
Quantitative genetics using the lme4breeding package

Giovanny Covarrubias-Pazaran

2024-07-30

lme4breeding is nice wrapper of the lme4 package that enables the use of especialized plant and animal
breeding models that include relationship matrices among individuals (e.g., genomic relationship matrices)
and complex covariance structures between factors (e.g., factor analytic structures). It uses all the lme4
machinery for linear and non-linear models, for different response distributions opening a world of possibilities.

The vignettes aim to provide several examples in how to use the lme4breeding package under different
scenarios. We will spend the rest of the space providing examples for:

SECTION 1: Basic topics in quantitative genetics

1) Heritability (h2) calculation
2) Specifying heterogeneous variances in mixed models
3) Half and full diallel designs (using the overlay)
4) Genomic selection (predicting mendelian sampling)

• GBLUP
• rrBLUP

5) Indirect genetic effects
6) GCA models and single cross prediction (hybrid prediction)
7) Spatial modeling (using the 2-dimensional splines)
8) Multivariate genetic models and genetic correlations

SECTION 2: Special topics in quantitative genetics

1) Partitioned model
2) UDU’ decomposition
3) Mating designs
4) GWAS by GBLUP

SECTION 1: Basic topics in quantitative genetics

1) Marker and non-marker based heritability calculation

Heritability is one of the most popular parameters among the breeding and genetics communities because of
the insight it provides in the inheritance of the trait and potential selection response. Heritability is usually
estimated as narrow sense (h2; only additive variance in the numerator σ2

A), and broad sense (H2; all genetic
variance in the numerator σ2

G).

In a classical breeding experiment with no molecular markers, special designs are performed to estimate
and dissect the additive (σ2

A) and non-additive (e.g., dominance σ2
D, and epistatic σ2

E) variance along with
environmental variability. Designs such as generation analysis, North Carolina designs are used to dissect
σ2

A and σ2
D to estimate the narrow sense heritability (h2) using only σ2

A in the numerator. When no special
design is available we can still disect the genetic variance (σ2

G) and estimate the broad sense heritability. In
this first example we will show the broad sense estimation which doesn’t use covariance matrices for the
genotypic effect (e.g., genomic-additive relationship matrices).

1

The following dataset has 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. We
show how to fit the model and extract the variance components to calculate the h2.
library(lme4breeding)
data(DT_example)
DT <- DT_example
A <- A_example

ans1 <- lmebreed(Yield~ (1|Name) + (1|Env) +
(1|Env:Name) + (1|Env:Block),

data=DT)

boundary (singular) fit: see help('isSingular')
vc <- VarCorr(ans1); print(vc,comp=c("Variance"))

Groups Name Variance
Env:Name (Intercept) 5.1528
Name (Intercept) 3.7184
Env:Block (Intercept) 0.0000
Env (Intercept) 12.0084
Residual 4.3661
ve <- attr(VarCorr(ans1), "sc")ˆ2
n.env <- length(levels(DT$Env))
H2=vc$Name / (vc$Name + (vc$`Env:Name`/n.env) + (ve/(n.env*2)))
H2

(Intercept)
(Intercept) 0.6032732
attr(,"stddev")
(Intercept)
1.928306
attr(,"correlation")
(Intercept)
(Intercept) 1

That is an estimate of broad-sense heritability.

Recently with markers becoming cheaper, thousand of markers can be run in the breeding materials. When
markers are available, a special design is not neccesary to dissect the additive genetic variance. The availability
of the additive, dominance and epistatic relationship matrices allow us to estimate σ2

A, σ2
D and σ2

I , although
given that A, D and E are not orthogonal the interpretation of models that fit more than the A matrix at the
same time becomes cumbersome.

Assume you have a population (even unreplicated) in the field but in addition we have genetic markers. Now
we can fit the model and estimate the genomic heritability that explains a portion of the additive genetic
variance (with high marker density σ2

A = σ2
markers)

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
A <- A + diag(1e-4, ncol(A), ncol(A))
look at the data and fit the model
head(DT)

2

id Row Col Year color Yield FruitAver Firmness Rowf Colf
P003 P003 3 1 2014 0.10075269 154.67 41.93 588.917 3 1
P004 P004 4 1 2014 0.13891940 186.77 58.79 640.031 4 1
P005 P005 5 1 2014 0.08681502 80.21 48.16 671.523 5 1
P006 P006 6 1 2014 0.13408561 202.96 48.24 687.172 6 1
P007 P007 7 1 2014 0.13519278 174.74 45.83 601.322 7 1
P008 P008 8 1 2014 0.17406685 194.16 44.63 656.379 8 1
mix1 <- lmebreed(Yield~ (1|id) + (1|Rowf) + (1|Colf),

relmat=list(id=A),
control = lmerControl(

check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"

),
data=DT)

* Cholesky decomposition finished.

