoef,ylab='BMA estimate')
postProb

Obtain posterior model probabilities

Description

Obtain posterior model probabilities after running Bayesian model selection

Usage

```r
postProb(object, nmax, method='norm')
```

Arguments

- `object` Object of class msfit returned by `modelSelection` or class mixturebf, e.g. returned by `bfnormmix`
- `nmax` Maximum number of models to report (defaults to no max)
- `method` Only when `class(object)` is msfit. For 'norm' probabilities are obtained by renormalizing the stored integrated likelihoods, for 'exact' they are given by the proportion of MCMC visits to each model. 'norm' has less variability but can be biased if the chain has not converged.

Value

A `data.frame` with posterior model probabilities in column `pp`. Column `modelid` indicates the indexes of the selected covariates (empty for the null model with no covariates).

Author(s)

David Rossell

See Also

`modelSelection` to perform model selection

Examples

```r
#See help(modelSelection)
```
postSamples

Extract posterior samples from an object

Description
Obtain posterior model probabilities after running Bayesian model selection

Usage
postSamples(object)

Arguments
- object: Object containing posterior samples, e.g. of class mixture bf as returned by bfnormmix

Value
For objects of class mixturebf, a list with one element for each considered number of mixture components.
Each element in the list contains posterior samples on the mixture weights (eta) and other component-specific parameters such as means (mu) and Cholesky decomposition of the inverse covariance matrix (cholSigmainv)

Author(s)
David Rossell

Examples
#See help(bfnormmix)

priorp2g

Moment and inverse moment prior elicitation

Description
priorp2g finds the g value giving priorp prior probability to the interval (-q,q).

Usage
priorp2g(priorp, q, nu=1, prior=c("iMom", "normalMom", "tMom"))
Arguments

- **prior**: `prior='normalMom'` does computations for the normal moment prior, `prior='tMom'` for the T moment prior, `prior='iMom'` does computations for the inverse moment prior. Currently `prior='tMom'` is not implemented in priorp2g.
- **q**: `priorp2g` returns g giving `priorp` prior probability to the interval `(-q,q)`.
- **nu**: Prior degrees of freedom for the T moment prior or the iMom prior (ignored if `prior='normalMom'`).
- **priorp**: `priorp2g` returns g giving `priorp` prior probability to the interval `(-q,q)`.

Details

See `pmom` and `pimom` for the MOM/iMOM cumulative distribution functions.

Value

`priorp2g` returns g giving `priorp` prior probability to the interval `(-q,q)`.

Author(s)

David Rossell <rosselldavid@gmail.com>

References

See http://rosselldavid.googlepages.com for technical reports.

See Also

`pmom, pimom`

Examples

data(hald)

find g value giving 0.05 probability to interval (-.2,.2)
priorp <- .05; q <- -.2
gmom <- priorp2g(priorp=priorp, q=q, prior='normalMom')
gimom <- priorp2g(priorp=priorp, q=q, prior='iMom')
gmom
gimom
Posterior sampling for Non-Local Priors

Description

Gibbs sampler for linear and Cox proportional hazards model under product non-local priors and Zellner’s prior. Both sampling conditional on a model and Bayesian model averaging are implemented (see Details).

If x and y not specified samples from non-local priors/posteriors with density proportional to $d(\theta) \sim N(\theta; m, V)$ are produced, where $d(\theta)$ is the non-local penalty term.

