Package 'infinitefactor’

October 13, 2022
Type Package
Title Bayesian Infinite Factor Models
Version 1.0
Date 2020-03-30
Author Evan Poworoznek
Maintainer Evan Poworoznek infinitefactorpackage@gmail.com
Description Sampler and post-processing functions for semi-parametric Bayesian infinite factor mod-els, motivated by the Multiplicative Gamma Shrinkage Prior of Bhattacharya and Dun-son (2011) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419391/. Contains com-ponent $\mathrm{C}++$ functions for building samplers for linear and 2-way interaction factor models us-ing the multiplicative gamma and Dirichlet-Laplace shrinkage priors. The package also con-tains post processing functions to return matrices that display rotational ambiguity to identifiabil-ity through successive application of orthogonalization procedures and resolution of column la-bel and sign switching. This package was developed with the support of the National Insti-tute of Environmental Health Sciences grant 1R01ES028804-01.
License GPL-2
Imports Rcpp (>= 1.0.2)
Depends reshape2, ggplot2, stats, utils
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-04-03 13:00:02 UTC
R topics documented:
infinitefactor-package 2
amean 4
interactionDL 5
interactionMGSP 7
jointRot 9
linearDL 10
linearMGSP 12
lmean 14
msf 15
plotmat 16
Sampler Components 17
summat 18
Index 19
infinitefactor-package

Bayesian Infinite Factor Models

Description

Sampler and post-processing functions for semi-parametric Bayesian infinite factor models, motivated by the Multiplicative Gamma Shrinkage Prior of Bhattacharya and Dunson (2011) <https://www.ncbi.nlm.nih.gov/pmc/ Contains component C++ functions for building samplers for linear and 2-way interaction factor models using the multiplicative gamma and Dirichlet-Laplace shrinkage priors. The package also contains post processing functions to return matrices that display rotational ambiguity to identifiability through successive application of orthogonalization procedures and resolution of column label and sign switching. This package was developed with the support of the National Institute of Environmental Health Sciences grant 1R01ES028804-01.

Details

The DESCRIPTION file:

Package:	infinitefactor
Type:	Package
Title:	Bayesian Infinite Factor Models
Version:	1.0
Date:	2020-03-30
Author:	Evan Poworoznek
Maintainer:	Evan Poworoznek <infinitefactorpackage @ gmail.com>
Description:	Sampler and post-processing functions for semi-parametric Bayesian infinite factor models, motivated by the N
License:	GPL-2
Imports:	Rcpp (>= 1.0.2)
Depends:	reshape2, ggplot2, stats, utils
LinkingTo:	Rcpp, RcppArmadillo

Index of help topics:

```
amean Average over the third index of an array
del_mg Sampler Components
infinitefactor-package
    Bayesian Infinite Factor Models
```

interactionDL	Factor regression model with interactions using the Dirichlet-Laplace shrinkage prior
interactionMGSP	Factor regression model with interactions using the Multiplicative Gamma Shrinkage Prior
jointRot	Resolve rotational ambiguity in samples of factor loadings and factors jointly Sample Bayesian linear infinite factor models
linearDL	with the Dirichlet-Laplace prior Sample Bayesian linear infinite factor models with the Multiplicative Gamma Shrinkage Prior
linearMGSP	Average elements of a list
lmean	Resolve label and sign switching in random matrix samples
plotmat	Plot a matrix summat

Perform sampling with the linearMGSP() and linearDL() functions for linear factor models, or interactionMGSP() and interactionDL() functions for factor regression models including 2-way interactions. See jointRot() or $\operatorname{msf}()$ for postprocessing.

Author(s)

Evan Poworoznek
Maintainer: Evan Poworoznek infinitefactorpackage@gmail.com

References

Bhattacharya, Anirban, and David B. Dunson. "Sparse Bayesian infinite factor models." Biometrika (2011): 291-306.

Bhattacharya, Anirban, et al. "Dirichlet-Laplace priors for optimal shrinkage." Journal of the American Statistical Association 110.512 (2015): 1479-1490.
Ferrari, Federico, and David B. Dunson. "Bayesian Factor Analysis for Inference on Interactions." arXiv preprint arXiv:1904.11603 (2019).