* Relfactors (relmat) applied to Z

* Optimizing ...

* Done!!
vc <- VarCorr(mix1); print(vc,comp=c("Variance"))

Groups Name Variance
id (Intercept) 806.26
Colf (Intercept) 198.43
Rowf (Intercept) 848.63
Residual 2992.29
ve <- attr(VarCorr(mix1), "sc")ˆ2
h2= vc$id / (vc$id + ve)
as.numeric(h2)

[1] 0.212254

In this example we showed how to estimate the additive (σ2
A) variance components based on markers and

estimate narrow-sense heritability (h2). Notice that we used the relmat argument which indicates that
the random effect inside the parenthesis (i.e. id) has a covariance matrix (A), that will be specified as the
Cholesky of the relationship matrix. Please DO NOT provide the inverse to the Cholesky, but rather the
original covariance matrix.

2) Specifying heterogeneous variances in univariate models

Very often in multi-environment trials, the assumption that genetic variance is the same across locations may
be too naive. Because of that, specifying a general genetic component and a location-specific genetic variance
is the way to go.

We estimate variance components for specific environments.
data(DT_example)
DT <- DT_example
A <- A_example
head(DT)

Name Env Loc Year Block Yield Weight

3

33 Manistee(MSL292-A) CA.2013 CA 2013 CA.2013.1 4 -1.904711
65 CO02024-9W CA.2013 CA 2013 CA.2013.1 5 -1.446958
66 Manistee(MSL292-A) CA.2013 CA 2013 CA.2013.2 5 -1.516271
67 MSL007-B CA.2011 CA 2011 CA.2011.2 5 -1.435510
68 MSR169-8Y CA.2013 CA 2013 CA.2013.1 5 -1.469051
103 AC05153-1W CA.2013 CA 2013 CA.2013.1 6 -1.307167
Compound simmetry (CS) + Diagonal (DIAG) model
Z <- with(DT, smm(Env))
csdiagFormula <- paste0("Yield ~ Env + (", paste(colnames(Z), collapse = "+"), "|| Name)")
for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
ansCSDG <- lmebreed(as.formula(csdiagFormula),

relmat = list(Name = A),
data=DT)

* Cholesky decomposition finished.

* Relfactors (relmat) applied to Z

* Optimizing ...

* Done!!
vc <- VarCorr(ansCSDG); print(vc,comp=c("Variance"))

Groups Name Variance
Name (Intercept) 2.9637
Name.1 CA.2011 10.4264
Name.2 CA.2012 2.6589
Name.3 CA.2013 5.7017
Residual 4.3976

In the previous example we showed how the left side of the formulae to specify the covariance structure
and the effect on the right side (covStructure | effect) in the lmebreed() solver. By specifying (
CA.2011+CA.2012+CA.2013 || Name) we declare a covariance structure for Name between environments.
The || indicates that we do not want to fit covariance between these environments This is considered a CS +
DIAG (compound symmetry + diagonal) model.

3) Half and full diallel designs (use of the overlay)

When breeders are looking for the best single-cross combinations, diallel designs have been by far the most
used design in crops like maize. There are 4 types of diallel designs depending on whether reciprocal and
self-crosses (omission of parents) are performed (full diallel with parents nˆ2; full diallel without parents
n(n-1); half diallel with parents 1/2 * n(n+1); half diallel without parents 1/2 * n(n-1)). In this example
we will show a full diallel design (reciprocal crosses are performed) and half diallel designs (only one of the
directions is performed).