Usage

```r
rnlp(y, x, m, V, msfit, priorCoef, priorVar, niter=10^3,
    burnin=round(niter/10), thinning=1, pp='norm')
```

Arguments

- **y**: Vector with observed responses. When `class(y)='Surv'` sampling is based on the Cox partial likelihood, else a linear model is assumed.
- **x**: Design matrix with all potential predictors
- **m**: Mean for the Normal kernel
- **V**: Covariance for the Normal kernel
- **msfit**: Object of class `msfit` returned by `modelSelection`. If specified Bayesian model averaging posterior samples are returned, according to posterior model probabilities in `msfit`, and then arguments `y, x, m, V, priorCoef, priorVar` are all ignored. If `msfit` is missing then posterior samples under the full model $y \sim x$ are returned
- **priorCoef**: Prior distribution for the coefficients. Ignored if `msfit` is supplied. Must be object of class `msPriorSpec`, e.g. created by `momprior, emomprior, imomprior, zellnerprior`
- **priorVar**: Prior on residual variance. Ignored if `msfit` supplied. Must be object of class `msPriorSpec`, e.g. created with `igprior`
- **niter**: Number of MCMC iterations
- **burnin**: Number of burn-in MCMC iterations. Defaults to $0.1 \times niter$. Set to 0 for no burn-in
- **thinning**: MCMC thinning factor, i.e. only one out of each thinning iterations are reported. Defaults to no thinning
- **pp**: When `msfit` is provided this is the method to compute posterior model probabilities, which determine the sampled models. Can be 'norm' or 'exact', see `postProb` for details.
Details

The algorithm is implemented for product MOM (pMOM), product iMOM (piMOM) and product eMOM (peMOM) priors. The algorithm combines an orthogonalization that provides low serial correlation with a latent truncation representation that allows fast sampling.

When y and x are specified sampling is for the linear regression posterior. When argument `msfit` is left missing, posterior sampling is for the full model regressing y on all covariates in x. When `msfit` is specified each model is drawn with probability given by `postProb(msfit)`. In this case, a Bayesian Model Averaging estimate of the regression coefficients can be obtained by applying `colMeans` to the `rnlp` output matrix.

When y and x are left missing, sampling is from a density proportional to $d(\theta) N(\theta; m, V)$, where $d(\theta)$ is the non-local penalty (e.g. $d(\theta)=\prod(\theta^{2r})$ for the pMOM prior).

Value

Matrix with posterior samples

Author(s)

David Rossell

References

See Also

`modelSelection` to perform model selection and compute posterior model probabilities. For more details on prior specification see `msPriorSpec-class`.

Examples

```r
#Simulate data
x <- matrix(rnorm(100*3), nrow=100, ncol=3)
theta <- matrix(c(1, 1, 0), ncol=1)
y <- x %*% theta + rnorm(100)
fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE)

th <- rnlp(msfit=fit1, niter=100)
colMeans(th)
```
Index

*Topic **classes**
 mixturebf-class, 15
 msfit-class, 25
 msPriorSpec-class, 26

*Topic **datasets**
 hald, 13

*Topic **distribution**
 bbPrior, 2
 dalapl, 6
 ddir, 7
 diwish, 7
 dmom, 8
 dpostNIW, 10
 postProb, 38
 postSamples, 39
 priorp2g, 39
 rnlp, 41

*Topic **distrib**
 eprod, 12

*Topic **htest**
 bfnormmix, 4
 dmom, 8
 marginalNIW, 13
 modelSelection, 16
 mombf, 20
 momknown, 22
 nlpmarginals, 29
 pmomLM, 31
 postModeOrtho, 35
 priorp2g, 39

