Package ‘fdapace’

January 11, 2021

Type Package

Title Functional Data Analysis and Empirical Dynamics

URL https://github.com/functionaldata/tPACE

BugReports https://github.com/functionaldata/tPACE/issues

Version 0.5.6

Encoding UTF-8

Date 2021-01-10,

Maintainer Cody Carroll <cjcarroll@ucdavis.edu>

Description A versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry).

License BSD_3Clause + file LICENSE

LazyData false

Imports Rcpp (>= 0.11.5), Hmisc, MASS, Matrix, pracma, numDeriv

LinkingTo Rcpp, RcppEigen

Suggests plot3D, rgl, aplpack, mgcv, ks, gtools, knitr, rmarkdown,
EMCluster, minqa, testthat

1
NeedsCompilation: yes
RoxygenNote: 7.1.1
VignetteBuilder: knitr

Author: Cody Carroll [aut, cre] (<https://orcid.org/0000-0003-3525-8653>),
 Alvaro Gajardo [aut],
 Yaqing Chen [aut],
 Xiongtao Dai [aut],
 Jianing Fan [aut],
 Pantelis Z. Hadjipantelis [aut],
 Kyunghee Han [aut],
 Hao Ji [aut],
 Shu-Chin Lin [ctb],
 Paromita Dubey [ctb],
 Hans-Georg Mueller [cph, ths, aut],
 Jane-Ling Wang [cph, ths, aut]

Repository: CRAN
Date/Publication: 2021-01-11 22:40:03 UTC

R topics documented:

- BwNN ... 4
- CheckData 4
- CheckOptions 5
- ConvertSupport 5
- CreateBasis 6
- CreateBWPlot 7
- CreateCovPlot 7
- CreateDesignPlot 8
- CreateDiagnosticsPlot 9
- CreateFuncBoxPlot 10
- CreateModeOfVarPlot 11
- CreateOutliersPlot 12
- CreatePathPlot 14
- CreateScreePlot 15
- CreateStringingPlot 16
- cumtrapzRepp 17
- DynCorr 17
- Dyn_test 18
- FAM ... 19
- FCCor ... 23
- FClust ... 24
- FCMReg .. 26
- fdapace 28
- fitted.FPCA 29
- fitted.FPCAdor 31
- FLM .. 32
R topics documented:

FOptDes .. 35
FPCA ... 37
FPCuder ... 40
FPCquantile ... 42
FSVD ... 44
FVPA ... 46
GetCovSurface .. 47
GetCrCorYX ... 49
GetCrCorYZ ... 50
GetCrCovYX ... 50
GetCrCovYZ ... 52
GetMeanCI .. 53
GetMeanCurve ... 54
GetNormalisedSample ... 56
kCFC ... 57
Lwls1D ... 58
Lwls2D ... 59
Lwls2DDeriv ... 60
MakeBWtoZscore02y .. 61
MakeFPCAInputs .. 62
MakeGPFunctionalData ... 62
MakeHCtoZscore02y ... 63
MakeLNoZscore02y ... 64
MakeSparseGP ... 64
medfly25 .. 65
MultiFAM .. 66
NormCurvToArea .. 70
predict.FPCA ... 70
print.FPCA .. 72
print.FSVD .. 72
print.WFDA ... 73
SBFitting .. 73
SelectK .. 76
SetOptions ... 76
Sparsify ... 77
str.FPCA .. 78
Stringing .. 78
trapzRcpp .. 79
TVAM ... 80
VCAM ... 82
WFDA ... 85
Wiener ... 87

Index 88
BwNN

Minimum bandwidth based on kNN criterion.

Description

Input a list of time points Lt, and the number of unique neighbors k. Obtain the minimum bandwidth guaranteeing k unique neighbours.

Usage

\[
\text{BwNN(Lt, } k = 3, \text{ onlyMean = FALSE, onlyCov = FALSE)}
\]

Arguments

- **Lt**: n-by-1 list of vectors
- **k**: number of unique neighbors for cov and mu (default = 3)
- **onlyMean**: Indicator to return only the minimum bandwidth for the mean
- **onlyCov**: Indicator to return only the minimum bandwidth for the covariance

Examples

\[
\text{tinyGrid = list(c(1,7), c(2,3), 6, c(2,4), c(4,5))}
\]

\[
\text{BwNN(tinyGrid, k = 2)} \# c(3,2)
\]

CheckData

Check data format

Description

Check if there are problems with the form and basic structure of the functional data 'y' and the recorded times 't'.