In the first data set we show a full diallel among 40 lines from 2 heterotic groups, 20 in each. Therefore 400
possible hybrids are possible. We have pehnotypic data for 100 of them across 4 locations. We use the data
available to fit a model of the form:

y = Xβ + Zu1 + Zu2 + ZuS + ε

We estimate variance components for GCA1, GCA2 and SCA and use them to estimate heritability. Addi-
tionally BLUPs for GCA and SCA effects can be used to predict crosses.
data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids

4

GT <- GT_cornhybrids

modFD <- lmebreed(Yield~Location + (1|GCA1)+(1|GCA2)+(1|SCA),
data=DT)

boundary (singular) fit: see help('isSingular')
vc <- VarCorr(modFD); print(vc,comp=c("Variance"))

Groups Name Variance
SCA (Intercept) 187.6620
GCA2 (Intercept) 7.2901
GCA1 (Intercept) 0.0000
Residual 221.1425
Vgca <- vc$GCA1 + vc$GCA2
Vsca <- vc$SCA
Ve <- attr(vc, "sc")ˆ2
Va = 4*Vgca
Vd = 4*Vsca
Vg <- Va + Vd
(H2 <- Vg / (Vg + (Ve)))

(Intercept)
(Intercept) 0.7790676
attr(,"stddev")
(Intercept)
0
attr(,"correlation")
(Intercept)
(Intercept) 1
(h2 <- Va / (Vg + (Ve)))

(Intercept)
(Intercept) 0.02913284
attr(,"stddev")
(Intercept)
0
attr(,"correlation")
(Intercept)
(Intercept) 1

Don’t worry too much about the h2 value, the data was simulated to be mainly dominance variance, therefore
the Va was simulated extremely small leading to such value of narrow sense h2.

In the second data set we show a small half diallel with 7 parents crossed in one direction. There are n(n-1)/2
possible crosses; 7(6)/2 = 21 unique crosses. Parents appear as males or females indistictly. Each with two
replications in a CRD. For a half diallel design a single GCA variance component for both males and females
can be estimated and an SCA as well (σ2

GCA and σ2
SCA respectively), and BLUPs for GCA and SCA of the

parents can be extracted. We will show how to do so using the overlay() function. The specific model here
is:

y = Xβ + Zug + Zus + ε

data("DT_halfdiallel")
DT <- DT_halfdiallel
head(DT)

5

rep geno male female sugar
1 1 12 1 2 13.950509
2 2 12 1 2 9.756918
3 1 13 1 3 13.906355
4 2 13 1 3 9.119455
5 1 14 1 4 5.174483
6 2 14 1 4 8.452221
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)
overlay matrix to be added to the addmat argument
Z <- with(DT, overlay(femalef,malef))
create inital values for incidence matrix but irrelevant
since these will be replaced by admat argument
fema <- (rep(colnames(Z), nrow(DT)))[1:nrow(DT)]
model using overlay without relationship matrix
modh <- lmebreed(sugar ~ (1|genof) + (1|fema),

addmat = list(fema=Z),
data=DT)

* Additional matrices (addmat) added.

* Relfactors (relmat) applied to Z

* Optimizing ...

* Done!!
vc <- VarCorr(modh); print(vc,comp=c("Variance"))

Groups Name Variance
genof (Intercept) 1.8160
fema (Intercept) 5.5088
Residual 3.1173
ve <- attr(vc, "sc")ˆ2;ve

[1] 3.117349

Notice how the overlay() argument makes the overlap of incidence matrices possible making sure that male
and female are joint into a single random effect.

4) Genomic selection: predicting mendelian sampling

In this section we will use wheat data from CIMMYT to show how genomic selection is performed. This is
the case of prediction of specific individuals within a population. It basically uses a similar model of the form:

y = Xβ + Zu+ ε

and takes advantage of the variance covariance matrix for the genotype effect known as the additive relationship
matrix (A) and calculated using the A.mat function to establish connections among all individuals and predict
the BLUPs for individuals that were not measured. The prediction accuracy depends on several factors such
as the heritability (h2), training population used (TP), size of TP, etc.
data(DT_wheat)
DT <- DT_wheat
GT <- GT_wheat[,1:200]
colnames(DT) <- paste0("X",1:ncol(DT))

