## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.height = 2.25 ) ## ----setup-------------------------------------------------------------------- library(isocalcR) library(tidyr) library(dplyr) library(ggplot2) ## ----CO2data------------------------------------------------------------------ data(CO2data) #Load CO2data into your environment head(CO2data, 10) #View initial CO2data observations tail(CO2data, 10) #View most recent CO2data observations ## ----piru13C------------------------------------------------------------------ data(piru13C) head(piru13C) ## ----example------------------------------------------------------------------ library(isocalcR) #Load the package #Calculate iWUE from leaf organic material with a δ13C signature of -27 ‰ for the year 2015, #300 meters above sea level at 25°C. d13C.to.iWUE(d13C.plant = -27, year = 2015, elevation = 300, temp = 25) #Use custom.calc to calculate iWUE from the same leaf sample as above. custom.calc(d13C.plant = -27, d13C.atm = -8.44, outvar = "iWUE", Ca = 399.62, elevation = 300, temp = 25) #Calculate the ratio of leaf intercellular to atmospheric CO2 (Ci/Ca) using the simple #formulation for leaf and wood. Internally updates apparent fractionation by Rubisco, b, #according to Cernusak and Ubierna 2022. d13C.to.CiCa(d13C.plant = -27, year = 2015, elevation = 300, temp = 25, tissue = "leaf") d13C.to.CiCa(d13C.plant = -27, year = 2015, elevation = 300, temp = 25, tissue = "wood") #Calculate iWUE using the "simple", "photorespiration", and "mesophyll" formulations. d13C.to.iWUE(d13C.plant = -28, year = 2015, elevation = 300, temp = 15, method = "simple") d13C.to.iWUE(d13C.plant = -28, year = 2015, elevation = 300, temp = 15, method = "photorespiration") d13C.to.iWUE(d13C.plant = -28, year = 2015, elevation = 300, temp = 15, method = "mesophyll") #Calculate iWUE from tree ring (wholewood) d13C from Mathias and Thomas (2018) #using previously loaded piru13C data #First drop years where there are no data piru13C <- piru13C %>% drop_na() #Calculate iWUE for each case using 'mapply' piru13C$iWUE_simple <- mapply(d13C.to.iWUE, #Call the function d13C.plant = piru13C$wood.d13C, #Assign the plant d13C value year = piru13C$Year, #Assign the year to match atmospheric CO2 and atmospheric d13CO2 elevation = piru13C$Elevation_m, #Assign the elevation temp = piru13C$MGT_C, #Assign the temperature method = "simple", #Specify the method tissue = "wood") #Specify which tissue the sample is from piru13C$iWUE_photorespiration <- mapply(d13C.to.iWUE, #Call the function d13C.plant = piru13C$wood.d13C, #Assign the plant d13C value year = piru13C$Year, #Assign the year to match atmospheric CO2 and atmospheric d13CO2 elevation = piru13C$Elevation_m, #Specify elevation temp = piru13C$MGT_C, #Specify the temperature during tissue formation method = "photorespiration", #Specify the iWUE calculation formulation frac = piru13C$frac) #Specify any post-photosynthetic fractionations. In this case 2 permille to account for leaf to wood. piru13C$iWUE_mesophyll <- mapply(d13C.to.iWUE, #Call the function d13C.plant = piru13C$wood.d13C, #Assign the plant d13C value year = piru13C$Year, #Assign the year to match atmospheric CO2 and atmospheric d13CO2 elevation = piru13C$Elevation_m, #Specify elevation temp = piru13C$MGT_C, #Specify the temperature during tissue formation method = "mesophyll", #Specify the iWUE calculation formulation frac = piru13C$frac) #Specify any post-photosynthetic fractionations. In this case 2 permille to account for leaf to wood. #Create dataframe for visualizing differences in computed iWUE among the three formulations piru13C_long <- piru13C %>% select(Year, Site, iWUE_simple, iWUE_photorespiration, iWUE_mesophyll) %>% #Select only columns of interest rename(Simple = iWUE_simple, Photorespiration = iWUE_photorespiration, Mesophyll = iWUE_mesophyll) %>% pivot_longer(names_to = "Formulation", values_to = "iWUE", -c(Year, Site)) #Visually examine differences in iWUE based on the formulation used for each study location ggplot(data = piru13C_long, aes(x = Year, y = iWUE, color = Formulation)) + geom_point(alpha = 0.5) + geom_smooth(aes(group = Formulation), color = "gray30") + theme_classic() + facet_wrap(~Site) + ylab(expression("iWUE (µmol mol"^{-1}*")"))