## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, echo = TRUE ) suppressPackageStartupMessages({ library(BGmisc) library(ggplot2) library(dplyr) library(reshape2) library(tidyverse) }) ## ----------------------------------------------------------------------------- library(ggpedigree) # Load the example data data("redsquirrels") ## ----------------------------------------------------------------------------- sumped <- summarizePedigrees(redsquirrels, famID = "famID", personID = "personID", nbiggest = 5 ) # Set target family for visualization fam_filter <- sumped$biggest_families$famID[3] # Filter for the largest family, recode sex if needed ped_filtered <- redsquirrels %>% recodeSex(code_female = "F") %>% filter(famID == fam_filter) # Calculate relatedness matrices add_mat <- ped2add(ped_filtered, isChild_method = "partialparent", sparse = FALSE) mit_mat <- ped2mit(ped_filtered, isChild_method = "partialparent", sparse = FALSE) ## ----------------------------------------------------------------------------- p_add <- ggRelatednessMatrix( add_mat, interactive = FALSE, config = list( color_palette = c("white", "orange", "red"), scale_midpoint = 0.55, cluster = TRUE, title = "Additive Genetic Relatedness", text_size = 5 ) ) p_add ## ----mit_mat------------------------------------------------------------------ p_mit <- ggRelatednessMatrix( mit_mat, interactive = TRUE, config = list( color_palette = c("white", "skyblue", "darkblue"), scale_midpoint = 0.55, cluster = TRUE, title = "Mitochondrial Relatedness", text_size = 6, as_widget = TRUE ) ) ## ----eval=FALSE, include=TRUE------------------------------------------------- # p_mit ## ----echo=FALSE--------------------------------------------------------------- # reduce file size for CRAN if (interactive()) { plotly::partial_bundle(p_mit) } else { plotly::partial_bundle(p_mit, local = TRUE) } ## ----------------------------------------------------------------------------- p_add_noclust <- ggRelatednessMatrix( add_mat, config = list(cluster = FALSE, title = "Additive Relatedness (No Clustering)") ) p_add_noclust ## ----------------------------------------------------------------------------- if (requireNamespace("corrplot", quietly = TRUE)) { corrplot::corrplot( as.matrix(add_mat), method = "color", type = "lower", col.lim = c(0, 1.25), is.corr = FALSE, title = "Additive Relatedness", order = "hclust", col = corrplot::COL1("Reds", 100), tl.pos = "l", tl.col = "black", tl.srt = 5, tl.cex = 0.2, mar = c(0, 0, 2, 0) ) }