6

DT <- as.data.frame(DT);DT$line <- as.factor(rownames(DT))
select environment 1
rownames(GT) <- rownames(DT)
K <- A.mat(GT) # additive relationship matrix
colnames(K) <- rownames(K) <- rownames(DT)
GBLUP pedigree-based approach
set.seed(12345)
y.trn <- DT
vv <- sample(rownames(DT),round(nrow(DT)/5))
y.trn[vv,"X1"] <- NA
head(y.trn)
GBLUP
K <- K + diag(1e-4, ncol(K), ncol(K))
ans <- lmebreed(X1 ~ (1|line),
relmat = list(line=K),
control = lmerControl(
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"
),
data=y.trn)
vc <- VarCorr(ans); print(vc,comp=c("Variance"))
#
take a extended dataset and fit a dummy model
just to get required matrices
y.tst <- y.trn; y.tst$X1 <- imputev(y.tst$X1)
ans2 <- update(ans,
start = getME(ans, "theta"),
data = y.tst,
control = lmerControl(check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore",
optCtrl = list(maxeval= 1),
calc.derivs = FALSE))
compute predictive ability
cor(ranef(ans2)$line[vv,],DT[vv,"X1"], use="complete")
other approach
mme <- getMME(ans2, vc=vc, recordsToKeep = which(!is.na(y.trn$X1)))
cor(mme$bu[vv,],DT[vv,"X1"], use="complete")
#
rrBLUP
M <- tcrossprod(GT)
xx <- with(y.trn, redmm(x=line, M=M, nPC=100, returnLam = TRUE))
custom <- (rep(colnames(Z), nrow(DT)))[1:nrow(DT)]
ansRRBLUP <- lmebreed(X1 ~ (1|custom),
addmat = list(custom=Z),
data=y.trn)
re <- ranef(ansRRBLUP)$custom
u = tcrossprod(xx$Lam, t(as.matrix(re[colnames(xx$Lam),])))
cor(u[vv,],DT[vv,"X1"], use="complete")

7

5) Indirect genetic effects

General variance structures can be used to fit indirect genetic effects. Here, we use an example dataset to
show how we can fit the variance and covariance components between two or more different random effects.
We now fit the indirect genetic effects model with covariance between DGE and IGE. On top of that we can
include a relationship matrix for the two random effects that are being forced to co-vary
data(DT_ige)
DT <- DT_ige
A_ige <- A_ige + diag(1e-4, ncol(A_ige), ncol(A_ige))
Define 2 dummy variables to make a fake covariance
for two different random effects
DT$fn <- DT$nn <- 1
Create the incidence matrix for the first random effect
Zf <- Matrix::sparse.model.matrix(~ focal-1, data=DT)
colnames(Zf) <- gsub("focal","", colnames(Zf))
Create the incidence matrix for the second random effect
Zn <- Matrix::sparse.model.matrix(~ neighbour-1, data=DT)
colnames(Zn) <- gsub("neighbour","", colnames(Zn))
Make inital values for incidence matrix but irrelevant
since these will be replaced by the addmat argument
both <- (rep(colnames(Zf), nrow(DT)))[1:nrow(DT)]
Fit the model
modIGE <- lmebreed(trait ~ block + (0+fn+nn|both),
addmat = list(both=list(Zf,Zn)),
relmat = list(both=A_ige),
data = DT)
vc <- VarCorr(modIGE); print(vc,comp=c("Variance"))
blups <- ranef(modIGE)
pairs(blups$both)
cov2cor(vc$both)

6) Genomic selection: single cross prediction

When doing prediction of single cross performance the phenotype can be dissected in three main components,
the general combining abilities (GCA) and specific combining abilities (SCA). This can be expressed with the
same model analyzed in the diallel experiment mentioned before:

y = Xβ + Zu1 + Zu2 + ZuS + ε

with:

u1 ~ N(0, K1σ
2
u1)

u2 ~ N(0, K2σ
2
u2)

us ~ N(0, K3σ
2
us)

And we can specify the K matrices. The main difference between this model and the full and half diallel
designs is the fact that this model will include variance covariance structures in each of the three random
effects (GCA1, GCA2 and SCA) to be able to predict the crosses that have not ocurred yet. We will use the
data published by Technow et al. (2015) to show how to do prediction of single crosses.
data(DT_technow)
DT <- DT_technow
Md <- (Md_technow*2) - 1
Mf <- (Mf_technow*2) - 1

