## ----setup, include=FALSE--------------------------------- library(knitr) opts_chunk$set(comment = NA, fig.path='Figures/glarma', fig.align = 'center', fig.show = 'hold') options(replace.assign = TRUE, width = 60) knit_hooks$set(rexample = function(before, options, envir) { if (before) { sprintf('\\begin{rexample}\\label{%s}\\hfill{}', options$label) } else { '\\end{rexample}' } } ) ## ----echo=FALSE, warning = FALSE-------------------------- library(MASS) library(glarma) ## ----asthma, echo = TRUE, prompt = TRUE, tidy = FALSE, cache = TRUE---- data(Asthma) y <- Asthma[, 1] X <- as.matrix(Asthma[, 2:16]) glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR", residuals = "Pearson", alphaInit = 0, maxit = 100, grad = 1e-6) glarmamod summary(glarmamod) ## ----asthmaplot, fig.width = 4, fig.height = 4, out.width = '.4\\linewidth', fig.cap = "Diagnostic plots for the asthma model"---- par(mar = c(4,4,3,.1), cex.lab = 0.95, cex.axis = 0.9, mgp = c(2,.7,0), tcl = -0.3, las = 1) plot(glarmamod, which = c(1,2,3,5), titles = list(NULL, NULL, NULL, "PIT for GLARMA (Neg. Binomial)")) ## ----courtmonths, echo = TRUE, prompt = TRUE, tidy = FALSE, cache = TRUE---- data(RobberyConvict) datalen <- dim(RobberyConvict)[1] monthmat <- matrix(0, nrow = datalen, ncol = 12) dimnames(monthmat) <- list(NULL, c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) months <- unique(months(strptime(RobberyConvict$Date, format = "%m/%d/%Y"), abbreviate=TRUE)) for (j in 1:12) { monthmat[months(strptime(RobberyConvict$Date, "%m/%d/%Y"), abbreviate = TRUE) == months[j], j] <- 1 } RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat) rm(monthmat) ## ----courtmodel, echo = TRUE, prompt = TRUE, tidy = FALSE, cache = TRUE---- ### Prepare the data for fitting a binomial y1 <- RobberyConvict$LC.Y n1 <- RobberyConvict$LC.N Y <- cbind(y1, n1-y1) head(Y, 5) ### Fit the GLM glm.LCRobbery <- glm(Y ~ Step.2001 + I(Feb + Mar + Apr + May + Jun + Jul) + I(Aug + Sep + Oct + Nov + Dec), data = RobberyConvict, family = binomial(link = logit), na.action = na.omit, x = TRUE) summary(glm.LCRobbery, corr = FALSE) X <- glm.LCRobbery$x colnames(X)[3:4] <- c("Feb-Jul","Aug-Dec") head(X, 5) glarmamod <- glarma(Y, X, phiLags = c(1), type = "Bin", method = "NR", residuals = "Pearson", maxit = 100, grad = 1e-6) summary(glarmamod) ## ----courtplot, fig.width = 4, fig.height = 4, out.width = '.4\\linewidth', fig.cap = "Diagnostic plots for the court conviction model"---- par(mar = c(4,4,3,.1), cex.lab = 0.95, cex.axis = 0.9, mgp = c(2,.7,0), tcl = -0.3, las = 1) plot(glarmamod)