Examples

```
k0 = 5
p = 20
n = 100
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
            p*(sample.int(k0, 40, replace = TRUE)-1)] = rnorm(40, 0, 1)
lambda[1:7, 1] = rnorm(7, 2, 0.5)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] = rnorm(6, 2, 0.5)
lambda[,4] = rnorm(p, 0, 0.5)
lambda[,5] = rnorm(p, 0, 0.5)
plotmat(varimax(lambda)[[1]])
```

$X=\operatorname{matrix}(r n o r m(n * k 0), n, k 0) \% * \% t(l a m b d a)+\operatorname{matrix}(r n o r m(n * p), n, p)$
out $=$ linearMGSP $(X=X$, nrun $=1000$, burn $=500$, adapt $=$ FALSE $)$
aligned = jointRot(out\$lambdaSamps, out\$etaSamps)
plotmat(lmean(aligned\$lambda))
amean Average over the third index of an array

Description

Convenience function to compute matrix sample means when samples are stored as a 3rd order array. Sampling index should be the third mode.

Usage

amean(ar)

Arguments

ar
a 3rd order array

Value

matrix of dimension $\operatorname{dim}(a r)[-3]$

Author(s)

Evan Poworoznek

See Also

lmean

Examples

```
ar = array(rnorm(10000), dim = c(10, 10, 100))
amean(ar)
```


interactionDL Factor regression model with interactions using the Dirichlet-Laplace

 shrinkage prior
Description

Perform a regression of y onto X and all 2 way interactions in X using the latent factor model introduced in Ferrari and Dunson (2020). This version uses the Dirichlet-Laplace shrinkage prior as in the original paper.

Usage

interactionDL(y, X, nrun, burn = 0, thin = 1, delta_rw $=0.0526749, a=1 / 2, k=N U L L$, output = c("covMean", "covSamples", "factSamples", "sigSamples", "coefSamples","errSamples"), verbose $=$ TRUE, dump = FALSE, filename = "samps.Rds", buffer $=10000$, adapt $=$ "burn", augment $=$ NULL)

Arguments

y	response vector.
X	predictor matrix (n x p).
burn	number of iterations.
thin	burn-in period.
delta_rw	thinning interval.
a metropolis-hastings proposal variance.	
k	shrinkage hyperparameter.
output	number of factors.
verbose	output type, a vector including some of: c("covMean", "covSamples", "fact- dump
logical. Show progress bar?	
filename	logical. Save samples to a file during sampling? buffer
if dump: filename to address list of posterior samples	
adapt	if dump: how often to save samples
augment	logical or "burn". Adapt proposal variance in metropolis hastings step?

Value
some of:

covMean	X covariance posterior mean
omegaSamps	X covariance posterior samples
lambdaSamps	Posterior factor loadings samples (rotationally ambiguous) etaSamps
Posterior factor samples (rotationally ambiguous) sigmaSamps	Posterior marginal variance samples (see notation in Bhattacharya and Dunson (2011))
phiSamps	Posterior main effect coefficient samples in factor form (rotationally ambiguous) PsiSamps
Posterior interaction effect coefficient samples in factor form (rotationally am- biguous)	
interceptSamps	Posterior induced intercept samples mainEffectSamps
interactionSamps	
ssySamps	Posterior induced main effect coefficient samples Posterior irreducible error samples

Author(s)

Evan Poworoznek
Federico Ferrari

References

Ferrari, Federico, and David B. Dunson. "Bayesian Factor Analysis for Inference on Interactions." arXiv preprint arXiv:1904.11603 (2019).

See Also

interactionMGSP

Examples

```
k0 = 5
p = 20
n = 50
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
    p*(sample.int(k0, 40, replace = TRUE)-1)] = rnorm(40, 0, 1)
lambda[1:7, 1] = rnorm(7, 2, 0.5)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] = rnorm(6, 2, 0.5)
lambda[,4] = rnorm(p, 0, 0.5)
lambda[,5] = rnorm(p, 0, 0.5)
```

```
plotmat(varimax(lambda)[[1]])
X = matrix(rnorm(n*k0),n,k0)%*%t(lambda) + matrix(rnorm(n*p), n, p)
beta_true = numeric(p); beta_true[c(1,3,6,8,10,11)] =c(1,1,0.5,-1,-2,-0.5)
Omega_true = matrix(0,p,p)
Omega_true[1,2] = 1; Omega_true[5,2] = -1; Omega_true[10,8] = 1;
Omega_true[11,5] = -2; Omega_true[1,1] = 0.5;
Omega_true[2,3] = 0.5;
Omega_true = Omega_true + t(Omega_true)
y = X%*%beta_true + diag(X%*%Omega_true%*%t(X)) + rnorm(n,0.5)
intdl = interactionDL(y, X, 1000, 500, k = 5)
```

interactionMGSP Factor regression model with interactions using the Multiplicative Gamma Shrinkage Prior

Description

Perform a regression of y onto X and all 2 way interactions in X using the latent factor model introduced in Ferrari and Dunson (2020). This version uses the Multiplicative Gamma Shrinkage Prior introduced in Bhattacharya and Dunson (2011).