8

Ad <- A.mat(Md)
Af <- A.mat(Mf)
Ad <- Ad + diag(1e-4, ncol(Ad), ncol(Ad))
Af <- Af + diag(1e-4, ncol(Af), ncol(Af))
simulate some missing hybrids to predict
y.trn <- DT
vv1 <- which(!is.na(DT$GY))
vv2 <- sample(DT[vv1,"hy"], 100)
y.trn[which(y.trn$hy %in% vv2),"GY"] <- NA
ans2 <- lmebreed(GY ~ (1|dent) + (1|flint),
relmat = list(dent=Ad,
flint=Af),
data=y.trn)
vc <- VarCorr(ans2); print(vc,comp=c("Variance"))
#
take a extended dataset and fit a dummy model
just to get required matrices
y.tst <- y.trn; y.tst$GY <- imputev(y.tst$GY)
ans2p <- update(ans2,
start = getME(ans2, "theta"),
data = y.tst,
control = lmerControl(check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore",
optCtrl = list(maxeval= 1),
calc.derivs = FALSE))
#
re <- ranef(ans2p)
#
Pdent <- as.matrix(re$dent[,1,drop=FALSE]) %*% Matrix(1, ncol=nrow(re$flint), nrow=1)
Pflint <- as.matrix(re$flint[,1,drop=FALSE]) %*% Matrix(1, ncol=nrow(re$dent), nrow=1)
P <- Pdent + t(Pflint); colnames(P) <- rownames(re$flint)
#
preds <- real <- numeric()
for(iHyb in vv2){
parents <- strsplit(iHyb,":")[[1]]
preds[iHyb] <- P[which(rownames(P) %in% parents),which(colnames(P) %in% parents)]
real[iHyb] <- DT[which(DT$hy == iHyb),"GY"]
}
plot(preds, real)
cor(preds, real)

In the previous model we only used the GCA effects (GCA1 and GCA2) for practicity, altough it’s been shown
that the SCA effect doesn’t actually help that much in increasing prediction accuracy, but does increase a lot
the computation intensity required since the variance covariance matrix for SCA is the kronecker product of
the variance covariance matrices for the GCA effects, resulting in a 10578 x 10578 matrix that increases in a
very intensive manner the computation required.

A model without covariance structures would show that the SCA variance component is insignificant compared
to the GCA effects. This is why including the third random effect doesn’t increase the prediction accuracy.

9

8) Spatial modeling: using the 2-dimensional spline

We will use the CPdata to show the use of 2-dimensional splines for accomodating spatial effects in field
experiments. In early generation variety trials the availability of seed is low, which makes the use of
unreplicated designs a neccesity more than anything else. Experimental designs such as augmented designs
and partially-replicated (p-rep) designs are becoming ever more common these days.

In order to do a good job modeling the spatial trends happening in the field, special covariance structures
have been proposed to accomodate such spatial trends (i.e. autoregressive residuals; ar1). Unfortunately,
some of these covariance structures make the modeling rather unstable. More recently, other research groups
have proposed the use of 2-dimensional splines to overcome such issues and have a more robust modeling of
the spatial terms (Lee et al. 2013; Rodríguez-Álvarez et al. 2018).

In this example we assume an unreplicated population where row and range information is available which
allows us to fit a 2 dimensional spline model.
data(DT_cpdata)
DT <- DT_cpdata
add the units column
DT$units <- as.factor(1:nrow(DT))
get spatial incidence matrix
Zs <- with(DT, tps(Row, Col))$All
rownames(Zs) <- DT$units
reduce the matrix to its PCs
Z = with(DT, redmm(x=units, M=Zs, nPC=100))
create dummy variable
spatial <- (rep(colnames(Z), nrow(DT)))[1:nrow(DT)]
fit model
mix1 <- lmebreed(Yield~ (1|Rowf) + (1|Colf) + (1|spatial),

addmat =list(spatial=Z),
control = lmerControl(

check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"

),
data=DT)

* Additional matrices (addmat) added.

* Relfactors (relmat) applied to Z

* Optimizing ...

* Done!!
vc <- VarCorr(mix1); print(vc,comp=c("Variance"))

Groups Name Variance
spatial (Intercept) 446.69
Colf (Intercept) 157.84
Rowf (Intercept) 819.16
Residual 3533.81

Notice that the job is done by the spl2Da() function that takes the Row and Col information to fit a spatial
kernel.

10

9) Multivariate genetic models and genetic correlations

Sometimes is important to estimate genetic variance-covariance among traits–multi-reponse models are very
useful for such a task. Let see an example with 2 traits (color, Yield) and a single random effect (genotype;
id) although multiple effects can be modeled as well. We need to use a variance covariance structure for the
random effect to be able to obtain the genetic covariance among traits.
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
A <- A + diag(1e-4, ncol(A), ncol(A))
look at the data and fit the model
head(DT)
DT2 <- stackTrait(data=DT, traits = c("Yield","color"))
head(DT2$long)
#
mix1 <- lmebreed(valueS~ (0+trait|id),
relmat=list(id=A),
control = lmerControl(
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"
),
data=DT2$long)
vc <- VarCorr(mix1); print(vc,comp=c("Variance"))

