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Abstract

Karl Pearson developed the correlation coefficient r(X,Y) in 1890’s.
Vinod (2014) develops new generalized correlation coefficients so that
when r∗(Y|X) > r∗(X|Y) then X is the “kernel cause” of Y. Vinod
(2015a) argues that kernel causality amounts to model selection be-
tween two kernel regressions, E(Y|X) = g1(X) and E(X|Y) = g2(Y) and
reports simulations favoring kernel causality. An R software pack-
age called ‘generalCorr’ (at www.r-project.org) computes general-
ized correlations, partial correlations and plausible causal paths. This
paper describes various R functions in the package, using examples
to describe them. We are proposing an alternative quantification to
extensive causality apparatus of Pearl (2010) and additive-noise type
methods in Mooij et al. (2014), who seem to offer no R implementa-
tions. My methods applied to certain public benchmark data report
a 70-75% success rate. We also describe how to use the package to
assess endogeneity of regressors.
Keywords: generalized measure of correlation, non-parametric regres-
sion, partial correlation, observational data, endogeneity.
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1 Introduction

A new R package in Vinod (2016) called ‘generalCorr’ provides software
tools for computing generalized correlation coefficients and for preliminary
determination of causal directions among a set of variables. The package is
accessed by R commands (always in the red font for copy and paste):

if(!"generalCorr"%in%installed.packages()) {

install.packages("generalCorr",

repos = "http://cran.case.edu/")} ; library(generalCorr)

We begin with some background. Elementary statistics teachers wish-
ing to make a distinction between correlation r and causation often use an
example where the cause is intuitively known. For example, high crime re-
sults in greater deployment of police officers. Some European crime data is
included in the ‘generalCorr’ package. It is accessed by the following com-
mands which summarize the data and plot crime on the horizontal axis and
officer deployment on the vertical axis. The output of the code is omitted
here for brevity.

data(EuroCrime);summary(EuroCrime)

attach(EuroCrime)

cor.test(crim,off)

plot(crim,off)

The cor.test function used in the code above reports a high correla-
tion coefficient of 0.9900466 which is highly significant (outputs omitted for
brevity). The scatterplot shows that there are outliers with both high per
capita crime and large number of police officers. However, since these data
are genuine, we may not be justified in simply deleting outliers.

Our discussion is intended for practical causal path determination from
the type of data illustrated by European crime, while avoiding a purist view-
point. Holland (1986) and accompanying discussion surveys causality in sci-
ence and states his motto: “no causation without (experimental) manipula-
tion.”Holland criticizes (p. 970)“Granger causality” for economic time series,
Granger (1969), as “at bottom indistinguishable from association.” We are
not alone in rejecting Holland’s viewpoint. Why?

In many situations any experimental manipulation of several variable
types (e.g., prices, incomes, ethnicity, taxes, wages, weather, education, geog-
raphy, etc.) can be impossible, unethical, expensive and /or time-consuming.
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There are situations where preliminary causal identification is desired to save
time and expense, even if experimental manipulations are planned. Hence
an interest in some form of preliminary insight into non-experimental causal-
ity is strong among all scientists, despite Holland’s criticism. In addition to
Granger, two recent approaches for causal identification are: (i) the infor-
mation geometric causal inference (IGCI) method by Daniusis et al. (2012)
and Janzing et al. (2014), and (ii) the additive noise model (ANM) by Hoyer
et al. (2009) and others.

Causality Assumptions

(A1) Noisy Dependence: If X causes Y, (denoted by the causal path X→ Y),
X is independently generated (or exogenous) and Y depends on X,
where the dependence is subject to random noise.

(A2) Four Causes of Bidirectional Causality: If the data cannot help us
choose between two opposite causal paths, X → Y and Y → X, this
can be due to:

1. Intrinsically bi-directional or symmetric causality (illustrated by
Boyle’s Law: Pressure*Volume =constant) where both X and Y
can be exogenous.

2. The presence of confounding variable(s).

3. Linearity of the dependence relation, explained later in Remark 1.

4. Normality of the joint density f (X,Y), also discussed later in Re-
mark 2.

(A3) Transitivity: If X causes Y, and Y causes Z, then X causes Z.

Thus, let us assume an exploratory phase of research where the researcher
has observational data and wants to know which causal direction is more
plausible. In our European crime example, we choose X is the preferred
regressor ‘crim’ and Y is the intuitively plausible dependent variable ‘off’ for
deployed police officers. We expect the causal direction to show (crim →
off).

Let us write Model 1 as Nadaraya-Watson Kernel regression, (Vinod,
2008, Sec. 8.4), using bandwidths from Hayfield and Racine (2008):

Yt = G1(Xt) + ε1t, t = 1, . . . ,T, (1)
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where the functional form of G1(.) is unknown, except that it is assumed to
be a smooth function. Its estimate g1 by the Nadaraya-Watson Kernel re-
gression, (Vinod, 2008, Sec. 8.4), uses the ratio of a joint density to marginal
density. Details are discussed later.

Assuming that (i) G1(x) ∈ G, the class of Borel measurable functions, and
(ii) E(Y2) < ∞, Li and Racine (2007) prove (p. 59) that G1(x) is an optimal
predictor of Y in mean squared error (MSE). The model can be extended
to include additional regressors Xs, which can be control variables. It is
convenient to exclude Xs from both models for ease of exposition in much of
the following discussion.

The Model 2 regression is:

Xt = G2(Yt) + ε2t, t = 1, . . . ,T. (2)

where G2(Yt) is similar to G1(Xt).
Now we describe how the smooth function G1 in eq. (1), Yt = G1(Xt) +

ε1t, is estimated by kernel regression methods. Using kernel smoothing to
estimate the joint density f (x, y) divided by the marginal density f (x) we
write the estimate g1(x) of the conditional mean function G1(x) as:

g1(x) =

∑T
t=1 YtK(Xt−x

h )∑T
t=1 K(Xt−x

h )
, (3)

where K(.) is the Gaussian kernel function and h is the bandwidth parameter
often chosen by leave-one-out cross validation.

Li and Racine (2007) prove (Sec. 2.1) consistent and asymptotically nor-
mal (CAN) property of what they call ‘local constant estimator’ g1(x) of
G1(x).

Vinod (2014) explains that using superior forecast (or larger R2) as the
criterion for model selection amounts to choosing between generalized cor-
relation coefficients r∗(Y|X) and r∗(X|Y), with details described below. This
paper suggests using a variety of statistical model selection tools, many of
which are discussed and simulated in Vinod (2013) and further updated in
Vinod (2015a) with extensive on-line appendix with R software. The gener-
alized correlations for the crime data are obtained by the R command:

options(np.messages=FALSE)

rstar(crim,off)
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The function rstar treats the first variable as X=crim and the second as
Y=off. Its output below reports corxy = r∗(X|Y) = 0.9960, which is smaller
than coryx = r∗(Y|X) = 0.9972. Thus the model with X=crim is the re-
gressor is superior (better forecasts from larger R2) implying (crim → off).
The function also reports the Pearson correlation coefficient as pearson.r=
rXY = 0.9900 and its p-value as zero implying that correlation coefficient is
significantly different from zero, (pv< 0.0000). All R outputs here use the
blue font.

$corxy

cor

0.9960115

$coryx

cor

0.997196

$pearson.r

cor

0.9900466

$pv

[1] 1.561488e-24

The generalized correlation matrix R∗ is obtained by the code where we
use cbind to create a matrix input needed by the gmcmtx0 function. In-
stead of the X, Y notation used above let us denote variables as Xi, Xj for
easy matrix generalizations. Let us choose the preferred dependent variable
Xi=off as the first variable, and Xj=crim leading to the matrix elements
R∗(i, j) = r∗(Xi|Xj).

mtx=cbind(off,crim)

gmcmtx0(mtx)

The output matrix is seen to report the “cause” along columns and response
along the rows.

> gmcmtx0(mtx)

off crim

off 1.0000000 0.997196

crim 0.9960115 1.000000
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Recall that r∗(X|Y) = r∗(crim|off) = 0.9960 now becomes R∗(X2|X1) = 0.9960
and appears at the (2,1) or second row and first column location. Clearly, the
inequality r∗(crim|off) < r∗(off|crim) suggests that crim→off is the sensible
causal path where officers are deployed in response to high crime rates, not
vice versa.