Usage

interactionMGSP(y, X, nrun, burn, thin = 1, delta_rw = 0.0526749, a = 1/2, k = NULL, output = c("covMean", "covSamples", "factSamples", "sigSamples", "coefSamples","errSamples"), verbose = TRUE, dump = FALSE, filename = "samps.Rds", buffer $=10000$, adapt $=$ "burn", augment $=$ NULL)

Arguments

$\mathrm{y} \quad$ response vector.
$X \quad$ predictor matrix ($\mathrm{n} \times \mathrm{p}$).
nrun number of iterations.
burn burn-in period.
thin thinning interval.
delta_rw metropolis-hastings proposal variance.
a
shrinkage hyperparameter.
k number of factors.
output output type, a vector including some of: c("covMean", "covSamples", "fact-
Samples", "sigSamples", "coefSamples", "numFactors", "errSamples").

verbose	logical. Show progress bar?
dump	logical. Save samples to a file during sampling?
filename	if dump: filename to address list of posterior samples
buffer	if dump: how often to save samples adapt
logical or "burn". Adapt proposal variance in metropolis hastings step? if "burn", will adapt during burn in and not after.	
augment	additional sampling steps as an expression

Value

some of:

covMean	X covariance posterior mean
omegaSamps	X covariance posterior samples
lambdaSamps	Posterior factor loadings samples (rotationally ambiguous) etaSamps
Posterior factor samples (rotationally ambiguous)	
sigmaSamps	Posterior marginal variance samples (see notation in Bhattacharya and Dunson (2011))
phiSamps	Posterior main effect coefficient samples in factor form (rotationally ambiguous) PsiSamps
Posterior interaction effect coefficient samples in factor form (rotationally am- biguous)	
interceptSamps	Posterior induced intercept samples mainEffectSamps
interactionSamps	
ssySamps	Posterior induced main effect coefficient samples Posterior irreducible error samples

Author(s)

Evan Poworoznek
Federico Ferrari

References

Ferrari, Federico, and David B. Dunson. "Bayesian Factor Analysis for Inference on Interactions." arXiv preprint arXiv:1904.11603 (2019).

Bhattacharya, Anirban, and David B. Dunson. "Sparse Bayesian infinite factor models." Biometrika (2011): 291-306.

See Also

Examples

```
\(\mathrm{k} 0=5\)
\(\mathrm{p}=20\)
\(\mathrm{n}=50\)
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
    \(\mathrm{p} *\) (sample.int (k0, 40, replace \(=\) TRUE) -1 ) \(]=\operatorname{rnorm}(40,0,1)\)
lambda[1:7, 1] \(=\operatorname{rnorm}(7,2,0.5)\)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] \(=\operatorname{rnorm}(6,2,0.5)\)
lambda[,4] \(=\) rnorm(p, 0, 0.5)
lambda[,5] \(=\operatorname{rnorm}(p, 0,0.5)\)
plotmat(varimax(lambda)[[1]])
\(X=\operatorname{matrix}(r n o r m(n * k 0), n, k 0) \% * \% t(l a m b d a)+\operatorname{matrix}(r n o r m(n * p), n, p)\)
beta_true \(=\) numeric \((p)\); beta_true[c(1,3,6,8,10,11)] \(=c(1,1,0.5,-1,-2,-0.5)\)
Omega_true \(=\) matrix ( \(0, \mathrm{p}, \mathrm{p}\) )
Omega_true[1,2] = 1; Omega_true[5,2] = -1; Omega_true[10,8] = 1;
Omega_true \([11,5]=-2\); Omega_true \([1,1]=0.5\);
Omega_true[2,3] = 0.5;
Omega_true = Omega_true + t(Omega_true)
\(y=X \% * \%\) beta_true \(+\operatorname{diag}(X \% * \%\) mega_true\%*\%t(X)) \(+\operatorname{rnorm}(n, 0.5)\)
intmgsp \(=\) interactionMGSP(y, X, 1000, 500, k = 5)
```


jointRot Resolve rotational ambiguity in samples of factor loadings and factors

 jointly
Description

Performs the varimax rotation on the factor loadings samples and column-based matching to resolve resultant sign and label switching. Rotates the factors along with the loadings to induce identifiability jointly. Note this method will only work on lists of factors and factor loadings that share the same constant number of factors (k) across all samples, and will likely crash the session if this is not the case.

