--- title: "Sensitivity Analysis with Custom Efficiency Factors" author: "Olatunde D. Akanbi" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Sensitivity Analysis with Custom Efficiency Factors} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) ``` ## Overview This vignette demonstrates how to conduct sensitivity analysis using custom nutrient efficiency factors in the manureshed package. While standard analyses use established efficiency factors (0.5 for nitrogen, 1.0 for phosphorus), users may want to explore how different efficiency assumptions affect classification results. ## Standard vs. Custom Efficiency Factors **Standard Factors:** - **Nitrogen: 0.5 (50%)** - Reflects typical losses during nutrient cycling, application, and uptake - **Phosphorus: 1.0 (100%)** - Assumes full phosphorus availability **When to Use Custom Factors:** - Evaluating improved management practices (higher efficiency) - Accounting for regional differences in application methods - Conducting uncertainty analysis - Testing different policy scenarios ## Basic Sensitivity Analysis ### Load Required Data ```{r load_data, eval=FALSE} library(manureshed) # Load built-in data for HUC8 watersheds nugis_data <- load_builtin_nugis("huc8", 2016) boundaries <- load_builtin_boundaries("huc8") ``` ### Compare Different Nitrogen Efficiencies ```{r nitrogen_sensitivity, eval=FALSE} # Standard analysis (50% efficiency) results_standard <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = 0.5, p_efficiency = 1.0 ) # Improved management scenario (70% efficiency) results_high <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = 0.7, p_efficiency = 1.0 ) # Conservative scenario (30% efficiency) results_low <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = 0.3, p_efficiency = 1.0 ) # Compare nitrogen classifications message("Standard (50% efficiency):\n") print(table(results_standard$N_class)) message("\nImproved Management (70% efficiency):\n") print(table(results_high$N_class)) message("\nConservative (30% efficiency):\n") print(table(results_low$N_class)) ``` ### Visualize Sensitivity Results ```{r visualize_sensitivity, eval=FALSE} library(ggplot2) library(dplyr) # Create comparison data frame efficiency_scenarios <- data.frame( Efficiency = c(0.3, 0.5, 0.7), Scenario = c("Conservative", "Standard", "Improved"), Source = c( sum(results_low$N_class == "Source", na.rm = TRUE), sum(results_standard$N_class == "Source", na.rm = TRUE), sum(results_high$N_class == "Source", na.rm = TRUE) ), Sink_Deficit = c( sum(results_low$N_class == "Sink_Deficit", na.rm = TRUE), sum(results_standard$N_class == "Sink_Deficit", na.rm = TRUE), sum(results_high$N_class == "Sink_Deficit", na.rm = TRUE) ) ) # Plot source watersheds across scenarios ggplot(efficiency_scenarios, aes(x = Efficiency, y = Source)) + geom_line(size = 1.2, color = "#2166ac") + geom_point(size = 3, color = "#2166ac") + labs( title = "Impact of Nitrogen Efficiency on Source Watersheds", x = "Nitrogen Efficiency Factor", y = "Number of Source Watersheds" ) + theme_minimal() + theme( plot.title = element_text(size = 14, face = "bold") ) ``` ## Phosphorus Sensitivity Analysis While phosphorus typically uses 100% efficiency, you can explore alternative scenarios: ```{r phosphorus_sensitivity, eval=FALSE} # Standard phosphorus analysis results_p_standard <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = 0.5, p_efficiency = 1.0 ) # Reduced phosphorus availability scenario results_p_reduced <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = 0.5, p_efficiency = 0.8 ) # Compare phosphorus classifications message("Standard (100% P efficiency):\n") print(table(results_p_standard$P_class)) message("\nReduced Availability (80% P efficiency):\n") print(table(results_p_reduced$P_class)) ``` ## Combined Sensitivity Analysis Analyze both nutrients simultaneously with custom efficiencies: ```{r combined_sensitivity, eval=FALSE} # Create multiple scenarios scenarios <- list( baseline = list(n = 0.5, p = 1.0), improved_n = list(n = 0.7, p = 1.0), reduced_p = list(n = 0.5, p = 0.8), both_modified = list(n = 0.6, p = 0.9) ) # Run all scenarios results_list <- lapply(names(scenarios), function(scenario_name) { scenario <- scenarios[[scenario_name]] results <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = scenario$n, p_efficiency = scenario$p ) # Return summary statistics