When we have several variables, it becomes difficult to interpret and com-
pare R∗i j with R∗ji as can be seen by invoking the command gmcmtx0(mtcars)

producing an unwieldy 11×11 matrix for the motor cars engineering specifica-
tions data, which is always available in R. We illustrate it with a manageable
3×3 submatrix for the first three columns, for brevity. The R command is:

gmcmtx0(mtcars[,1:3])

The 3×3 matrix R∗ gives along row i and column j the value of r∗(i| j). For ex-
ample, the value −0.9433 along row=2 and column=1 represents r∗(cyl|mpg).
It is compared to the value −0.8558 of smaller magnitude, in the diagonally
opposite location at row=1 and column=2 representing r∗(mpg|cyl). The
causal path is mpg→cyl, implying that desire for better fuel economy re-
duces the number of cylinders, rather than vice versa.

mpg cyl disp

mpg 1.0000000 -0.8557900 -0.9508994

cyl -0.9433125 1.0000000 0.9759183

disp -0.8941676 0.9151419 1.0000000

Since |R∗13| > |R
∗

31| the causal path is disp→mpg, implying that engine dis-
placement reduces fuel economy.

Now we illustrate the use of allPairs and somePairs functions from
the package generalCorr for causal path identification from data matrices.
As we do above, consider only the first three variables out of 11 from the
‘mtcars’ data for brevity. The first column has ‘mpg’ or miles per (US)
gallon, the second column has ‘cyl’ representing ‘number of cylinders’, a
categorical variable, and the third column has ‘disp’ for ‘engine displacement
in cubic inches’. The ‘np’ package used here for kernel regressions is already
designed to choose suitable bandwidths for categorical variables as well as
usual ratio-type variables.

In the terminology of Section 1.1, defined below, this paper considers three
criteria. The function allPairs implements all three criteria by choosing the
typ to be the criterion number. The criterion based on R∗ matrix is the third
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criterion (Cr3). Hence we must call the function allPairs with the option
typ=3. Also, since we want the output to fit here we are choosing the option
dig=4 for displayed digits to be four.

attach(mtcars)

options(np.messages=FALSE)

m1=allPairs(cbind(mpg,cyl,disp),typ=3)

m1

Since the data can have different number of missing values for different col-
umn pairs (as in the European crime data), the function reports the number
of non-missing data for each pair. In the ‘mtcars’ example, there are no miss-
ing values with all 32 pairs available. First several lines of output produced
by allPairs lists the row and column numbers and the corresponding length
of non-missing data. The user may ignore these lines, except when different
number of lines of data are missing in different data pairs.

> m1=allPairs(cbind(mpg,cyl,disp),typ=3)

[1] "n,p,digits" "32" "3" "6"

[1] "r* compared"

[1] "no. of pairs, typ " "3" "3"

[1] "i,non-missing" "1" "32"

[1] "i,j,ii" "1" "2" "1"

[1] "i,non-missing" "1" "32"

[1] "i,j,ii" "1" "3" "2"

[1] "i,non-missing" "2" "32"

[1] "i,j,ii" "2" "3" "3"

> m1

X Y Cause r*x|y r*y|x r p-val

[1,] "mpg" "cyl" "mpg" "-0.85579" "-0.943312" "-0.852162" "0"

[2,] "mpg" "disp" "disp" "-0.950899" "-0.894168" "-0.847551" "0"

[3,] "cyl" "disp" "disp" "0.975918" "0.915142" "0.902033" "0"

The output object m1 is in the lower portion of the output above. Since
we are choosing a pair of two from a set of three columns of the ‘mtcars’
data, we must consider (3C2 = 3) 3 pairs. The output object m1 has row [1,],
which reports the first pair results with self-explanatory column headings.
It shows the causal path mpg→cyl, because the absolute value of its ‘r*y|x’
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exceeds ‘r*x|y’. It also confirms that the Pearson correlation coefficient r has
the smallest magnitude along each row. The zero p-value suggests that the
estimated r is significantly different from zero.

Our results from the allPairs function agree with those based on R∗ ma-
trix, viz, mpg→cyl and disp→mpg. Note that it is possible to get Latex style
tabulated output by the commands: library(xtable) and xtable(m1).

A study of all possible pairs may be useful to data miners, but often the
researcher knows the plausible subset of dependent variable(s) and wishes to
assess the causal strength and exogeneity of other variables. In the ‘mtcars’
data a plausible dependent variable is ‘mpg’ which may be matched with
‘cyl’ or ‘disp’ resulting in only two possible pairs in our abridged (chosen for
brevity) illustration with only three variables.

m2=somePairs(mtcars[,1:3],typ=3,dig=4)

m2

The output is shortened for brevity. Unlike the allPairs function above,
the first two column headings in the matrix produced by somePairs are
reversed (Y and X), since somePairs is designed for situations where the
same dependent variable Y is often fixed for several regressors X on the right
hand side, and where we want to know whether the X’s are truly exogenous
or we need instrumental variables to deal with their endogeneity.

> m2

Y X Cause r*X|Y r*Y|X r p-val

[1,] "mpg" "cyl" "mpg" "-0.943312" "-0.85579" "-0.85216" "0"

[2,] "mpg" "disp" "disp" "-0.894168" "-0.950899" "-0.84755" "0"

We find that both causal paths: mpg→cyl and disp→mpg based on the ma-
trix R∗ above using gmcmtx0 are correctly summarized by functions allPairs
and somePairs, included for the convenience of the package user.

1.1 Definition of Kernel causality criteria

Assuming A1 to A3, we conclude that variable X kernel causes Y or X→ Y,
if Model 1 is superior to Model 2 with respect to at least two of the following
three inequality criteria based on model-selection.

(Cr1) If X is the cause, Model 1 is more successful than Model 2 in mini-
mizing local kernel regression gradients, or partial derivatives satisfy:

|∂g1(Y|X)/∂x| < |∂g2(X|Y)/∂y|, (4)
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where the inequalities among T local partial derivatives are fuzzy (i.e.,
may be violated for some subsets). We quantify them with the help of
stochastic dominance of four orders (SD1 to SD4) described later.

(Cr2) The estimated Model 1 absolute residuals (i.e., (|ε̂1t|) ) should be
“smaller” than those of Model 2, satisfying the following inequality for
each t = 1, 2, . . . ,T:

(|ε̂1t|) < (|ε̂2t|), (5)

where the fuzzy inequalities among T residuals will be summarized by
stochastic dominance tools.

(Cr3) The forecasts from Model 1 are “superior” (e.g., the R2 of Model 1
exceeds the R2 of Model 2).

Why kernel regressions?

There are at least two advantages:

(a) The kernel regression fits are generally superior to parametric linear or
non-linear regressions. For the crime data example, Pearson’s correla-
tion is smaller than both: rXY < r∗(X|Y) and rXY < r∗(Y|X). The crime
data example illustrates this fact.

(b) Kernel regressions do not place any unnecessary restrictions on the un-
known conditional expectations functions, Shaw (2014). For example,
the sum of the residuals of parametric regressions is artificially forced
to be zero. By contrast, we have conditional expectation ‘functions’
and estimated errors from (1) and (2) need not sum to zero: Σ(ε̂1t , 0)
and Σ(ε̂2t , 0). This property is exploited by our second criterion Cr2.

The plan of the remaining paper is as follows. Section 2 discusses the
background and confidence intervals for the r∗-based third criterion Cr3. The
subection 2.2 uses the crime data example to illustrate statistical inference
using the bootstrap, plotting a sampling distribution. Another subection 2.3
discusses a heuristic test for significance of difference between two r∗ values
avoiding computer intensive bootstraps. A subsection 2.4 briefly mentions
the assumptions of alternative approaches avoided here. Section 3 describes
details of model selection based on the first two criteria Cr1 and Cr2 with the
subsection 3.1 focusing on stochastic dominance. Subsection 3.2 describes a
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function summarizing causal assessment by all three criteria, with examples.
Subsection 3.3 describes an application to the Klein I model to assess ex-
ogeneity of regressors. Section 4 explains an extension to the multivariate
case by considering the generalized partial correlation coefficients to assess
the effect of Xi on X j after removing the effect of a set of possibly confounding
variable(s) Xk. Section 5 reports a brief summary of results from an applica-
tion of our methods to 80 data pairs from the benchmark challenge. Section
6 contains a summary and concluding remarks.