Usage

jointRot(lambda, eta)

Arguments

lambda list of factor loadings samples
eta list of factor samples

Value

lambda rotationally aligned factor loadings samples
eta rotationally aligned factor samples

Author(s)

Evan Poworoznek

References

coming soon...

See Also

msf

Examples

```
k0 = 5
p = 20
n = 100
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
    p*(sample.int(k0, 40, replace = TRUE)-1)] = rnorm(40, 0, 1)
lambda[1:7, 1] = rnorm(7, 2, 0.5)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] = rnorm(6, 2, 0.5)
lambda[,4] = rnorm(p, 0, 0.5)
lambda[,5] = rnorm(p, 0, 0.5)
plotmat(varimax(lambda)[[1]])
X = matrix(rnorm(n*k0),n,k0)%*%t(lambda) + matrix(rnorm(n*p), n, p)
out = linearMGSP(X = X, nrun = 1000, burn = 500, adapt = FALSE)
aligned = jointRot(out$lambdaSamps, out$etaSamps)
plotmat(lmean(aligned$lambda))
```

linearDL Sample Bayesian linear infinite factor models with the DirichletLaplace prior

Description

Perform Bayesian factor analysis by sampling the posterior distribution of parameters in a factor model with the Dirichlet-Laplace shrinkage prior of Bhattacharya et al.

Usage

```
linearDL(X, nrun, burn, thin = 1, prop = 1,
epsilon = 1e-3, k = NULL,
output = c("covMean", "covSamples", "factSamples",
"sigSamples"), verbose = TRUE, dump = FALSE,
filename = "samps.Rds", buffer = 10000,
augment = NULL)
```


Arguments

X	Data matrix (n x p)
nrun	number of iterations
burn	burn-in period
thin	thinning interval
prop	proportion of elements in each column less than epsilon in magnitude cutoff
epsilon	tolerance
k	Number of factors
output	output type, a vector including some of: c("covMean", "covSamples", "fact-
	Samples", "sigSamples")
verbose	logical. Show progress bar?
dump	logical. Save output object during sampling?
filename	if dump, filename for output
buffer	if dump, frequency of saving
augment	additional sampling steps as an expression

Value

some of:

covMean	X covariance posterior mean
omegaSamps	X covariance posterior samples
lambdaSamps	Posterior factor loadings samples (rotationally ambiguous)
etaSamps	Posterior factor samples (rotationally ambiguous)
sigmaSamps	Posterior marginal variance samples (see notation in Bhattacharya and Dunson (2011))
numFacts	Number of factors for each iteration

Author(s)

Evan Poworoznek

References

Bhattacharya, Anirban, et al. "Dirichlet-Laplace priors for optimal shrinkage." Journal of the American Statistical Association 110.512 (2015): 1479-1490.

See Also

linearDL

Examples

```
k0 = 5
p = 20
n = 50
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
    p*(sample.int(k0, 40, replace = TRUE)-1)] = rnorm(40, 0, 1)
lambda[1:7, 1] = rnorm(7, 2, 0.5)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] = rnorm(6, 2, 0.5)
lambda[,4] = rnorm(p, 0, 0.5)
lambda[,5] = rnorm(p, 0, 0.5)
plotmat(varimax(lambda)[[1]])
X = matrix(rnorm(n*k0),n,k0)%*%t(lambda) + matrix(rnorm(n*p), n, p)
out = linearMGSP(X = X, nrun = 1000, burn = 500)
```

linearMGSP Sample Bayesian linear infinite factor models with the Multiplicative Gamma Shrinkage Prior

Description

Perform Bayesian factor analysis by sampling the posterior distribution of parameters in a factor model with the Multiplicative Gamma Shrinkage Prior of Bhattacharya and Dunson

Usage

linearMGSP(X, nrun, burn, thin = 1, prop $=1$, epsilon $=1 \mathrm{e}-3$, kinit $=$ NULL, adapt $=$ TRUE,
output = c("covMean", "covSamples", "factSamples",
"sigSamples", "numFactors"), verbose = TRUE,
dump = FALSE, filename = "samps.Rds", buffer = 10000,
augment $=$ NULL)