data.frame( Scenario = scenario_name, N_Efficiency = scenario$n, P_Efficiency = scenario$p, N_Source = sum(results$N_class == "Source", na.rm = TRUE), P_Source = sum(results$P_class == "Source", na.rm = TRUE), N_Sink_Deficit = sum(results$N_class == "Sink_Deficit", na.rm = TRUE), P_Sink_Deficit = sum(results$P_class == "Sink_Deficit", na.rm = TRUE) ) }) # Combine results sensitivity_summary <- do.call(rbind, results_list) print(sensitivity_summary) ``` ## Mapping Results Across Scenarios Visualize spatial differences between efficiency scenarios: ```{r map_comparison, eval=FALSE} # Join with spatial boundaries spatial_standard <- boundaries %>% left_join(results_standard, by = c("huc8" = "ID")) spatial_high <- boundaries %>% left_join(results_high, by = c("huc8" = "ID")) # Create side-by-side maps map_standard <- map_agricultural_classification( spatial_standard, "nitrogen", "N_class", "Standard Efficiency (50%)" ) map_high <- map_agricultural_classification( spatial_high, "nitrogen", "N_class", "Improved Efficiency (70%)" ) # Display maps (requires cowplot or similar) # cowplot::plot_grid(map_standard, map_high, ncol = 2) ``` ## Interpreting Results **Key Considerations:** 1. **Source Watersheds:** Higher efficiency factors typically increase the number of source watersheds as more nitrogen becomes "available" for redistribution 2. **Sink Classification:** Lower efficiencies may shift some "within watershed" areas to deficit status 3. **Management Implications:** Results inform decision-making about: - Required efficiency improvements to achieve redistribution goals - Sensitivity of regional planning to efficiency assumptions - Infrastructure needs under different management scenarios 4. **Uncertainty Quantification:** Range of results across scenarios indicates uncertainty due to efficiency assumptions ## Recommended Practice For publication or policy analysis, consider: 1. **Report standard results** using established efficiency factors (0.5 for N, 1.0 for P) 2. **Conduct sensitivity analysis** with reasonable alternative values (e.g., ±20%) 3. **Document assumptions** clearly in methodology 4. **Discuss uncertainty** based on sensitivity results ## Example: Complete Sensitivity Workflow ```{r complete_workflow, eval=FALSE} # Define efficiency range for nitrogen n_efficiency_values <- seq(0.3, 0.7, by = 0.1) # Run sensitivity analysis sensitivity_results <- lapply(n_efficiency_values, function(eff) { results <- agri_classify_complete_custom( nugis_data, scale = "huc8", n_efficiency = eff, p_efficiency = 1.0 ) data.frame( N_Efficiency = eff, N_Source = sum(results$N_class == "Source", na.rm = TRUE), N_Sink_Deficit = sum(results$N_class == "Sink_Deficit", na.rm = TRUE), N_Within_Watershed = sum(results$N_class == "Within_Watershed", na.rm = TRUE) ) }) # Combine and visualize sensitivity_df <- do.call(rbind, sensitivity_results) # Create sensitivity plot library(tidyr) sensitivity_long <- sensitivity_df %>% pivot_longer( cols = c(N_Source, N_Sink_Deficit, N_Within_Watershed), names_to = "Classification", values_to = "Count" ) %>% mutate( Classification = gsub("N_", "", Classification), Classification = gsub("_", " ", Classification) ) ggplot(sensitivity_long, aes(x = N_Efficiency, y = Count, color = Classification)) + geom_line(size = 1.2) + geom_point(size = 3) + labs( title = "Nitrogen Classification Sensitivity to Efficiency Factor", x = "Nitrogen Efficiency Factor", y = "Number of Watersheds", color = "Classification" ) + theme_minimal() + theme( plot.title = element_text(size = 14, face = "bold"), legend.position = "bottom" ) ``` ## Summary Custom efficiency factors enable: - **Sensitivity analysis** to quantify uncertainty - **Scenario planning** for different management practices - **Regional adaptation** for varying agricultural systems - **Policy evaluation** under different assumptions For most applications, standard factors (N: 0.5, P: 1.0) remain appropriate, but sensitivity analysis provides valuable context for interpreting results and informing decision-making. ## References - Spiegal et al. (2020). Manuresheds: Advancing nutrient recycling in US agriculture - Flynn et al. (2023). Manureshed nutrient balances at watershed scales - Akanbi et al. (2025). Towards circular nutrient economies: Integrated framework For more information on standard manureshed methodologies, see `vignette("getting-started")`.