2 Background and Inference for the r∗-based

Criterion Cr3

Granger (1969) developed causality for time series data based on the criterion
of superior forecast and statistical significance of certain coefficients. Vinod
(2014) [Sec. 7.1] developed kernel causality by extending Granger’s ideas
when the data is not necessarily a time series. Since our third criterion (Cr3)
based on generalized correlation coefficients r∗ is closer to Granger’s ideas,
it was developed before the other two (Cr1, Cr2) defined in Section 1.1.
It is convenient to discuss Cr3 before Cr1 and Cr2, especially because the
other two require some familiarity with stochastic dominance borrowed from
Financial Economics.

Zheng et al. (2012) define R2 values as generalized measures of corre-
lation, denoted by GMC(Y|X) or GMC(X|Y), and proved the asymptotic
consistency of δ = [GMC(X|Y)−GMC(Y|X)]. Vinod (2014) first claimed that
the causal path X→ Y is plausible when δ < 0.

Definition of Generalized Correlations

Since R2 is always positive, providing no information regarding the direction
of the relation, Vinod (2014) defines:

r∗(Y|X) = sign(rXY)
√

GMC(Y|X)], (6)

where its square root is assigned the sign of the Pearson correlation coefficient.
Similarly, r∗(X|Y) = sign(rXY)

√
GMC(X|Y), generally distinct from the one in

eq. (6). A matrix of generalized correlation coefficients R∗ can be computed
by the R function gmcmtx0. It is illustrated above for the crime data and
motor cars data, and is seen to be asymmetric.
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2.1 Statistical Inference for Criterion Cr3

The identification of the causal path by Cr3 crucially depends on the asym-
metry of the R∗ matrix. Statistical inference regarding causal paths from
asymmetry is subject to unsolved pitfalls discussed next.

Remark 1 (Linearity pitfall):

When the true functions G1,G2 in equations (1) and (2), respectively, are
linear, it is well known that the R2 of both regressions is simply the square
of Pearson’s standard correlation, rX,Y, making δ̂ ≈ 0. Thus small numerical
magnitude of δ̂ is caused by the linearity and does not necessarily imply
statistically insignificant kernel causality.

Remark 2 (Normality pitfall):

If the true joint density f (X,Y) is Normal, conditional densities, f (Y|X) and
f (X|Y), are also Normal, making g1, g2 linear and ultimately making δ̂ ≈
0. Again, normality can incorrectly suggest statistically insignificant kernel
causality.

In light of Remarks 1 and 2 significance testing of the null hypothesis
δ = 0 (implying bi-directional causation) based on the numerical magnitude
of δ̂ is problematic whenever the underlying relation is linear or distribution
is Normal. Recall that the usual t-test to determine whether the correlation
coefficient is significantly different from zero, one can focus on the size of |r|.
Not so for the causal inference.

If the relations (1) and (2) are N4 (nonlinear, noisy, non-Normal and
non-parametric), possibly involving biological or human agents, we need not
worry about this difficulty. The importance of nonlinearity when human
agents are involved was mentioned back in 1784 when Kant, the German
philosopher, said: “Out of the crooked timber of humanity no straight thing
was ever made.” Hence causal paths in social sciences may be easier to assess
by using Cr3.

Kernel causality based on Cr3 is likely to fail when the relations are
bi-directional exact (E = MC2) having no noise components. Hoyer et al.
(2009) show that nonlinearities can be a “blessing rather than a curse” in the
context of causal identification. Shimizu et al. (2006) show the advantages
of non-normality in the same context.
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Remark 3 (Wrong cause from R2):

Consider an example where X = ε′,Y = X2η′, where ε′ and η′ are in-
dependently distributed normal deviates, where E(X|Y) = E(ε′) = 0, and
E(Y|X) = E(X2) E(η′) = 0. Since X needs to be known before we know the
corresponding Y, a change in X must “cause” Y to change (through condi-
tional variance). However it can be verified that here the two R2 values can
sometimes suggest incorrect causal direction: Y→ X.

Zhang and Hyvarinen (2009) list two requirements for causal identification
in non-linear cases: (i) the assumed causal model should be general enough to
approximately reveal the data generating processes (DGP), and (ii) the model
should be identifiable, i.e., it is asymmetrical in causes and effects. Since our
kernel regressions are flexibly estimated, they are obviously general and their
asymmetry is proved in Zheng et al. (2012) under suitable assumptions.

Vinod (2013) reports many favorable simulations and provides tools for
statistical inference when the model choice is based on the sign of δ̂, updated
in Vinod (2015a).

The maximum entropy bootstrap described in Vinod and López-de-Lacalle
(2009) constructs resamples of potentially non-stationary (X,Y) data and es-
timates δ̂ j a large number of times, e.g., j = 1, . . . , J with J = 999. These

yield an approximate sampling distribution of δ̂.

2.2 Crime Data Bootstrap Inference for δ̂ of Cr3:

We illustrate the sampling distribution of δ̂ in Figure 1 showing (99, 95, 50)%
highest density regions. The mode is at −0.0141, a slightly negative value, a
desirable sign for the correct causal path crim →off.

Vinod (2015a) tackles inference issues (for Cr3 using δ̂) arising from Re-
marks 2 and 3 by using the asymptotic normality to justify using the max-
imum entropy bootstrap (R package ‘meboot’). The sampling distribution
of δ̂ is readily approximated for statistical inference including confidence in-
tervals or ‘highest density region’ graphics. It uses Hyndman (2008) method
where the plots depict three sets of highest density regions for (99, 95 and
50)%, respectively.

Vinod (2015a) defines:

P(cause) = max{P∗(δ j < 0), P∗(δ j > 0)}, (7)
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Figure 1: Highest Density Regions for sampling distributions of δ̂ using
J=999 resamples of European crime data, where negative values imply cor-
rect causal identification
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where P(cause) is seen to be the larger of the two rejection probabilities
in bootstrap resamples. If we repeat the bootstrap a large number of times
(e.g. L = 1000) we can numerically approximate the P(Cause) values. A large
P(cause) seems to be more desirable because it indicates a larger rejection
probability of the null. The pcause function in generalCorr can be used for
the crime data example as follows.

options(np.messages=FALSE)

pcause(crim,off,n999=999)

The output of the above computer intensive function is next.

> pcause(crim,off,n999=999)

[1] 0.5365365

The estimate P(cause)=0.5365 for the crime data is only slightly larger
than 0.50, suggesting that the observed correct sign might have been due
to random variation. A computationally fast and less burdensome heuristic
alternative to P(cause) suggested in the Section 2.3 is −0.99, which is also
negative, as desired, but statistically insignificant.

2.3 Heuristic test of the difference between two
dependent r∗ values

If the bootstrap is deemed computationally too demanding, one can formu-
late the inference problem as one of testing for the difference between two
estimates of dependent correlation coefficients, r∗. In 1921 Fisher proposed a
variance stabilizing and normalizing transformation for the correlation coef-
ficient, r defined by the formula: r = tanh(z), involving a hyperbolic tangent.
We have:

z = tanh−1r =
1
2

log
1 + r
1 − r

. (8)

An R package ‘psych’ by Revelle (2014) has references to the literature
describing several applications of (8) in tests for difference of two Pearson
correlations. One is called the ‘paired.r’ test for correlations between three
variables x, y and z denoted by r(xy), r(xz) and r(yz). Since r(xy)=r(yx) by
the symmetry of Pearson’s correlations, and since we have only two variables,
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the R function paired.r obviously cannot be used for our inference problem.
However, it is tempting to use it for the following heuristic approximations:

zstat = paired.r(r∗xy, r
∗

yx,yz = NULL,n), (9)

tstat = paired.r(r∗xy, r
∗

yx,yz = min(|r∗xy|, |r
∗

yx|),n),

where n is the sample size and where the choice yz=NULL yields a standard
Normal z-statistic, assuming that the two r∗ values are independent. Since
we know that they are dependent, and since the R function paired.r ex-
pects us to specify a numerical estimate of the dependence, one can use the
smaller of two absolute values of r∗. Thus the “paired.r” test yields heuristic
approximations to t and z test statistics defined in eq. (9). The R function
heurist of the package ‘generalCorr’ implements the heuristic t test which
requires the r∗ correlations and sample size as input arguments, which are
obtained as illustrated below.

r1=rstar(crim,off)

T=length(crim)

heurist(r1$corxy, r1$coryx,n=T)

The output from the above code given below shows that the t-statistic is
negative (=0.99) with high p-value (0.33) failing to reject the null hypothesis
that either crim or off can be the cause.

