Package 'lpl'

April 4, 2025

Type Package

Title Local Partial Likelihood Estimation and Simultaneous Confidence Band

Version 0.12

Date 2025-04-01

Author Bingshu E. Chen [aut, cre], Yicong Liu [aut], Siwei Zhang [aut], Teng Wen [aut], Wenyu Jiang [aut]

Maintainer Bingshu E. Chen <bingshu.chen@queensu.ca>

Depends R (>= 3.5.0), MASS, methods, parallel, survival

Description Local partial likelihood estima-

tion by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confidence band is a set of tools to test the covariates-biomarker interaction for survival data. Test for the covariates-biomarker interaction using the boot-strap method and the asymptotic method with simultaneous confidence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).

License GPL-2

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2025-04-04 16:40:02 UTC

Contents

lpl-package	2
control	3
lplb	4
lple	6
plot.lple	8
predict.lple	9

lpl-package

print.lplb print.lple	 		•	•	 •	•							•	•		•									•	•		•	•							•		•	10 11
survint.ipie .	• •	•	•	• •	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12 14

Index

lpl-package

Local Partial Likelihood Boostrap test

Description

This package fits a multivariable local partial likelihood model for covariate-biomarker interaction with survival data.

Details

"lpl" is a R package for multivariate covariate-biomarker interaction uisng local partial likelihood method.

Please use the following steps to install 'lpl' package:

1. First, you need to install the 'devtools' package. You can skip this step if you have 'devtools' installed in your R. Invoke R and then type

install.packages("devtools")

2. Load the devtools package.

library(devtools)

3. Install "lpl" package with R commond

install_github("statapps/lpl")

"lpl" uses local partial likelihood to etimate covariate-biomarker interactions and bootstrap method to test the significance of the interactions.

Author(s)

Siwei Zhang and Bingshu E. Chen

Maintainer: Bingshu E. Chen

bingshu.chen@queensu.ca>

References

1. Fan, J., Lin, H., Zhou, Y. (2006). Local partial-likelihood estimation for lifetime data. The Annals of Statistics. 34, 290-325.

2. Liu, Y., Jiang, W. and Chen, B. E. (2015). Testing for treatment-biomarker interaction based on local partial-likelihood. Statistics in Medicine. 34, 3516-3530.

3. Zhang, S., Jiang, W. and Chen, B. E. (2016). Estimate and test of multivariate covariates and biomarker interactions for survival data based on local partial likelihood. Manuscript in preparation.

See Also

coxph, survival

control

Examples

fit = lpl(y~trt+age+biomarker)

control

Auxiliary function for lpl fitting

Description

Auxiliary function for lple fitting. Typically only used internally by 'lpl', but may be used to construct a control argument to either function.

Usage

lpl.control(h, kernel = 'gaussian', B, w0, p1, pctl)

Arguments

h	bandwidth of kernel function. The default value is $h = 0.2$
kernel	kernel funtion types, including "gaussian", "epanechnikov", "rectangular", "tri- angular", "biweight", "cosine", "optcosine". The default value is 'gaussian'
В	number of bootstrap times. The default value is 200
w0	the estimated points in the interval of $(0,1)$, select arbitrarily. The default value is seq $(0.05, 0.95, 0.025)$
p1	the number of dependend variables that make interactions with the biomarker w. The default value is 1
pctl	the estimated points that want to be shown in the output. The default value is $seq(0.2, 0.8, 0.1)$

Details

Control is used in model fitting of lpl.

Value

This function checks the internal consisitency and returns a list of value as inputed to control model fit of lpl.

