--- title: "2. Swath Profiles" author: "Tobias Stephan" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{2. Swath Profiles} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} editor_options: markdown: wrap: 72 --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` This tutorial demonstrates how to create **swath profiles**, which are a popular method for examining the topography of an area. These profiles represent generalized elevation profiles of a landscape section. `{geoprofiler}` calculates the elevation profile along a straight line (profile line) and provides statistical parameters (e.g. mean, standard deviation, ...) for the elevation in the nearby area. ```{r setup, message=FALSE,warning=FALSE} # Load packages required for this tutorial: library(geoprofiler) library(ggplot2) library(units) library(sf) library(terra) library(tidyterra) theme_set(theme_bw()) options(ggplot2.continuous.colour = "viridis") options(ggplot2.continuous.fill = "viridis") ``` ## Load example data You can use any spatial data that can be converted into a `SpatRast` object. If you have a GeoTiff for example, simply import it into R using the function ```{r read, eval=FALSE, include=TRUE} my_raster <- terra::rast("path/to/my/file.tif") ``` For this tutorial we use an example data set that is an snippet of the ETOPO dataset. ```{r load_data} data("raster_example") crs <- "EPSG:26915" # coordinate reference system for projection my_raster <- terra::rast(raster_example, type = "xyz", crs = "WGS84") |> terra::project(crs) elevation_map <- ggplot() + tidyterra::geom_spatraster(data = my_raster) elevation_map ``` ## Define a profile We can define the profile by the direction and distance from one point: ```{r azimuth, warning=FALSE, message=FALSE} my_profile <- data.frame(lon = -90.75, lat = 48.61) |> sf::st_as_sf(coords = c("lon", "lat"), crs = "WGS84") |> profile_points( profile.azimuth = 135, profile.length = units::set_units(16, "km"), crs = sf::st_crs(crs) ) |> profile_line() elevation_map + geom_sf(data = my_profile, lwd = 1) ``` ## Extract elevation along swath profile To calculate the elevation along the swath profiles, we need to do two steps: 1. Extract the elevation values along an array of straight lines parallel to our profile line using `swath_profile()`. 2. Calculate some statistics within the swath using `swath_stats()`. The function `swath_profile()` requires the profile line, the raster file, and amount of equally-spaced, parallel lines on either side of the profile line (argument `k`) and the distance between these lines (`dist` distance (same units as the coordinate reference system). Here, we want to have `k=10` lines on both sides of the profile, spaced by `dist=300` meters: ```{r swath1, warning=FALSE, message=FALSE} swath <- swath_profile(my_profile, raster = my_raster, k = 5, dist = 1000) ``` The output is a list that contains the extracted elevation data and also the generated swath lines: ```{r swath_map, warning=FALSE, message=FALSE} elevation_map + geom_sf(data = swath$lines, lwd = .1) ``` > Note that the width of the swath profile is $2k \times \text{dist}$. In our example, the width is 10.000 (m). Next, we calculate some summary statistics of the elevation across the swath, such as min/max, mean and standard deviation using the function `swath_stats()`. We can plug in the length of the profile by specifying the parameter `profile.length` by calculating the length using the function `profile_length()`. ```{r swath2, warning=FALSE, message=FALSE} my_swath_profile <- swath_stats(swath, profile.length = profile_length(my_profile)) ``` ## Plot the swath profile Finally, we can plot the elevation along the profile and add some of the calculated statistics: ```{r plot, warning=FALSE, message=FALSE} ggplot(my_swath_profile, aes(distance, elevation)) + geom_ribbon(aes(ymin = min, ymax = max), fill = "grey90") + geom_ribbon(aes(ymin = quantile25, ymax = quantile75), fill = "grey80") + # geom_ribbon(aes(ymin = mean - sd, ymax = mean + sd), fill = "grey60") + geom_line(aes(y = median), color = "darkred", lwd = 1) + # geom_line(aes(y = mean), color = "dodgerblue", lwd = 1) + geom_line(lty = 2) ```