Call: paired.r(xy = rxy, xz = ryx, yz = min(rxy, ryx), n = n)

[1] "test of difference between two correlated correlations"

t = -0.99 With probability = 0.33

The heuristic t test is known to be rather conservative.
This completes our discussion of statistical inference for Cr3 based on gen-

eralized correlations. In light of the limitations of causal identification based
on δ̂, or equivalently on the asymmetric R∗ matrix used for Cr3, one needs
to use additional model selection criteria Cr1 and Cr2 defined in Section 1.1
and discussed in Section 3 below. They compare the absolute gradients and
absolute residuals, respectively, of equation (1) with those of (2). Since our
comparisons are somewhat similar to alternative approaches in the literature,
they are briefly mentioned in the next subsection.
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2.4 Alternative Causality Approaches

Some comments on the alternative approaches from the literature mentioned
earlier are included in this subsection. IGCI advocates use information theory
to claim that if X→ Y, f (X) and f (Y|X) represent independent mechanisms
of nature and therefore contain no “information” about each other. Our
approach involves a direct comparison of two competing models in equation
(1) and (2) without the information theory assumptions.

ANM: The consistency of causal inference under the ANM was estab-
lished by Kpotufe et al. (2013) who explain (Kolmogorov) complexity mea-
sures and kernel regressions similar to our two models. These authors use an
equation similar to our eq. (1) upon inserting an explicit requirement that
ε1 y X, meaning that model 1 errors are orthogonal to X. A key implication
of additive noise assumption is that the conditional density f (Y|X) depends
on X only through its mean. Since any density has mean, variance, skewness
and kurtosis, it is difficult to argue that the ANM assumption is always valid.

The Lemma 4 in Mooij et al. (2014) states the requirement that model
1 errors are orthogonal to X. The ANM will conclude that X → Y (i.e.,
choose model 1) if their version of our eq. (2) also satisfies an absence of
orthogonality for model 2, denoted by ε2 6y Y. Hence we claim that additive-
noise type methods also implicitly involve a model choice for their causal
identifications.

Mooij et al. (2014) describe various ANM implementations using 88 data
pairs. They seem to favor studying the independence of errors with regressors
using versions of Hilbert Schmidt Independence Criterion (HSIC) reporting a
success rate of over 63%. This paper reports in Section 5 a somewhat better
performance (70–75% success) of kernel causality defined above applied to
the bivariate 80 of their 88 data pairs.

3 Kernel Regression Model Comparisons for

Cr1 and Cr2

This section describes newer tools for overcoming the limitations mentioned
in the remarks included in Section 2 by considering additional criteria be-
yond the goodness-of-fit (R2) of the two competing kernel regression models,
from eq. (1) and eq. (2). This is perhaps a first application of stochastic
dominance for model selection.
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Standardization:

Any criterion which compares magnitudes estimated by two competing re-
gressions which depend on the units of measurement must be first adjusted
to remove such dependence. Hence we often standardize both X,Y separately
by subtracting the mean and dividing by the standard deviation.

Since r∗(Y|X) values are not sensitive to units, standardization is not
needed for Cr3. However, the absolute values of the gradients of condi-
tional expectation functions g1, g2, needed for Cr1 and absolute values of
kernel regression residuals needed for Cr2 are generally sensitive to units of
measurement. Therefore, we will use standardized data for Cr1 and Cr2.

3.1 Stochastic Dominance for Criteria Cr1 and Cr2

On Wall Street and in Financial Economics a fundamental problem is choos-
ing the best portfolio of stocks and bonds by using past data on returns from
such investments. Each portfolio leads to a probability distribution of returns
and the portfolio choice is formulated as a problem of choosing the invest-
ment offering the best distribution of returns. There is vast and growing
published and unpublished literature on this topic.

Stochastic dominance (SD) provides well-known comprehensive measures
for comparisons of probability distributions, f (x) and f (y), Vinod (2004).
We say that f (x) dominates f (y) in the first order (SD1) if their empirical
cumulative distribution functions (ecdf) satisfy: F(x) ≤ F(y). Why?

A somewhat counter-intuitive sign:

If density f (X) dominates another density f (Y), a density plot for f (X) stays
mostly (not everywhere) to the right hand side of the density plot of f (Y).
However, the plot of the cumulative density F(X) stays mostly to the left hand
side of F(Y), or F(X)−F(Y) ≤ 0, exhibiting a counter-intuitive negativity. See
Vinod (2004) (p. 214) illustration using the plots of two beta densities where
one is known to dominate. A comparison using artificial data is given in
Figure 2.

Let us illustrate stochastic dominance concepts with artificially created
small data for Xt,Yt, t = 1, 2, . . . ,T = 10. The dominance of the dependent
density f (Y) represented by the dashed line over the density f (X) of the
independently generated causal variable is seen in Figure 2.
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Figure 2: Smoothed densities for artificial X and Y
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options(width=65)

set.seed(234);x=sample(1:10);x

y=1+2*x+rnorm(10);y

plot(density(x),main="Density for x (solid line) and

y (dashed line)",xlim=c(-4,25))

lines(density(y),col=2,lty=2)

The abridged output of the above code is as follows.

> x

[1] 8 10 1 6 9 4 5 3 2 7

> y

[1] 17.14013904 21.20918439 -0.03608982 12.51306587 17.91213269

[6] 9.05785971 12.10397550 6.97438303 5.51484639 15.99005668

Let us begin with the Cr3 results based on R∗ matrix for these data
and note that Cr3 gives the known correct causal path x→y. Although this
involves no stochastic dominance at all, it establishes the causal path we
seek.

gmcmtx0(cbind(x,y))

somePairs(cbind(x,y),typ=3)
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Recall that somePairs labels the first variable in the input matrix as Y and
the second variable onward as regressors. However, we get the right label for
the ‘cause’ column in the following output.

> gmcmtx0(cbind(x,y))

x y

x 1.0000000 0.9907709

y 0.9957212 1.0000000

> somePairs(cbind(x,y),typ=3)

Y X Cause r*X|Y r*Y|X r p-val

[1,] "x" "y" "x" "0.995721" "0.990771" "0.984616" "0"

Note that first order stochastic dominance SD1, summarizes several lo-
cally defined central tendencies. Second order dominance (SD2) of f (x) re-

quires their integrals to satisfy:
∫

F(x) ≤
∫

F(y), and captures all locally
defined dispersions. Similarly, SD3 summarizes several locally defined skew-
ness values and uses

∫ ∫
F(x) ≤

∫ ∫
F(y). Analogous SD4 for kurtosis requires∫ ∫ ∫

F(x) ≤
∫ ∫ ∫

F(y).
Computation of SD1 to SD4 using the R software is described in detail

in (Vinod, 2008, ch.4). We summarize the basic ideas here. Each ecdf mono-
tonically increases from 0 to 1 with a jump of 1/T as the variable increases
from its minimum value. A set representing their union is chosen as the
new support for the combined random variable conveniently defined as x j

representing cumulated interval widths d j defined over 2T (twice as many)
observations. The combined ecdf now assumes that the probability pi asso-
ciated with each observation is 1/2T. The cumulative probability or ecdf is:
F(x j) =

∑ j
i=1 pi, which also monotonically increases from 0 to 1 with a jump

of 1/2T at each distance d j for j = 1, 2, . . . 2T.
Premultiplication by a large patterned matrix (I f ), illustrated below, im-

plements the cumulative density computation in Anderson (1996). Now, we
illustrate 3×3 representations of I f allowing the reader to verify that premul-
tiplication by I f is equivalent to computing a cumulative summation.

If =

1 0 0
1 1 0
1 1 1


The first order stochastic dominance of the distribution f (X) over f (Y),
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(SD1), uses the null hypothesis of no difference between the two as:

H0 : I f (F(X) − F(Y)) = 0, against H1 : I f (F(X) − F(Y)) ≤ 0. (10)

where the alternative hypothesis suggests the dominance of f (X).
Actually SD2 to SD4 require further integrals of these ecdf’s. We compute

the integrals by using the modified trapezoidal rule (which accommodates
unequal widths d j) according to the formula in Anderson (1996):

C(x j) =

∫ x j

0
F(z)dz ≈ 0.5

F(x j)d j +

j−1∑
i=1

(di + di+1)F(xi)

. (11)

Stochastic dominance of order 2 (SD2) uses a similar null hypothesis
H0 : IFI f (F(X) − F(Y)) = 0, against the alternative H1 : IFI f (F(X) − F(Y)) ≤ 0,
which involves the additional (sparse) matrix IF needed for implementing the
trapezoidal rule and involving distances d j is illustrated next.