Now you can extract the BLUPs using ranef(ans.m). Also, genetic correlations and heritabilities can be
calculated easily.
cov2cor(vc$id)

SECTION 2: Special topics in Quantitative genetics

1) Partitioned model

The partitioned model was popularized by () to show that marker effects can be obtained by fitting a GBLUP
model to reduce the computational burden and then recover them by creating some special matrices MM’ for
GBLUP and M’(M’M)- to recover marker effects. Here we show a very easy example using the DT_cpdata:
data("DT_cpdata")
DT <- as.data.frame(DT_cpdata)
M <- GT_cpdata
#
################
PARTITIONED GBLUP MODEL
################
#
MMT <-tcrossprod(M) ## MM' = additive relationship matrix
MMTinv<-solve(MMT) ## inverse
MTMMTinv<-t(M)%*%MMTinv # M' %*% (M'M)-
#

11

mix.part <- lmebreed(color ~ (1|id),
relmat = list(id=MMT),
control = lmerControl(
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"
),
data=DT)
#
#convert BLUPs to marker effects me=M'(M'M)- u
re <- ranef(mix.part)$id
me.part<-MTMMTinv[,rownames(re)]%*%matrix(re[,1],ncol=1)
plot(me.part)

As can be seen, these two models are equivalent with the exception that the partitioned model is more
computationally efficient.

2) UDU’ decomposition

Lee and Van der Warf (2015) proposed a decomposition of the relationship matrix A=UDU’ together
with a transformation of the response and fixed effects Uy = Ux + UZ + e, to fit a model where the
phenotypic variance matrix V is a diagonal because the relationship matrix is the diagonal matrix D from
the decomposition that can be inverted easily and make multitrait models more feasible.
#
data("DT_wheat")
rownames(GT_wheat) <- rownames(DT_wheat)
G <- A.mat(GT_wheat)
Y <- data.frame(DT_wheat)
#
make the decomposition
UD<-eigen(G) # get the decomposition: G = UDU'
U<-UD$vectors
D<-diag(UD$values)# This will be our new 'relationship-matrix'
rownames(D) <- colnames(D) <- rownames(G)
X<-model.matrix(~1, data=Y) # here: only one fixed effect (intercept)
UX<-t(U)%*%X # premultiply X and y by U'
UY <- t(U) %*% as.matrix(Y) # multivariate
#
dataset for decomposed model
DTd<-data.frame(id = rownames(G) ,UY, UX =UX[,1])
DTd$id<-as.character(DTd$id)
head(DTd)
#
modeld <- lmebreed(X1~ UX + (1|id),
relmat=list(id=D),
control = lmerControl(
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"
),
data=DTd)
vc <- VarCorr(modeld); print(vc,comp=c("Variance"))

12

#
dataset for normal model
DTn<-data.frame(id = rownames(G) , DT_wheat)
DTn$id<-as.character(DTn$id)
#
modeln <- lmebreed(X1~ (1|id),
relmat=list(id=G),
control = lmerControl(
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"
),
data=DTn)
#
compare regular and transformed blups
red <- ranef(modeld)$id
ren <- ranef(modeln)$id
plot(x=(solve(t(U)))%*% red[colnames(D),],
y=ren[colnames(D),],
xlab="UDU blup", ylab="blup")
#

As can be seen, the two models are equivalent. Despite the fact that lme4breeding doesn’t take a great
advantage of this trick because it was built for dense matrices using the Armadillo library. Other software
may be better using this trick.

3) Mating designs

Estimating variance components has been a topic of interest for the breeding community for a long time.
Here we show how to calculate additive and dominance variance using the North Carolina Design I (Nested
design) and North Carolina Design II (Factorial design) using the classical Expected Mean Squares method
and the REML methods from lme4breeding and how these two are equivalent.

data(DT_expdesigns)
DT <- DT_expdesigns$car1
DT <- aggregate(yield~set+male+female+rep, data=DT, FUN = mean)
DT$setf <- as.factor(DT$set)
DT$repf <- as.factor(DT$rep)
DT$malef <- as.factor(DT$male)
DT$femalef <- as.factor(DT$female)
#levelplot(yield~male*female|set, data=DT, main="NC design I")
##############################
Expected Mean Square method
##############################
mix1 <- lm(yield~ setf + setf:repf + femalef:malef:setf + malef:setf, data=DT)
MS <- anova(mix1); MS

North Carolina Design I (Nested design)