*Topic **models**
 bfnormmix, 4
 eprod, 12
 marginalNIW, 13
 modelSelection, 16
 mombf, 20
 momknown, 22
 nlpmarginals, 29
 pmomLM, 31
 postModeOrtho, 35
 postProb, 38
 postSamples, 39
 rnlp, 41
 bbPrior, 2
 bfnormmix, 4, 16
 binomPrior (bbPrior), 2
 coef.mixturebf (mixturebf-class), 15
 dalapl, 6
 ddir, 7
 dmom (dmom), 8
 demom.data.frame-method (dmom), 8
 demom.matrix-method (dmom), 8
 demom.vector-method (dmom), 8
 demom-methods (dmom), 8
 demomigmarg (dmom), 8
 dimom (dmom), 8
 diwish, 7, 11
 dmom, 8
 dmomigmarg (dmom), 8
 dpostNIW, 8, 10, 14
 emomLM (pmomLM), 31
 emomPM (pmomLM), 31
 emomprior (msPriorSpec-class), 26
 eprod, 12
 groupemomprior (msPriorSpec-class), 26
 groupimomprior (msPriorSpec-class), 26
 groupmomprior (msPriorSpec-class), 26
 groupzellnerprior (msPriorSpec-class), 26
 hald, 13
 igprior (msPriorSpec-class), 26
 imombf, 24
 imombf (mombf), 20
imomknown, 22, 31
imomknown (momknown), 22
imomprior (msPriorSpec-class), 26
imomunknow, 22, 31
imomunknown (momknown), 22
marginalNIW, 11, 13
marginalNIW, matrix, missing, missing, missing, missing
(marginalNIW), 13
marginalNIW, matrix, missing, missing, missing, missing, missing
(marginalNIW), 13
marginalNIW, missing, ANY, matrix, numeric, missing
(marginalNIW), 13
marginalNIW, missing, list, list, numeric, missing
(marginalNIW), 13
marginalNIW-methods (marginalNIW), 13
mixturebf (mixturebf-class), 15
modelbbprior (msPriorSpec-class), 26
modelbinomprior (msPriorSpec-class), 26
modelcomplexprior (msPriorSpec-class), 26
modelsearchBlockDiag (modelSelection), 16
modelSelection, 16, 26, 29, 31, 38, 42
modelunifprior (msPriorSpec-class), 26
mombf, 20, 24
momknown, 22, 22, 31
momprior (msPriorSpec-class), 26
momunknow, 22, 31
momunknown (momknown), 22
msfit (msfit-class), 25
msfit-class, 25
msfit.coef (msfit-class), 25
msfit.predict (msfit-class), 25
msPriorSpec (msPriorSpec-class), 26
msPriorSpec-class, 26
nlpMarginal, 20
nlpMarginal (nlpmarginals), 29
nlpmarginals, 29
palapl (dalapl), 6
pemom (dmom), 8
pemomigmarg (dmom), 8
pimom, 40
pimom (dmom), 8
pimomMarginalK, 34
pimomMarginalK (nlpmarginals), 29
pimomMarginalU, 34
pimomMarginalU (nlpmarginals), 29
pmom, 40
pmom (dmom), 8
pnomigmarg (dmom), 8
pnomLM, 31
pnomMarginalK, 34
pnomMarginalU, 34
pnomMarginalU (nlpmarginals), 29
pnomPM (pmomLM), 31
postModeBlockDiag (postModeOrtho), 35
postModeOrtho, 35
postProb, 20, 38
postProb, mixturebf-method (postProb), 38
postProb, msfit-method (postProb), 38
postProb-methods (postProb), 38
postSamples, 39
postSamples, mixturebf-method
 (postSamples), 39
postSamples-methods (postSamples), 39
pplPM (pmomLM), 31
ppmodel (pmomLM), 31
priorp2g, 39
qimom (dmom), 8
qnom (dmom), 8
ralapl (dalapl), 6
rnlp, 20, 26, 41
rnlp, ANY, matrix, missing, missing, missing-method
 (rnlp), 41
rnlp, ANY, matrix, missing, missing, msfit-method
 (rnlp), 41
rnlp, missing, missing, missing, msfit-method
 (rnlp), 41
rnlp, missing, missing, numeric, matrix, missing-method
 (rnlp), 41
rnlp-methods (rnlp), 41
rpostNIW (dpostNIW), 10
show, mixturebf-method
 (mixturebf-class), 15
show, msfit-method (msfit-class), 25
unifPrior (bbPrior), 2
x.hald (hald), 13
y.hald (hald), 13
zbknown, 22
zbknown (momknown), 22
zbfunknown, 22
zbfununknown (momknown), 22
zellnerbf (mombf), 20
zellnerprior (msPriorSpec-class), 26