IF = 0.5

 d1 0 0
d1 + d2 d2 0
d1 + d2 d2 + d3 d3

 .
Thus computation of SD2 to SD4 applies eq. (11) repeatedly. Not sur-

prisingly, there are efficient computer programs for this purpose. Novelty
here is in using them for model selection for causal determination.

Anderson (1996) describes testing of SD3 obtained by pre-multiplication
by an additional IF. Vinod (2004) extends it to SD4 by pre-multiplication
by one more IF, arguing that it incorporates investor ‘prudence’ relevant in
Finance. Let us denote by ζ the vector of F(X) − F(Y) evaluations at each
quantile representing each (1/2T)-th segment. Inference for SD1 to SD4 is
based on hypotheses regarding I fζ, IFI fζ, IFIFI fζ, and IFIFIFI fζ, respectively,
similar to eq. (10).

Using the lower case letters to denote the sample values for stochastic
dominance of orders 1 to 4, let us define:

sd1 = I f ζ̂
s, sd2 = IFI f ζ̂

s, sd3 = IFIFI f ζ̂
s, and sd4 = IFIFIFI f ζ̂

s, (12)

where the superscript ‘s’ refers to studentized values. Assuming we have T
data points for each variable, there are 2T estimates of sd’s upon bringing
two variables on common support.
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Now we illustrate the computation of sd1 to sd4 for our artificial example,
where the output of wtdpapb is used as an input to the function stochdom2

to compute the stochastic dominance measurement vectors.

w1=wtdpapb(x,y) #y should dominate x with mostly positive SDs

print(w1$dj)

stochdom2(w1$dj, w1$wpa, w1$wpb)

The following output shows how dj are constructed on a common support
of both densities. In terms of cumulative densities the T measures of SD1
to SD4 should be positive. Note that we have T = 10 estimates of four
stochastic dominance measures which need to be summarized. We use their
sample means in defining our Av(sd1) to Av(sd4).

> w1=wtdpapb(x,y) #y should dominate x with mostly positive SDs

> print(w1$dj)

[1] 0.000000 1.036090 2.036090 3.036090 4.036090 5.036090

[7] 5.550936 6.036090 7.010473 7.036090 8.036090 9.036090

[13] 9.093950 10.036090 12.140065 12.549156 16.026147 17.176229

[19] 17.948223 21.245274

> stochdom2(w1$dj, w1$wpa, w1$wpb)

$sd1b

[1] 0.000000000 -0.002590225 0.002500000 0.025270674

[5] 0.075721796 0.163853368 0.260994752 0.366626324

[9] 0.489309599 0.612441171 0.793253192 1.041745662

[13] 1.291829274 1.567821745 1.901673541 2.184029544

[17] 2.464487108 2.679189969 2.813801637 2.866914823

$sd2b

[1] 0.000000000 -0.001341853 -0.001433705 0.040723425

[5] 0.244530765 0.847791790 2.026944200 3.921132796

[9] 6.921390576 10.797399267 16.445542351 24.736149589

[13] 35.346855939 49.696713184 70.756662892 96.392724955

[17] 133.641629392 177.816116713 227.110834524 287.455024005

$sd3b

[1] 0.000000e+00 -6.951399e-04 -3.520783e-03 5.612278e-02

[5] 6.317785e-01 3.382296e+00 1.136103e+01 2.931260e+01

[9] 6.731821e+01 1.296537e+02 2.391171e+02 4.251778e+02
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[13] 6.983737e+02 1.125126e+03 1.856282e+03 2.905074e+03

[17] 4.748356e+03 7.423191e+03 1.105705e+04 1.652310e+04

$sd4b

[1] 0.000000e+00 -3.601137e-04 -4.652112e-03 7.520008e-02

[5] 1.463416e+00 1.157104e+01 5.249068e+01 1.752455e+02

[9] 5.139593e+02 1.206915e+03 2.688653e+03 5.689967e+03

[13] 1.079873e+04 1.994913e+04 3.804638e+04 6.792188e+04

[17] 1.292494e+05 2.337800e+05 3.996237e+05 6.925976e+05

The causal direction X → Y according to Cr1 requires the inequality of
eq. (4), which is LHS = |∂g1(Y|X)/∂x| < RHS = |∂g2(X|Y)/∂y|. When the
left hand side is ‘smaller,’ model 1 of (1) has ‘smaller’ gradients than model
2 of 2). Since we cannot meaningfully compare T inequalities we consider
corresponding densities f (LHS) and f (RHS) from absolute values of indicated
gradients (apd’s).

In the terminology of stochastic dominance by our criterion Cr1, we
choose the causal path X → Y if f (LHS) is smaller than f (RHS), that is,
the RHS density dominates the LHS density by being larger in some overall
sense. Equation (12) quantifies dominance orders 1 to 4. We compute 2T
indexes representing SD1 to SD4 as providing us a comprehensive picture
of ranking between two probability distributions. In the R output of the
function stochdom2 above these are denoted as sd1b to sd4b.

Next, using the central limit theorem we claim that these values are well
summarized by simple averages as our sample statistics: Av(sd1) to Av(sd4).
The ‘generalCorr’ package provides convenient functions so that the user need
not call stdpapb or stochdom2 functions if the option typ=1 or 2 of the
function somePairs is chosen. Let us recreate the artificial data to illustrate
the use of the function somePairs.

set.seed(234);x=sample(1:10)

y=1+2*x+rnorm(10)

somePairs(cbind(x,y),typ=1,dig=4)

somePairs(cbind(x,y),typ=2,dig=6)

Abridged output follows.

> somePairs(cbind(x,y),typ=1,dig=4)

Y X Cause SD1apd SD2apd SD3apd SD4apd
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[1,] "x" "y" "y" "-0.0691" "-0.3365" "-1.2301" "-3.6304"

> somePairs(cbind(x,y),typ=2,dig=6)

Y X Cause SD1res SD2res SD3res SD4res

[1,] "x" "y" "x" "0.005016" "0.002819" "0.001161" "0.00038"

Note that SD1 to SD4 are negative for the gradient based criterion Cr1
(column headings SD1apd to SD4apd) obtained by setting typ=1, suggesting
the wrong causal path. This illustrates the fact that all criteria do not always
suggest the correct causal paths. On the other hand, typ=2 signs (column
headings SD1res to SD4res) are all positive, correctly stating that x→y,
similar to Cr3 noted above. Recall that our definition of kernel causality
uses a majority of two out of three criteria.

Now we illustrate the use of functions allPairs and somePairs using the
mtcars data using the options typ=1,2. The option dig=4 rounds to four
digits. The causal directions by these criteria need not agree with those from
the R∗ matrix.

attach(mtcars)

options(np.messages=FALSE)

allPairs(cbind(mpg,cyl,disp),typ=1,dig=4)

somePairs(cbind(mpg,cyl,disp),typ=1,dig=4)

Somewhat abridged output for Cr1 is as follows. The signs of Av(sd1) to
Av(sd4) depend on the order in which the variables are input. The all-

Pairs inputs them as X first and then Y for all possible pairs. Note that
with cbind(mpg,cyl,disp), the first variable is not fixed. By contrast,
somePairs uses the first variable mpg as Y which is then paired with the
other two. Of course, the signs of Av(sdj) are reversed between the outputs
of allPairs and somePairs, while keeping the correct variable in the ‘Cause’
column. The results for the choice typ=2 based on residuals are omitted for
brevity.

> allPairs(cbind(mpg,cyl,disp),typ=1,dig=4)

X Y Cause SD1apd SD2apd SD3apd SD4apd

[1,] "mpg" "cyl" "cyl" "0.0247" "0.2691" "2.1727" "13.9451"

[2,] "mpg" "disp" "mpg" "-0.0578" "-0.8837" "-10.4262" "-101.05"

[3,] "cyl" "disp" "cyl" "-0.0129" "-0.1358" "-1.0766" "-6.9144"

> somePairs(cbind(mpg,cyl,disp),typ=1,dig=4)

Y X Cause SD1apd SD2apd SD3apd SD4apd
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[1,] "mpg" "cyl" "cyl" "-0.0247" "-0.2691" "-2.1727" "-13.9451"

[2,] "mpg" "disp" "mpg" "0.0578" "0.8837" "10.4262" "101.0538"

3.2 Summarizing results of all three criteria

For users’ convenience we provide a function some0Pairs which reports the
results for each of the three criteria and an additional summary matrix with
seven columns called outVote.

