---
title: "Introduction to lightAUC"
author: "Christos Adam"
output:
rmarkdown::html_vignette:
number_sections: false
word_document: default
pdf_document: default
fontsize: 11pt
urlcolor: blue
linkcolor: blue
link-citations: true
header-includes: \usepackage{float}
vignette: >
%\VignetteIndexEntry{Introduction to lightAUC}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, eval=FALSE)
```
# **Fast AUC computation in R**
Fast and lightweight computation of AUC metric for the binary case (1 positive
and 0 negative) is offered by lightAUC package. The algorithm used is a
fast implementation from algorithm of Fawcett ([2006](#ref-fawcett2006)).
## **Example**
```r
# Create some data
probs <- c(1, 0.4, 0.8)
actuals <- c(0, 0, 1)
lightAUC(probs, actuals)
```
```
## 0.5
```
For parallel calculations use:
```r
# E.g. 2 cores (you can use cores = parallel::detectCores() for your case)
probs <- c(1, 0.4, 0.8)
actuals <- c(0, 0, 1)
lightAUC(probs, actuals, parallel = TRUE, cores = 2)
```
```
## 0.5
```
## **References**
Fawcett, T. (2006). An introduction to ROC analysis. {Pattern Recognition
Letters, \bold{27}(8), 861–874.
10.1016/j.patrec.2005.10.010