Author(s)

Siwei Zhang and Bingshu E. Chen

See Also

lplb, lple

Examples

```
## The default control values are: h = 0.2, kernel = 'gaussian', B = 200,
## w0 = seq(0.05, 0.95, 0.025), p1 = 1, pctl = seq(0.2, 0.8, 0.1)
##
## To fit the lpl model with some control variables changed,
w0=seq(0.05, 0.95, by=0.05)
ctl = lpl.control(w0=w0, h=0.3, p1=2, B=100)
## then fit the lple model
```

lplb	Local partial	likelihood	bootstrap	(LPLB)	method	to fit	biomarker
	Models						

Description

{lplb} is a R package for local partial likelihood estimation (LPLE) (Fan et al., 2006) of the coefficients of covariates with interactions of the biomarker W, and hypothesis test of whether the relationships between covariates and W are significant, by using bootstrap method.

Usage

```
## Default S3 method:
lplb(x, y, control, ...)
## S3 method for class 'formula'
lplb(formula, data=list(...), control = list(...), ...)
# use
#
           lplb(y ~ X1+X2+...+Xp+w, data=data, control)
#
# to fit a model with interactions between biomarker (w) with the first p1
# terms of dependent variables.
# p1 is included in 'control'. p1<p. See 'lplb.control' for details</pre>
#
# use
#
          lplb(x, y, control)
#
# to fit a model without the formula
#
# Biomarker w should be the 'LAST' dependend variable
```

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

data	an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula).
х, у	For 'lplb.default', x is a design matrix of dimension n * (p+1) and y is a vector of observations of length n for a "Surv" object for "coxph".
control	a list of parameters for controlling the fitting process. See 'lplb.control' for details
• • •	additional arguments to be passed to the low level regression fitting functions (see below).

Details

Here 'w' is a Biomarker variable. This variable is required and shall be the last dependent variable in the formula.

'x.cdf' is a function that maps biomarker values to interval (0, 1) using its empirical cumulative distribution function.

Value

lplb returns an object of class inheriting from "lplb" which inherits from the class 'coxph'. See later in this section.

The function "print" (i.e., "print.lplb") can be used to obtain or print a summary of the results.

An object of class "lplb" is a list containing at least the following components:

beta_w	a matrix of m $*$ p1, the estimated coefficients at each of the m estimated points, for the first p1 dependent variables with interactions of the biomarker w
Q1	the test statistic of the data
mTstar	a vector of the test statistics from B times' bootstrap
pvalue	the p-value of the hypothesis that beta_w is a constant

Note

This package was build on code developed by Yicong Liu for simple treatment-biomaker interaction model.

Author(s)

Siwei Zhang and Bingshu E. Chen (bingshu.chen@queensu.ca)

References

Zhang, S., Jiang, W. and Chen, B. E. (2016). Estimate and test of multivariate covariates and biomarker interactions for survival data based on local partial likelihood. Manuscript in preparation.

See Also

coxph,lpl.control print.lple plot.lple

Examples

```
dat = lplDemoData(50)
fit = lplb(Surv(time, status)~z1 + z2 + w, data = dat, B = 3, p1 = 2)
print(fit)
```

lple	Local partial likelihood estimate (LPLE) method to fit biomarker Mod-
	els

Description

{lple} is a R package for local partial likelihood estimation (LPLE) (Fan et al., 2006) of the coefficients of covariates with interactions of the biomarker W, and hypothesis test of whether the relationships between covariates and W are significant, by using bootstrap method.

Usage

```
## Default S3 method:
lple(x, y, control, ...)
## S3 method for class 'formula'
lple(formula, data=list(...), control = list(...), ...)
# use
#
           lple(y ~ X1+X2+...+Xp+w, data=data, control)
#
# to fit a model with interactions between biomarker (w) with the first p1
# terms of dependent variables.
# p1 is included in 'control'. p1<p. See 'lplb.control' for details</pre>
#
# use
#
          lple(x, y, control)
#
# to fit a model without the formula
#
# Biomarker w should be the 'LAST' dependend variable
```

Arguments

formula	an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
data	an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula).
х, у	For 'lple.default', x is a design matrix of dimension n * (p+1) and y is a vector of observations of length n for a "Surv" object for "coxph".