Usage

\[
\text{CheckData(y, t)}
\]

Arguments

- **y**: is a n-by-1 list of vectors
- **t**: is a n-by-1 list of vectors
CheckOptions

Description
Check if the options structure is valid and set the NULL options

Usage
CheckOptions(t, optns, n)

Arguments
- t: is a n-by-1 list of vectors
- optns: is an initialized option list
- n: is a total number of sample curves

ConvertSupport

Convert support of a mu/phi/cov etc. to and from obsGrid and workGrid

Description
Convert the support of a given function 1-D or 2-D function from fromGrid to toGrid. Both grids need to be sorted. This is an interpolation/convenience function.

Usage
ConvertSupport(
 fromGrid,
 toGrid,
 mu = NULL,
 Cov = NULL,
 phi = NULL,
 isCrossCov = FALSE
)

Arguments
- fromGrid: vector of points with input grid to interpolate from
- toGrid: vector of points with the target grid to interpolate on
- mu: any vector of function to be interpolated
- Cov: a square matrix supported on fromGrid * fromGrid, to be interpolated to toGrid * toGrid.
CreateBasis

Create an orthogonal basis of K functions in [0, 1], with nGrid points.

Description

Create an orthogonal basis of K functions in [0, 1], with nGrid points.

Usage

CreateBasis(
 K,
 pts = seq(0, 1, length.out = 50),
 type = c("cos", "sin", "fourier", "legendre01", "poly")
)

Arguments

K A positive integer specifying the number of eigenfunctions to generate.
pts A vector specifying the time points to evaluate the basis functions.
type A string for the type of orthogonal basis.

Value

A K by nGrid matrix, each column containing an basis function.

Examples

basis <- CreateBasis(3, type='fourier')
head(basis)
CreateBWPlot

Description

This function by default creates the mean and first principal modes of variation plots for 50. If provided with a derivative options object (?FPCAder) it will return the differentiated mean and first two principal modes of variation for 50.

Usage

```r
CreateBWPlot(fpcaObj, derOptns = NULL, bwMultipliers = NULL)
```

Arguments

- `fpcaObj`: An FPCA class object returned by FPCA().
- `derOptns`: A list of options to control the derivation parameters; see ?FPCAder. If NULL standard diagnostics are returned.
- `bwMultipliers`: A vector of multipliers that the original 'bwMu' and 'bwCov' will be multiplied by. (default: c(0.50, 0.75, 1.00, 1.25, 1.50)) - default: NULL

Examples

```r
set.seed(1)
n <- 40
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res1 <- FPCA(sampWiener$sLy, sampWiener$sLt,
             list(dataType='Sparse', error=FALSE, kernel='epan', verbose=FALSE))
CreateBWPlot(res1)
```

CreateCovPlot

Description

This function will open a new device if not instructed otherwise.
CreateDesignPlot

Usage

CreateCovPlot(
 fpcaObj,
 covPlotType = "Fitted",
 isInteractive = FALSE,
 colSpectrum = NULL,
 ...
)

Arguments

fpcaObj returned object from FPCA().
covPlotType a string specifying the type of covariance surface to be plotted: 'Smoothed': plot the smoothed cov surface 'Fitted': plot the fitted cov surface
isInteractive an option for interactive plot: TRUE: interactive plot; FALSE: printable plot
colSpectrum character vector to be use as input in the 'colorRampPalette' function defining the colouring scheme (default: c('blue','red'))
... other arguments passed into persp3d, persp3D, plot3d or points3D for plotting options

Examples

set.seed(1)
 n <- 20
 pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
 list(dataType="Sparse", error=FALSE, kernel='epan', verbose=TRUE))
CreateCovPlot(res)

Description

Create design plots for functional data. See Yao, F., Müller, H.G., Wang, J.L. (2005). Functional data analysis for sparse longitudinal data. J. American Statistical Association 100, 577-590 for interpretation and usage of these plots. This function will open a new device as default.
CreateDiagnosticsPlot

Usage

CreateDesignPlot(
 Lt,
 obsGrid = NULL,
 isColorPlot = TRUE,
 noDiagonal = TRUE,
 addLegend = TRUE,
 ...
)

Arguments

- **Lt**: a list of observed time points for functional data
- **obsGrid**: a vector of sorted observed time points. Default are the unique time points in Lt.
- **isColorPlot**: an option for colorful plot: TRUE: create color plot with color indicating counts FALSE: create black and white plot with dots indicating observed time pairs
- **noDiagonal**: an option specifying plotting the diagonal design points: TRUE: remove diagonal time pairs FALSE: do not remove diagonal time pairs
- **addLegend**: Logical, default TRUE
- **...**: Other arguments passed into plot().