Arguments

X	Data matrix $(\mathrm{n} \mathrm{x} \mathrm{p})$
nrun	number of iterations
burn	burn-in period
thin	thinning interval

prop	proportion of elements in each column less than epsilon in magnitude cutoff
epsilon	tolerance
kinit	initial value for the number of factors
adapt	logical. Whether or not to adapt number of factors across sampling
output	output type, a vector including some of: c("covMean", "covSamples", "fact- Samples", "sigSamples", "numFactors")
verbose	logical. Show progress bar?
dump	logical. Save output object during sampling?
filename	if dump, filename for output
buffer	if dump, frequency of saving
augment	additional sampling steps as an expression

Value

some of:

covMean	X covariance posterior mean
omegaSamps	X covariance posterior samples
lambdaSamps	Posterior factor loadings samples (rotationally ambiguous)
etaSamps	Posterior factor samples (rotationally ambiguous)
sigmaSamps	Posterior marginal variance samples (see notation in Bhattacharya and Dunson (2011))
numFacts	Number of factors for each iteration

Author(s)

Evan Poworoznek

References

Bhattacharya, Anirban, and David B. Dunson. "Sparse Bayesian infinite factor models." Biometrika (2011): 291-306.

See Also

linearDL

Examples

```
k0 = 5
p = 20
n = 50
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
            p*(sample.int(k0, 40, replace = TRUE)-1)] = rnorm(40, 0, 1)
```

```
lambda[1:7, 1] = rnorm(7, 2, 0.5)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] = rnorm(6, 2, 0.5)
lambda[,4] = rnorm(p, 0, 0.5)
lambda[,5] = rnorm(p, 0, 0.5)
plotmat(varimax(lambda)[[1]])
X = matrix(rnorm(n*k0),n,k0)%*%t(lambda) + matrix(rnorm(n*p), n, p)
out = linearMGSP(X = X, nrun = 1000, burn = 500)
```

lmean Average elements of a list

Description

Convenience function to compute sample means when samples are stored as a list. List elements should be compatible with addition and scalar division (e.g. must share the same dimensions).

Usage

lmean(list)

Arguments

list a list of parameter samples

Value

same type as a single element of the input list

Author(s)

Evan Poworoznek

See Also

amean

Examples

```
l = replicate(100, rnorm(10), simplify = FALSE)
lmean(l)
```

```
msf

\section*{Description}

The \(\operatorname{msf}()\) function performs column-based matching of a matrix to a pivot to resolve rotational ambiguity remaining after the application of an orthogonalisation procedure on a list of Bayesian matrix samples. The msfOUT() and aplr() functions perform this same matching but instead of returning aligned samples as does msf() , msfOUT outputs the list of permutations and sign switches needed for alignment and aplr outputs a list of matrices permuted and re-signed by msfOUT() output. msfOUT() and aplr() are used in jointRot(). These functions are written in C++ and may crash the R session if passed inappropriate input.

\section*{Usage}
msf(lambda, pivot)
msfout(lambda, pivot)
aplr(matr, perm)

\section*{Arguments}
lambda matrix to be aligned, named for a factor loadings matrix as in the Bhattacharya and Dunson 2011 notation
pivot matrix to align with which to align lambda
matr a matrix to apply permutations to
perm a (possibly signed) permutation order for the matr matrix

\section*{Details}
see the examples for suggested usage of msf and jointRot() for suggested usage of msfOUT() and \(\operatorname{aplr}()\).

\section*{Author(s)}

Evan Poworoznek

\section*{See Also}
jointRot

\section*{Examples}
```

lambda = diag(10)[,sample(10)] + 0.001
pivot = diag(10)
msf(lambda, pivot)