Analysis of Variance Table
##
Response: yield

13

Df Sum Sq Mean Sq F value Pr(>F)
setf 1 0.1780 0.17796 1.6646 0.226012
setf:repf 2 0.9965 0.49824 4.6605 0.037141 *
setf:malef 4 7.3904 1.84759 17.2822 0.000173 ***
setf:femalef:malef 6 1.6083 0.26806 2.5074 0.095575 .
Residuals 10 1.0691 0.10691

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ms1 <- MS["setf:malef","Mean Sq"]
ms2 <- MS["setf:femalef:malef","Mean Sq"]
mse <- MS["Residuals","Mean Sq"]
nrep=2
nfem=2
Vfm <- (ms2-mse)/nrep
Vm <- (ms1-ms2)/(nrep*nfem)

Calculate Va and Vd
Va=4*Vm # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm-Vm) # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
1.579537 -1.257241
##############################
REML method
##############################
mix2 <- lmebreed(yield~ setf + setf:repf +

(1|femalef:malef:setf) + (1|malef:setf),
data=DT)

vc <- VarCorr(mix2); print(vc,comp=c("Variance"))

Groups Name Variance
femalef:malef:setf (Intercept) 0.080574
malef:setf (Intercept) 0.394884
Residual 0.106907
Vfm <- vc$`femalef:malef:setf`
Vm <- vc$`malef:setf`

Calculate Va and Vd
Va=4*Vm # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm-Vm) # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
1.579537 -1.257240

As can be seen the REML method is easier than manipulating the MS and we arrive to the same results.

DT <- DT_expdesigns$car2
DT <- aggregate(yield~set+male+female+rep, data=DT, FUN = mean)
DT$setf <- as.factor(DT$set)
DT$repf <- as.factor(DT$rep)

14

DT$malef <- as.factor(DT$male)
DT$femalef <- as.factor(DT$female)
#levelplot(yield~male*female|set, data=DT, main="NC desing II")
head(DT)

North Carolina Design II (Factorial design)

set male female rep yield setf repf malef femalef
1 1 1 1 1 831.03 1 1 1 1
2 1 2 1 1 1046.55 1 1 2 1
3 1 3 1 1 853.33 1 1 3 1
4 1 4 1 1 940.00 1 1 4 1
5 1 5 1 1 802.00 1 1 5 1
6 1 1 2 1 625.93 1 1 1 2
N=with(DT,table(female, male, set))
nmale=length(which(N[1,,1] > 0))
nfemale=length(which(N[,1,1] > 0))
nrep=table(N[,,1])
nrep=as.numeric(names(nrep[which(names(nrep) !=0)]))

##############################
Expected Mean Square method
##############################

mix1 <- lm(yield~ setf + setf:repf +
femalef:malef:setf + malef:setf +
femalef:setf,

data=DT)
MS <- anova(mix1); MS

Analysis of Variance Table
##
Response: yield
Df Sum Sq Mean Sq F value Pr(>F)
setf 1 847836 847836 45.6296 1.097e-09 ***
setf:repf 4 144345 36086 1.9421 0.109652
setf:malef 8 861053 107632 5.7926 5.032e-06 ***
setf:femalef 8 527023 65878 3.5455 0.001227 **
setf:femalef:malef 32 807267 25227 1.3577 0.129527
Residuals 96 1783762 18581

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ms1 <- MS["setf:malef","Mean Sq"]
ms2 <- MS["setf:femalef","Mean Sq"]
ms3 <- MS["setf:femalef:malef","Mean Sq"]
mse <- MS["Residuals","Mean Sq"]
nrep=length(unique(DT$rep))
nfem=length(unique(DT$female))
nmal=length(unique(DT$male))
Vfm <- (ms3-mse)/nrep;
Vf <- (ms2-ms3)/(nrep*nmale);
Vm <- (ms1-ms3)/(nrep*nfemale);

15

Va=4*Vm; # assuming no inbreeding (4/(1+F))
Va=4*Vf; # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm); # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
10840.192 8861.659
##############################
REML method
##############################

mix2 <- lmebreed(yield~ setf + setf:repf +
(1|femalef:malef:setf) + (1|malef:setf) +
(1|femalef:setf),

data=DT)
vc <- VarCorr(mix2); print(vc,comp=c("Variance"))

Groups Name Variance
femalef:malef:setf (Intercept) 2215.4
malef:setf (Intercept) 5493.6
femalef:setf (Intercept) 2710.0
Residual 18580.9
Vfm <- vc$`femalef:malef:setf`
Vm <- vc$`malef:setf`
Vf <- vc$`femalef:setf`

Va=4*Vm; # assuming no inbreeding (4/(1+F))
Va=4*Vf; # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm); # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
10840.199 8861.682

As can be seen, the REML method is easier than manipulating the MS and we arrive to the same results.