We must first abridge the four numbers produced from Av(sd1) to Av(sd4).
We are focusing on their signs defined as (+1 or -1), not their magnitudes.
The seven columns produced by this function summarize the signs of Av(sd1)
to Av(sd4) stochastic dominance numbers weighted by wt=c(1.2,1.1, 1.05, 1)
to compute an overall result for all orders. The weighting is obviously not
needed for the third criterion Cr3.

The reason for slightly declining weights on the signs from SD1 to SD4 is
simply that the local mean comparisons implicit in SD1 are known to be more
reliable than local variance implicit in SD2, local skewness implicit in SD3
and local kurtosis implicit in SD4. The source of slightly declining sampling
unreliability of higher moments is the higher power of the deviations from
the mean needed in their computations. The summary results for all three
criteria are reported in one matrix called outVote. Now we illustrate it for
the simplest example.

some0Pairs(cbind(x,y))

Output abridged for brevity is given next.

> some0Pairs(cbind(x,y))

$outCr1

Y X Cause SD1apd SD2apd SD3apd

[1,] "x" "y" "y" "-0.069132" "-0.336547" "-1.230067"

SD4apd

[1,] "-3.630401"

$outCr2

Y X Cause SD1res SD2res SD3res SD4res

[1,] "x" "y" "x" "0.005016" "0.002819" "0.001161" "0.00038"
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$outCr3

Y X Cause r*x|y r*y|x r p-val

[1,] "x" "y" "x" "0.995721" "0.990771" "0.984616" "0"

$outVote

X Y Cause Cr1 Cr2 Cr3 sum

[1,] "x" "y" "x" "-1.0875" "1.0875" "1" "1"

These results, based on a very small data set with T = 10, do report the
correct causal path x→y, based on our eclectic definition. Since Cr1 gives
the wrong path, the value of sum=1. When all three criteria are unanimous,
value of sum=3.175, which is the case for the crime data described next. It
appears that a larger value of sum>1 suggests a stronger determination of
the causal path.

data(EuroCrime)

attach(EuroCrime)

some0Pairs(cbind(off,crim))

Abridged output of the above code has a ‘sum’ of −3.175 near the end.

$outCr1

Y X Cause SD1apd SD2apd SD3apd

[1,] "off" "crim" "crim" "-0.154858" "-3.587453" "-62.985262"

SD4apd

[1,] "-877.08644"

$outCr2

Y X Cause SD1res SD2res SD3res

[1,] "off" "crim" "crim" "-0.00244" "-0.001206" "-0.000551"

SD4res

[1,] "-0.000231"

$outCr3

Y X Cause r*x|y r*y|x r p-val

[1,] "off" "crim" "crim" "0.996012" "0.997196" "0.990047" "0"

$outVote

X Y Cause Cr1 Cr2 Cr3 sum

[1,] "off" "crim" "crim" "-1.0875" "-1.0875" "-1" "-3.175"

It is possible to use the reported number under sum computed by our R
function some0Pairs to be attached to the various arrows in directed acyclic

25



graphs (DAGs) to suggest the direction and strength of causal relation(s).
Instead of the sum, researcher can choose to attach the value of suitable
element of R∗ or summaries of SD1 to SD4 on the causal paths. More research
is needed to use our tools to supplement the causality apparatus by Pearl
(2010).

3.3 Exogeneity in Simultaneous Equation Models

This subsection reports summary results for our three criteria regarding ex-
ogeneity of each regressor of the famous Klein I model obtained by using the
some0Pairs function of the ‘generalCorr’ package.

Klein’s specification of the expected consumption equation (stated in
terms of fitted coefficients) is:

E(cons) = a10 + a11 coPr + a12 coPL + a13 wages. (13)

where cons=consumption, coPr=corporate profits, coPL= corporate profits
with a lag. Klein data is available in the R package ‘systemfit’, Henningsen
and Hamann (2007). The following code obtains the results to assess the
potential endogeneity problem in the first equation of the Klein I model.

According to accepted econometric practice, lagged variables are con-
sidered exogenous, because they are pre-determined. Thus the question of
endogeneity of lagged variables does not arise, especially since researchers
often use lagged variables as ‘instrumental variables’ to replace potentially
endogenous variable. Therefore, our code given below excludes the lagged
corporate profits corpProfLag from the cbind defining the argument to the
function some0Pairs.

library(systemfit)

data( "KleinI" )

attach(KleinI)

eqConsump = cbind(consump, corpProf, wages)

so1=some0Pairs(eqConsump)

Table 1 reports the summary results using all three criteria. A quick
way to assess endogeneity from the results is to focus on the column entitled
‘Cause’ and look for rows where the dependent variable consump also appears
as the ‘Cause.’ The idea is simply that if causal path goes from the dependent
variable to the regressor, we have endogeneity issues. Note that this does not
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happen along any row of Table 1 allowing us to conclude that there is no
endogeneity problem in the first equation of Klein I model. The reader can
verify that the same result holds for the remaining two equations also.

Table 1: Table of Summary Results form three criteria applied to the con-
sumption equation of the Klein I model

X Y Cause Cr1 Cr2 Cr3 sum
1 consump corpProf corpProf -1.0875 -1.0875 -1 -3.175
2 consump wages wages 1.0875 -1.0875 -1 -1

Quick assessment of exogeneity using ‘silentPairs’

A quick summary of results based on all three criteria is provided by a newer
function in the package called silentPairs. Its use is indicated below.

silentPairs(cbind(consump, corpProf, wages))

The output is simply a signed causal path summary of each pair holding the
first variable in the matrix fixed. With three variables in the matrix we have
two pairs (consump, corpProf) and (consump, wages). Hence there are two
values of ‘sum’ reported in that order. The negative sign is desirable for the
specification in the sense that it suggests that the variable paired with the
dependent variable (which is the first variable for consumption equation) is
exogenous in the sense that it is the “cause”.

The output for Klein I model is

[1] -3.175 -1.000

Both negative signs means both regressors are exogenous. Corporate profits
(corpProf) are exogenous with the highest ‘sum’ suggesting that the criteria
Cr1 to Cr3 unanimously suggest that corpProf is the cause of consumption.
The causal path from wages to consumption is not unanimous, but present.
This agrees with Table 1.

4 Causation After Removing Effect of Some

Variables

This section considers the generalized correlations between Xi and X j after
removing the effect of a set of variable(s) in Xk. This is an old problem in
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the context of Pearson correlation coefficients leading to the estimation of
partial correlation coefficients. Vinod (2015a) develops generalized partial
correlation coefficients starting with the asymmetric matrix R∗ of generalized
correlation coefficients.

The R package ‘generalCorr’ has a function for this purpose, called par-

cor_ijk. Let us review the theory behind this generalization before turning
to the usage specifics of this R function in a subsection 4.1.

It is convenient to use a notation similar to Vinod (2015a) to explain the
basic concepts. Assume, without loss of generality, that we are interested in
comparing treatments X j for j = 2, 3, . . . p as they affect X1. If we assume a
linear relation, the β1, j;k coefficients measure the specific effect of X j alone on
the dependent variable, X1, after removing the effects of “all other” variables:
{k ∈ [2, . . . p], k , j}. In that case one compares the magnitudes of beta
coefficients in the multiple regression:

E(Xs
1) =

p∑
j=2

β1, j;kXs
j, (14)

where the superscript ‘s’ denotes standardized data, defined to have zero
mean: E(Xs

i ) = 0, and unit variance: var(Xs
i = 1), for all i = 1, 2, . . . p.

Instead of standardizing data and explicitly computing the above regres-
sion, Raveh (1985) suggests a convenient shortcut which exploits the elements
of the inverse matrix R−1 = {r j j

}. He proves for the first row that:

β̂1, j;k = −r1 j/r11, (15)

and a way to link with the partial correlations by inserting the estimated left
hand side of eq. (15) on the right hand side, as in:

r1, j;k = β̂1, j;k/(
√

(r j j/r11)). (16)

This extends to an arbitrary i-th row by simply replacing the 1 by i in the
above equations. These two equations establish a computationally convenient
link between the betas and usual partial correlation coefficients.

If the researcher is choosing between two policy options for influencing
X1, we say that policy option X2 is superior to X3 if

|β̂1,2;3| > |β̂1,3;2|, (17)
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assuming that the magnitude of beta measures “size” of its contribution in
standardized regression (14) free from units of measurement.