6

control	a list of parameters for controlling the fitting process. See 'lplb.control' for details
	additional arguments to be passed to the low level regression fitting functions (see below).

Details

Here 'w' is a Biomarker variable. This variable is required and shall be the last dependent variable in the formula.

'x.cdf' is a function that maps biomarker values to interval (0, 1) using its empirical cumulative distribution function.

Value

lple returns an object of class inheriting from "lple" which inherits from the class 'coxph'. See later in this section.

The function "print" (i.e., "print.lple") can be used to obtain or print a summary of the results.

An object of class "lple" is a list containing at least the following components:

beta_w	a matrix of m \ast p1, the estimated coefficients at each of the m estimated points, for the first p1 dependent variables with interactions of the biomarker w
Q1	the test statistic of the data
mTstar	a vector of the test statistics from B times' bootstrap
pvalue	the p-value of the hypothesis that beta_w is a constant

Note

This package was build on code developed by Yicong Liu for simple treatment-biomaker interaction model.

Author(s)

Siwei Zhang and Bingshu E. Chen (bingshu.chen@queensu.ca)

References

Zhang, S., Jiang, W. and Chen, B. E. (2016). Estimate and test of multivariate covariates and biomarker interactions for survival data based on local partial likelihood. Manuscript in preparation.

See Also

coxph, lpl.control print.lple plot.lple

Examples

```
dat = lplDemoData(50)
fit = lple(Surv(time, status)~z1 + w, data = dat, p1 = 1)
print(fit)
predict(fit)
survfit(fit, se.fit = FALSE)
```

plot.lple

The Plot Function of lple

Description

Draw a series of plots of beta_w vs. w_est for each dependent variable with interactions with the biomarker w. See also: lple, lpl.control

Usage

S3 method for class 'lple'
plot(x, ..., scale = c('original', 'transformed'))

Arguments

х	a lple class returned from lple fit.
scale	choose the scale of biomarker variable, 'original' or 'o' for the original biomarker scale. 'transformed' or 't' for transformed scale that mapps biomarker to interval $(0, 1)$. The default is to plot in the original scale.
	other options used in plot().

Details

plot.lple is called to plot the relationships between beta_w and w_est for each dependent variable with interactions with the biomarker w, from the lple fit model.

The number of interaction terms can be set in lpl.control.

The default method, print.default has its own help page. Use methods("print") to get all the methods for the print generic.

Value

No return value, called for plot model fit

Author(s)

Bingshu E. Chen and Siwei Zhang

See Also

lplb, lple, lpl.control, print.lple

8

predict.lple

Examples

```
dat = lplDemoData(50)
fit = lple(Surv(time, status)~z1 + w, data = dat, p1 = 1)
plot(fit)
```

predict.lple predict a lple object

Description

Compute fitted values and prediction error for a model fitted by lple

Usage

```
## S3 method for class 'lple'
## S3 method for class 'lple'
predict(object, newdata, newy=NULL, ...)
## S3 method for class 'lple'
residuals(object, type=c("martingale", "deviance"), ...)
```

Arguments

object	a model object from the lple fit
newdata	optional new data at which to do predictions. If absent, predictions are for the dataframe used in the original fit
newy	optional new response data. Default is NULL
type	type of residuals, the default is a martingale residual
	additional arguments affecting the predictions produced

Details

predict.lple is called to predict object from the lple model lple.

The default method, predict has its own help page. Use methods("predict") to get all the methods for the predict generic.

Value

predict.lple returns a list of predicted values, prediction error and residuals.

lp	linear predictor of $beta(w)^*Z$, where $beta(w)$ is the fitted regression coefficient and Z is covariance matrix.
risk	risk score, exp(lp). When new y is provided, both lp and risk will be ordered by survival time of the new y.
residuals	martingale residuals of the prediction, if available.

pe.mres	prediction error based on martingale residual, if both new data and new y is provided.
cumhaz	cumulative hzard function.
time	time for cumulative hazard function. Time from new y will be used is provided

Author(s)

Bingshu E. Chen

See Also

The default method for predict predict, For the Cox model prediction: predict.coxph. #survfit.lple

print.lplb print a lplb object

Description

print are used to provide a short summary of lplb outputs.