Examples

```r
set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
CreateDesignPlot(sampWiener$Lt, sort(unique(unlist(sampWiener$Lt))))
```

Description

Deprecated. Use \texttt{plot.FPCA} instead.

Plotting the results of an FPCA, including printing the design plot, mean function, scree-plot and the first three eigenfunctions for a functional sample. If provided with a derivative options object (\texttt{?FPCAder}), it will return the differentiated mean function and first two principal modes of variation for 50\%, 75\%, 100\%, 125\% and 150\% of the defined bandwidth choice.

Usage

```r
CreateDiagnosticsPlot(...)
```

S3 method for class 'FPCA'
plot(x, openNewDev = FALSE, addLegend = TRUE, ...)

CreateFuncBoxPlot

Arguments

... passed into plot.FPCA.

x An FPCA class object returned by FPCA().

openNewDev A logical specifying if a new device should be opened - default: FALSE

addLegend A logical specifying whether to add legend.

Details

The black, red, and green curves stand for the first, second, and third eigenfunctions, respectively. plot.FPCA is currently implemented only for the original function, but not a derivative FPCA object.

Examples

set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res1 <- FPCA(sampWiener$Ly, sampWiener$Lt,
list(dataType='Sparse', error=FALSE, kernel='epan', verbose=FALSE))
plot(res1)

CreateFuncBoxPlot Create functional boxplot using 'bagplot', 'KDE' or 'pointwise' methodology

Description

Using an FPCA object create a functional box-plot based on the function scores. The green line corresponds to the functional median, the dark gray area to the area spanned by the curves within the 25th and 75-th percentile and the light gray to the area spanned by the curves within the 2.5th and 97.5-th percentile.

Usage

CreateFuncBoxPlot(fpcabj, optns = list(), ...)

Arguments

fpcabj An object of class FPCA returned by the function FPCA().

optns A list of options control parameters specified by list(name=value). See ‘Details’.

... Additional arguments for the ‘plot’ function.
Details

Available control options are

ifactor inflation ifactor for the bag-plot defining the loop of bag-plot or multiplying ifactor the KDE pilot bandwidth matrix. (see ?aplpack::compute.bagplot; ?ks::Hpi respectively; default: 2.58; 2 respectively).

variant string defining the method used ('KDE', 'pointwise' or 'bagplot') (default: 'bagplot')

unimodal logical specifying if the KDE estimate should be unimodal (default: FALSE, relevant only for variant='KDE')

addIndx vector of indices corresponding to which samples one should overlay (Default: NULL)

K integer number of the first K components used for the representation. (default: length(fpcaObj$lambda))

References

Examples

```r
set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,

list(dataType='Sparse', error=FALSE, kernel='epan', verbose=TRUE))
CreateFuncBoxPlot(res, list(addIndx=c(1:3))
```

Description

Creates the k-th mode of variation plot around the mean. The red-line is the functional mean, the grey shaded areas show the range of variation around the mean: \(\pm Q \sqrt{\lambda_k} \phi_k \) for the dark grey area \(Q = 1 \), and for the light grey are \(Q = 2 \). In the case of 'rainbowPlot' the blue edge corresponds to \(Q = -3 \), the green edge to \(Q = +3 \) and the red-line to \(Q = 0 \) (the mean).

Usage

```r
CreateModeOfVarPlot(
    fpcaObj,
    k = 1,
    rainbowPlot = FALSE,
    colSpectrum = NULL,
    ...
)
```
CreateOutliersPlot

Arguments

- `fpcaObj` An FPCA class object returned by FPCA().
- `k` The k-th mode of variation to plot (default k = 1)
- `rainbowPlot` Indicator to create a rainbow-plot instead of a shaded plot (default: FALSE)
- `colSpectrum` Character vector to be use as input in the 'colorRampPalette' function defining the outliers colours (default: c("blue", "red", "green"), relevant only for rainbowPlot=TRUE)
- ... Additional arguments for the plot function.

Examples

```r
set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
            list(dataType="VarSparse", error=FALSE, kernel="epan", verbose=TRUE))
CreateModeOfVarPlot(res)
```

Description

This function will create, using the first components scores, a set of convex hulls of the scores based on 'bagplot' or 'KDE' methodology.