An alternate to beta is the absolute size of the relevant partial correlation
coefficient, which is also unit free. Then the test for superiority of policy
option X2 over X3 becomes:

|r1,2;3| > |r1,3;2|. (18)

The betas in eq. (17), as well as, the partials in (18) measure the size of the
contribution, the latter has the advantage of being in the range [−1, 1].

Before we generalize, let us recall the correlation between (X1,X2) after
removing the effect of (X3) is:

r12;3 =
r12 − r13r23√

(1 − r2
13)
√

(1 − r2
23)
. (19)

The numerator has r12 − r13r23 has the correlation coefficient between X1

and X2 after subtracting the effect of X3 on them, while the denominator does
a normalization to obtain scale-free result. The formula critically depends on
symmetry of the usual correlation matrix. The package ‘generalCorr’ (version
1.0.8 onwards) has a function parcor_linear which computes traditional
partial correlation coefficients for the symmetric (linear) case.

Since generalized correlations are asymmetric, some of the traditional
methods for obtaining partial correlation coefficients using cofactors of cer-
tain minors of correlation matrices suggested by eq. (16) are found to be
unreliable. Hence let us use a more direct method mentioned in Kendall and
Stuart (1977).

We shall first define ui,k as the residual of kernel regression of Xi on all
control variable(s) Xk. Similarly define u j,k as the residual of kernel regression
of X j on all control variable(s) Xk. Next, we define a symmetric version of
generalized partial correlation coefficient in the presence of control variable(s)
as:

u∗i j;k =
cov(ui,ku j,k)
σ(ui,k)σ(u j,k)

, (20)

a symmetric correlation coefficient between two relevant residuals.
Now we recall eq. (6) based on GMC’s to obtain asymmetric general-

ized partial correlation coefficients. Denote the sign of the correlation in eq.
(20) as sign(u∗i j;k). Finally we are ready to define an asymmetric matrix of

29



generalized partial correlation coefficients using the R2 of kernel regression:
ui,k = f (u j,k) + err as GMC(ui,k|u j,k). As desired, the generalized partial corre-
lations will be asymmetric since GMC(ui,k|u j,k) does not equal GMC(u j,k|ui,k).

Thus, we can define:

r∗(Xi,X j; Xk) = sign(u∗ij;k)
√

[GMC(ui,k|uj,k)]. (21)

Often, we simplify the notation and write the generalized partial correlations
as r∗i, j;k.

Removing the effect of confounding on kernel causation

Let X3 be a nuisance variable which might be confounding the causal re-
lationship between X1 and X2. Having defined starred partial correlations,
Vinod (2015a) defines starred delta as:

δ∗1,2;3 = r∗21,2;3 − r∗22,1;3. (22)

If this delta is negative, we know that r∗22,1;3 is the larger of the two, implying
that X1 is the kernel cause of X2 despite confounding by X3.

Our code described below denotes ouij for r∗i, j;k and ouji for r∗j,i;k and

checks the sign of the absolute difference, denoted by rijMrji for |r∗i, j;k| −
|r∗j,i;k|. Its interpretation is similar to that of δ∗ above, with the negative sign

implying that Xi is the more likely kernel cause than X j.

4.1 R Code for Generalized Partial Correlations

Consider artificial data where we first create z independently, then let x have
an independent component and a component that depends on z. Finally we
create y as dependent on both x and z with a noise component in its defining
relation.

set.seed(234)

z=runif(10,2,11);z# z is independently created

x=sample(1:10)+z/10;x #x is somewhat indep and affected by z

y=1+2*x+3*z+rnorm(10);y #y is caused by both x and z

The artificial data are:
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> z

[1] 8.710580 9.035412 2.180334 8.984768 2.602191

[6] 7.803156 10.364474 8.458780 10.349629 4.558071

> x

[1] 6.871058 5.903541 9.218033 8.898477 1.260219

[6] 3.780316 3.036447 7.845878 11.034963 4.455807

> y

[1] 40.93172 41.01729 25.95145 46.26611 12.31707 32.27355

[7] 37.23624 42.15213 54.64559 23.60170

Now we define residuals uxz of kernel regression of x on z and uyz for anal-
ogous residuals of kern regression of y on z. The simple correlation between
these two gives us the sign denoted by sgn(cor(uxz,uyz)).

library(generalCorr)

options(np.messages=FALSE)

print(gmcmtx0(cbind(x,y,z)))

The output of above code is next. Note that columns of the R∗ matrix
given by gmcmtx0 have “cause” and rows have “effect or response”. Since
0.7969546>0.7312724, x is confirmed to be the cause of y. However, does this
hold after removing the effect of z?

> gmcmtx0(cbind(x,y,z))

x y z

x 1.0000000 0.9592012 0.2116604

y 0.7127315 1.0000000 0.8636222

z 0.1183994 0.9827227 1.0000000

The following code is a direct implementation of the code inside the func-
tion parcor_ijk without explicitly using it. The notation in the code below
is similar to eq. (20).

uxz=kern(dep.y=x, reg.x=z, residuals=TRUE)$resid

uyz=kern(dep.y=y, reg.x=z, residuals=TRUE)$resid

sgn=sign(cor(uxz,uyz))

yONx = sgn * kern(dep.y=uyz, reg.x=uxz)$R2

xONy = sgn * kern(dep.y=uxz, reg.x=uyz)$R2

print(c(yONx, xONy))
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The last three lines of the code implement eq. (6).
The following output shows that regression y on x (notation yONx) has a

higher absolute generalized partial correlation r∗(y = f (x)|z) = 0.96 > 0.94 =
r∗(x = f (y)|z), which correctly suggests that x kernel causes y.

> print(c(xONy, yONx))

[1] 0.9374655 0.9605739

The application of command parcor_ijk(x,y,z) gives identical output,
using the notation ouij, ouji, since (x,y,z) are denoted as Xi, x j,Xk.

parcor_ijk(x,y,z)

The output upon regressing Xi or x on X j or y while removing the effect of
Xk or z variable(s) is 0.9374655 reported as: ouij.

$ouij

[1] 0.9374655

$ouji

[1] 0.9605739

The package ‘generalCorr’ (version 1.0.8 onwards) has a function par-

corMany which reports several generalized partial correlation coefficients.
The function someCPairs extends some0Pairs to admit control vari-

able(s) as illustrated below.

m3=some0Pairs(mtcars[,1:3],dig=4);m3

m4=someCPairs(mtcars[,1:3],ctrl=mtcars[,4],dig=4);m4

m5=someMagPairs(mtcars[,1:3],ctrl=mtcars[,4],dig=4);m5

The function someMagPairs is intended for use after the causal direction is
determined and one wants to have an overall notion of the magnitudes of
(the effect of one variable on the other after controlling for ctrl variables)
relevant partial derivatives, (dy/dx) or (dx/dy). The outputs from the above
code are omitted for brevity.

5 Benchmark Application

Mooij et al. (2014) provide a benchmark of 88 sets of observational data where
the presumed cause is known. I had technical difficulties in implementing
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nonparametric kernel regressions on the data in 8 pairs (52 to 55, 71, and
81 to 83), mostly because the data sets are not pairs at all, but have three
or more columns. This leaves 80 pairs, some of which are very large to be
studied here. Somewhat older results for these data pairs are available at
Vinod (2015b). This section reports updated results using the three criteria
Cr1 to Cr3 emphasized in this paper and in the R package ‘generalCorr’.
We apply the function some0Pairs separately for each data pair, where the
implementation is slow, requiring more than a full day of number crunching
on my home PC.