Usage

S3 method for class 'lplb'
print(x, ...)

Arguments

х	a lplb class returned from lplb fit
	other options used in print()

Details

print.lplb is called to print object or summary of object from the lplb model lplb.

The default method, print.default has its own help page. Use methods("print") to get all the methods for the print generic.

Value

No return value, called for printing model fit

Author(s)

Siwei Zhand and Bingshu E. Chen

See Also

The default method for print print.default, lplb

print.lple

Examples

```
#
# See examples in lplb and lple
#
```

print.lple

print a lple object

Description

print are used to provide a short summary of lple outputs.

Usage

```
## S3 method for class 'lple'
print(x, ...)
```

Arguments

х	the results of a lple fit
	other options used in print()

Details

print.lple is called to print object or summary of object from the lple model lple.

The default method, print.default has its own help page. Use methods("print") to get all the methods for the print generic.

Value

No return value, called for printing model fit

Author(s)

Siwei Zhand and Bingshu E. Chen

See Also

The default method for print print.default, lple

Examples

```
#
# see example in lple
#
```

survfit.lple

Description

Computes the predicted survival function for a model fitted by (lple).

Usage

```
## S3 method for class 'lple'
## S3 method for class 'lple'
survfit(formula, se.fit=TRUE, conf.int=.95, ...)
```

Arguments

formula	a fitted model from (lple) fit
se.fit	a logical value indicating whether standard errors shall be computed. Default is TRUE
conf.int	The level for a two-sided confidence interval on the survival curve. Default is 0.95
	other arguments to the specific method

Details

survfit.lple is called to compute baseline survival function from the lple model lple.

The default method, survfit has its own help page. Use methods("survfit") to get all the methods for the survfit generic.

Value

survfit.lple returns a list of predicted baseline survival function, cumulative hazard function and residuals.

surv	Predicted baseline survival function when $beta(w) = 0$.
cumhaz	Baseline cumulative hazard function, -log(surv).
hazard	Baseline hazard function.
varhaz	Variance of the baseline hazard.
residuals	Martingale residuals of the (lple) model.
std.err	Standard error for the cumulative hazard function, if se.fit = TRUE.

See survfit for more detail about other output values such as upper, lower, conf.type. Confidence interval is based on log-transformation of survival function.

survfit.lple

Author(s)

Bingshu E. Chen

See Also

The default method for survfit survfit, #survfit.lple

Examples

```
#
# See example in lple
#
```

Index

* biomarker interaction lplb,4 lple, 6 * biomarker lpl-package, 2 * bootstrap 1p1b, 4 * control control, 3 * local linear model lpl-package, 2 * local partial likelihood lplb,4 lple, 6 * lple plot.lple, 8 * lpl lpl-package, 2 * plot plot.lple, 8 * predict predict.lple,9 * print print.lplb, 10 print.lple, 11 * survfit survfit.lple, 12 asymSCB (lple), 6 bstrp(lplb), 4 control, 3 coxph, 5, 7 ibs(lple),6 K_func (lple), 6 lpl-doc (lpl-package), 2 lpl-package, 2

lpl.control, 5, 7, 8 lpl.control(control), 3 lplb, 3, 4, 8, 10 lplDemoData(lple), 6 lple, 3, 6, 8, 9, 11, 12 lple_fit (lple), 6 lple_se (lple), 6 maxTest (lplb), 4 plot.lple, 5, 7, 8 predict, 10 predict.coxph, 10 predict.lple,9 print.default, 10, 11 print.lplb, 10 print.lple, 5, 7, 8, 11 residuals.lple(predict.lple),9 survfit, *12*, *13* survfit.lple, 10, 12, 13