4) GWAS by GBLUP

Gualdron-Duarte et al. (2014) and Bernal-Rubio et al. (2016) proved that in (SingleStep)GBLUP or
RRBLUP/SNP-BLUP, dividing the estimate of the marker effect by its standard error is mathematically
equivalent to fixed regression EMMAX GWAS, even if markers are estimated as random effects in GBLUP
and as fixed effects in EMMAX. That way fitting a GBLUP model is enough to perform GWAS for additive
and on-additive effects.

Let us use the DT_cpdata dataset to explore the GWAS by GBLUP method
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata#[,1:200]
MP <- MP_cpdata
M<- GT
n <- nrow(DT) # to be used for degrees of freedom
k <- 1 # to be used for degrees of freedom (number of levels in fixed effects)

16

Instead of fitting the RRBLUP/SNP-BLUP model we can fit a GBLUP model which is less computationally
demanding and recover marker effects and their standard errors from the genotype effects.
###########################
GWAS by GBLUP approach
###########################
MMT <-tcrossprod(M) ## MM' = additive relationship matrix
MMT <- MMT + diag(1e-4, ncol(MMT), ncol(MMT))
MMTinv<-solve(MMT) ## inverse
MTMMTinv<-t(M)%*%MMTinv # M' %*% (M'M)-
#
mix.part <- lmebreed(color ~ (1|id) + (1|Rowf) + (1|Colf),
relmat = list(id=MMT),
control = lmerControl(
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"
),
data=DT)
vc <- VarCorr(mix.part); print(vc,comp=c("Variance"))
mme <- getMME(object=mix.part)
#convert BLUPs to marker effects me=M'(M'M)- u
re <- ranef(mix.part)$id
a.from.g<-MTMMTinv[,rownames(re)]%*%matrix(re[,1],ncol=1)
var.g <- kronecker(MMT[rownames(re),rownames(re)],vc$id) -
mme$Ci[rownames(re),rownames(re)]
var.a.from.g <- t(M)%*%MMTinv[,rownames(re)]%*% (var.g) %*% t(MMTinv[,rownames(re)])%*%M
se.a.from.g <- sqrt(diag(var.a.from.g))
t.stat.from.g <- a.from.g/se.a.from.g # t-statistic
pvalGBLUP <- dt(t.stat.from.g,df=n-k-1) # -log10(pval)

Now we can look at the p-values coming from the 3 approaches to indeed show that results are equivalent.
plot(-log(pvalGBLUP), main="GWAS by GBLUP")

Literature

Giovanny Covarrubias-Pazaran (2024). lme4breeding: enabling genetic evaluation in the age of genomic data.
To be submitted to Bioinformatics.

Bates Douglas, Maechler Martin, Bolker Ben, Walker Steve. 2015. Fitting Linear Mixed-Effects Models Using
lme4. Journal of Statistical Software, 67(1), 1-48.

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390 pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter estimation in
linear mixed models. Biometrics 51(4):1440-1450.

Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics
vol. 31(2):423-447.

Kang et al. 2008. Efficient control of population structure in model organism association mapping. Genetics
178:1709-1723.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-spline ANOVA
mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22 - 37.

17

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic
information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia,
bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Rodriguez-Alvarez, Maria Xose, et al. Correcting for spatial heterogeneity in plant breeding experiments with
P-splines. Spatial Statistics 23 (2018): 52-71.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance components.
Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of
relatedness. Genetics 38:203-208.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS 51(1):15-27.

18

http://dx.doi.org/10.1101/027201

	SECTION 1: Basic topics in quantitative genetics
	1) Marker and non-marker based heritability calculation
	2) Specifying heterogeneous variances in univariate models
	3) Half and full diallel designs (use of the overlay)
	4) Genomic selection: predicting mendelian sampling
	5) Indirect genetic effects
	6) Genomic selection: single cross prediction
	8) Spatial modeling: using the 2-dimensional spline
	9) Multivariate genetic models and genetic correlations

	SECTION 2: Special topics in Quantitative genetics
	1) Partitioned model
	2) UDU' decomposition
	3) Mating designs
	4) GWAS by GBLUP

	Literature