Tables 2 and 3 report the summary sign of all four SD measures for
Cr1 and Cr2, whereas only (+1, –1) are reported as signs based on Cr3. A
column entitled ‘sum’ further summarizes the overall sign based on all three
criteria. The Table is arranged such that the column entitled ‘X’ always
has the correct ‘cause’. Hence the correct sign according to the benchmark
website is always positive. This allows us to compute the overall success rate
as: (number of positive signs)/80, which equals 55/80 or 68.75%. Some data
pairs have r∗(x|y) ≈ r∗(y|x), implying potentially bi-directional causality. If
we eliminate such data pairs, our success rate increases to over 75%.
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Table 2: Summary results for all three criteria using benchmark data, first
set of data pairs

X Y Cause Cr1 Cr2 Cr3 sum
1 ALT TEMP TEMP -1.0875 1.0875 -1 -1
2 ALT Precip Precip -1.0875 0.0625 -1 -2.025
3 Longit Temp Longit 1.0875 1.0875 -1 1.175
4 ALT Sunshine Sunshine -1.0875 -1.0875 -1 -3.175
5 RingAg Len RingAg 1.0875 1.0875 1 3.175
6 RingAge ShWt RingAge -0.4875 1.0875 1 1.6
7 RingAg ShDiam RingAg 1.0875 1.0875 1 3.175
8 RingAg ShHt RingAg 1.0875 1.0875 1 3.175
9 RingAg WholWt RingAg -0.4875 0.4875 1 1

10 RingAg ShWt RingAg -0.4875 -0.0625 1 0.45
11 RinAg VisWt VisWt -1.0875 -0.5875 1 -0.675
12 Age Wage Age 1.0875 1.0875 1 3.175
13 Disp mpg mpg -1.0875 -1.0875 -1 -3.175
14 HorsP mpg mpg -1.0875 -1.0875 1 -1.175
15 wt mpg wt 1.0875 -0.0625 -1 0.025
16 hp accel accel 1.0875 -1.0875 -1 -1
17 Age Divi Age 1.0875 1.0875 -1 1.175
18 Age GAG GAG -1.0875 1.0875 -1 -1
19 Dur T2next T2next 1.0875 -1.0875 -1 -1
20 Lati temp temp -1.0875 1.0875 -1 -1
21 Longi Preci Preci -1.0875 1.0875 -1 -1
22 Age Wt Age -1.0875 1.0875 1 1
23 Age Ht Age -1.0875 1.0875 1 1
24 Age HrtRat Age 1.0875 1.0875 1 3.175
25 cement CoStr cement -1.0875 1.0875 1 1
26 Slag CoStrn Slag -1.0875 1.0875 1 1
27 FlyAsh CoStr FlyAsh -1.0875 1.0875 1 1
28 Water CoStr Water -1.0875 1.0875 1 1
29 SuprP CoStr SuprP -1.0875 1.0875 1 1
30 Coars CoStr Coars -1.0875 1.0875 1 1
31 Fine CoStr Fine -1.0875 1.0875 1 1
32 Age CoStr Age 1.0875 -1.0875 1 1
33 drnk mcVol drnk 1.0875 1.0875 1 3.175
34 drnk AlkPho drnk -1.0875 1.0875 1 1
35 drnk sgpt drnk 1.0875 1.0875 -1 1.175
36 drnk sgot drnk 1.0875 1.0875 -1 1.175
37 drnk gama drnk 1.0875 1.0875 -1 1.175
38 Age BMI Age -1.0875 1.0875 1 1
39 Age Insu Age -1.0875 1.0875 1 1
40 Age diaBP Age -1.0875 1.0875 1 1
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Table 3: Summary results for all three criteria using benchmark data, second
set of data pairs

X Y Cause Cr1 Cr2 Cr3 sum
41 AGE GTT AGE 1.0875 1.0875 -1 1.175
42 Date Temp Date -1.0875 1.0875 1 1
43 Temp TmpNxt Temp -0.0625 1.0875 1 2.025
44 Presu PsNxt Presu 1.0875 -1.0875 1 1
45 Pressu PsuNxt PsuNxt -1.0875 -1.0875 -1 -3.175
46 Humid HumNxt Humid -1.0875 1.0875 1 1
47 WkDay Cars Cars 1.0875 -1.0875 -1 -1
48 outd Indoor outd -1.0875 1.0875 1 1
49 Temp Ozone Temp 1.0875 1.0875 1 3.175
50 Temp Ozone Temp -1.0875 1.0875 1 1
51 Temp Ozone Temp -1.0875 1.0875 1 1
56 Latit LifExp Latit -1.0875 1.0875 1 1
57 Lati LifEx Lati -1.0875 1.0875 1 1
58 Lati fLifEx Lati -1.0875 1.0875 1 1
59 Lati fLifE Lati -1.0875 1.0875 1 1
60 Lati LifE LifE -1.0875 0.0625 1 -0.025
61 Lati LifeE LifeE -1.0875 -1.0875 1 -1.175
62 Lati mLifEx Lati -1.0875 1.0875 1 1
63 Lati LifEx Lati -1.0875 1.0875 1 1
64 WtrAcc InfMor InfMor -1.0875 -1.0875 1 -1.175
65 HSBret HSBCrt HSBret 1.0875 -1.0875 1 1
66 RetHut ReCKon ReCKon -1.0875 -1.0875 -1 -3.175
67 RetCK ReSHK RetCK 0.4875 1.0875 1 2.575
68 OpConn Bytes OpConn 1.0875 1.0875 -1 1.175
69 OuTemp InTemp InTemp -1.0875 -1.0875 1 -1.175
70 MaleNs Guess MaleNs -1.0875 1.0875 1 1
72 sunSpt Temp sunSpt 1.0875 1.0875 -1 1.175
73 EnrUse CO2 CO2 0.5875 -1.0875 -1 -1.5
74 GNI LifEx LifEx -1.0875 -1.0875 -1 -3.175
75 GNI YMort YMort -1.0875 -1.0875 -1 -3.175
76 PopChg calChg PopChg 0.0625 1.0875 -1 0.15
77 SolRad Temp Temp 1.0875 -1.0875 -1 -1
78 PhoPFD EcoPro PhoPFD -1.0875 1.0875 1 1
79 PPFdif NEProd NEProd -0.5875 -1.0875 1 -0.675
80 PPFdir NEProd PPFdir -1.0875 1.0875 1 1
84 LnPop LnEmpl LnPop 1.0875 1.0875 1 3.175
85 TMeas Protei TMeas -1.0875 1.0875 1 1
86 AptSiz Rent Rent -1.0875 -1.0875 1 -1.175
87 AvTemp Snow Snow -1.0875 1.0875 -1 -1
88 Age SpineD Age 1.0875 1.0875 -1 1.175
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6 Summary and Concluding Remarks

This paper develops suitable assumptions (A1 to A3) and a practical defini-
tion of kernel causality. Since we cannot experimentally vary X to observe
its effect on Y, true causality cannot be determined with a 100% success rate
from observational data. A less stringent standard for determining “Granger
causality” for time series data accepts lower success rates. For cross sectional
data we refer to generalized correlation coefficients r∗(Y|X) first defined in
Vinod (2014) to define kernel causality as our third criterion Cr3, which is
not sensitive to measurement units. The R∗ matrix of such coefficients con-
tains suitably signed square roots of Generalized Measures of Correlation
(GMCs), recently developed by Zheng et al. (2012).

Vinod (2013) reports extensive simulations where the correct cause is
known. It shows that some tools already extant in the literature, includ-
ing transformations can overcome the problems associated with confounding
and non-spherical errors. Vinod (2015a) updates Vinod (2013) to include
the computer intensive maximum entropy bootstrap inference and partial
correlation coefficients for removing the effect of confounding variables in a
multivariate extension.

This paper can be viewed as a vignette describing the detailed steps in the
practical use of the R package ‘generalCorr.’ The package provides European
crime data for use as illustrative cross sectional data, which correctly show
that high crime rate is the cause of larger police force in European countries,
not vice versa. We use the same example to describe statistical inference
tools involving the bootstrap and heuristic t tests.

Upon listing certain limitations associated with the R∗ matrix, this paper
defines an eclectic notion of “kernel causality”based on two out of three crite-
ria (Cr1 to Cr3). We formulate two competing kernel regressions and compare
the absolute values of both gradients and residuals along with the goodness
of fit. A novelty here is in using stochastic dominance of various orders (SD1
to SD4) for model choice. Our eclectic approach is shown to improve the
success rate of causal identification based on 80 pairs of (X,Y) benchmark
observational data (presumably issued as a public challenge) where the causal
direction is presumably known. Our success rate of about 70-75% for these
data is ahead of other attempts known to me.

With additional research it is possible to extend our tools to supplement
extensive causality apparatus by Pearl (2010) while relaxing the ANM as-
sumption that the conditional density depends on X only through its mean.
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Various R functions (algorithms) relevant for causal path determination and
for computation of generalized correlation and partial correlation coefficients
are described with simple numerical examples. These functions and open
source nature of R should help in such extensions.

Researchers in various scientific fields and Big Data can benefit from
Granger-inspired causality concepts. Our R package ‘generalCorr’ is conve-
nient, fast and ready for anyone to build upon further. Researchers can save
time and resources and propose new research hypotheses by using these tools
for preliminary identification of causal directions from observational data.
Even approximate causal directions can help foster disciplined serendipity to
scientists and engineers by indicating the presence of confounding variables,
missing data and measurement errors.
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