fast implementation for a list of samples

k0 = 5
p = 20
n = 100
lambda = matrix(rnorm(p*k0, 0, 0.01), ncol = k0)
lambda[sample.int(p, 40, replace = TRUE) +
p*(sample.int(k0, 40, replace = TRUE)-1)] = rnorm(40, 0, 1)
lambda[1:7, 1] = rnorm(7, 2, 0.5)
lambda[8:14, 2] = rnorm(7, -2, 0.5)
lambda[15:20, 3] = rnorm(6, 2, 0.5)
lambda[,4] = rnorm(p, 0, 0.5)
lambda[,5] = rnorm(p, 0, 0.5)
plotmat(varimax(lambda)[[1]])
X = matrix(rnorm(n*k0),n,k0)%*%t(lambda) + matrix(rnorm(n*p), n, p)
out = linearMGSP(X = X, nrun = 1000, burn = 500, adapt = FALSE)
vari = lapply(out\$lambdaSamps, varimax)
loads = lapply(vari, `[[`, 1)
norms = sapply(loads, norm, "2")
pivot = loads[order(norms)][[250]]
aligned = lapply(loads, msf, pivot)
plotmat(summat(aligned))

```
plotmat Plot a matrix

\section*{Description}

Plot an image of a matrix using ggplot2

\section*{Usage}
plotmat(mat, color = "green", title = NULL, args = NULL)

\section*{Arguments}
\begin{tabular}{ll} 
mat & Matrix to plot \\
color & Color scheme: "green", "red", or "wes" \\
title & optional plot title \\
args & optional additional ggplot arguments
\end{tabular}

\section*{Value}
sends image to active graphics device or outputs a ggplot object

\section*{Note}

Uses reshape2::melt which may be aliased with reshape::melt

\section*{Author(s)}

Evan Poworoznek

\section*{Examples}
```

mat = diag(1:9 - 5)
plotmat(mat)

```

\section*{Description}

These are the component full conditional or Metropolis-Hastings updates coded in C++ used in the samplers in this package. The functions follow naming conventions based on their greek letter notation in their respective original papers, cited below, and the paper they come from. Here _mg refers to a component of the Multiplicative Gamma Shrinkage prior of Bhattacharya and Dunson 2011, _dl refers to a component of the Dirichlet-Laplace shrinkage prior of Bhattacharya et al., _lin refers to a component of a linear factor model as in Bhattacharya and Dunson 2011, and _int refers to a component of a factor model with 2-way interactions as in Ferrari and Dunson 2020.

\section*{Author(s)}

\section*{Evan Poworoznek}

\section*{References}

Bhattacharya, Anirban, and David B. Dunson. "Sparse Bayesian infinite factor models." Biometrika (2011): 291-306.

Bhattacharya, Anirban, et al. "Dirichlet-Laplace priors for optimal shrinkage." Journal of the American Statistical Association 110.512 (2015): 1479-1490.

Ferrari, Federico, and David B. Dunson. "Bayesian Factor Analysis for Inference on Interactions." arXiv preprint arXiv:1904.11603 (2019).
summat Summarise a matrix from posterior samples

\section*{Description}

Provide a summary matrix from a list of matrix-valued parameter samples, returning the mean value for each element with 0 not included in its quantile-based posterior credible interval, and 0 for each element for which 0 is included in its posterior CI.

\section*{Usage}
summat(list, alpha = 0.05)

\section*{Arguments}
list list of matrix valued parameter samples of the same dimensions
alpha type I error probability

\section*{Value}
a matrix

\section*{Author(s)}

Evan Poworoznek

\section*{See Also}

Imean

\section*{Examples}
```

list = replicate(1000, matrix(rnorm(100), ncol = 10) +
10*diag(10), simplify = FALSE)
lmean(list)
summat(list)
plotmat(summat(list))

```

\section*{Index}
```

* package
infinitefactor-package, 2
amean, 4, 14
aplr(msf), 15
del_mg (Sampler Components), 17
eta_int (Sampler Components), 17
eta_lin(Sampler Components), 17
infinitefactor
(infinitefactor-package), 2
infinitefactor-package, 2
interactionDL,5
interactionMGSP, 6, 7,8
jointRot, 9, 15
lam_lin(Sampler Components), 17
linearDL, 10, 12, 13
linearMGSP,12
lmean, 4, 14, 18
mh (Sampler Components), 17
msf, 10, 15
msfOUT (msf), 15
phi_dl (Sampler Components), 17
phi_int (Sampler Components), 17
plm_dl (Sampler Components), 17
plm_mg (Sampler Components), 17
plotmat, 16
psi_dl (Sampler Components), 17
psi_int (Sampler Components), 17
psi_mg (Sampler Components), 17
rgig(Sampler Components),17
rig(Sampler Components), 17
Sampler Components,17

```
sig_lin(Sampler Components), 17
ssy_int (Sampler Components), 17
summat, 18
tau_dl (Sampler Components), 17```