Usage

```r
CreateOutliersPlot(fObj, optns = NULL, ...)
```

Arguments

- `fObj` A class object returned by FPCA() or FSVD().
- `optns` A list of options control parameters specified by `list(name=value)`. See ‘Details’.
- ... Additional arguments for the 'plot' function.
CreateOutliersPlot

Details

Available control options are

ifactor inflation ifactor for the bag-plot defining the loop of bag-plot or multiplying ifactor the
KDE pilot bandwidth matrix. (see ?aplpack::compute.bagplot; ?ks::Hpi respectively; default: 2.58; 2 respectively).

variant string defining the outlier method used ('KDE', 'NN' or 'bagplot') (default: 'KDE')

unimodal logical specifying if the KDE estimate should be unimodal (default: FALSE, relevant
only for variant='KDE')

maxVar logical specifying if during slicing we should used the directions of maximum variance
(default: FALSE for FPCA, TRUE for FSVD)

nSlices integer between 3 and 16, denoting the number of slices to be used (default: 4, relevant
only for groupingType='slice')

showSlices logical specifying if during slicing we should show the outline of the slice (default:
FALSE)

colSpectrum character vector to be use as input in the 'colorRampPalette’ function defining the
outliers colours (default: c("red", "yellow", 'blue'), relevant only for groupingType='slice')

groupingType string specifying if a slice grouping ('slice') or a standard percentile/bagplot group-
ing ('standard') should be returned (default: 'standard')

fIndices a two-component vector with the index of the mode of variation to consider (default:
c(1,2) for FPCA and c(1,1) for FSVD)

Value

An (temporarily) invisible copy of a list containing the labels associated with each of sample curves.

References

bagplots, and boxplots for functional data, Journal of Computational and Graphical Statistics, 19(1),
29-45

Examples

```R
set.seed(1)
n <- 420
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
            list(dataType='Sparse', error=FALSE, kernel='epan', verbose=TRUE))
CreateOutliersPlot(res)
```
CreatePathPlot

Create the fitted sample path plot based on the results from FPCA().

Description

Create the fitted sample path plot based on the results from FPCA().

Usage

CreatePathPlot(
 fpcaObj,
 subset,
 K = NULL,
 inputData = fpcaObj[["inputData"]],
 showObs = !is.null(inputData),
 obsOnly = FALSE,
 showMean = FALSE,
 derOptns = list(p = 0),
 ...
)

Arguments

fpcaObj Returned object from FPCA().
subset A vector of indices or a logical vector for subsetting the observations.
K The number of components to reconstruct the fitted sample paths.
inputData A list of length 2 containing the sparse/dense (unsupported yet) observations.
 inputData needs to contain two fields: Lt for a list of time points and Ly for a list of observations. Default to the ‘inputData’ field within ‘fpcaObj’.
showObs Whether to plot the original observations for each subject.
obsOnly Whether to show only the original curves.
showMean Whether to plot the mean function as a bold solid curve.
derOptns A list of options to control derivation parameters; see ‘fitted.FPCA’. (default = NULL)
...
 other arguments passed into matplot for plotting options

Examples

set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
 list(dataType='Sparse', error=FALSE, kernel='epan'),
 list(dataType='Sparse', error=FALSE, kernel='epan'),
)
CreateScreePlot

Create the scree plot for the fitted eigenvalues

Description

This function will open a new device if not instructed otherwise.

Usage

CreateScreePlot(fpcaObj, ...)

Arguments

fpcaObj A object of class FPCA returned by the function FPCA().
...
Additional arguments for the 'plot' function.

Examples

set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
 list(dataType='Sparse', error=FALSE, kernel='epan', verbose=TRUE))
CreateScreePlot(res)
CreateStringingPlot

Create plots for observed and stringed high dimensional data

Description

The function produces the following three plots: 1) A plot of predictors (standardized if specified so during stringing) in original order for a subset of observations; 2) A plot of predictors in stringed order for the same subset of observations; 3) A plot of the stringing function, which is the stringed order vs. the original order.

Usage

CreateStringingPlot(stringingObj, subset, ...)

Arguments

stringingObj A stringing object of class "Stringing", returned by the function Stringing.
subset A vector of indices or a logical vector for subsetting the observations. If missing, first min(n,50) observations will be plotted where n is the sample size.
... Other arguments passed into matplot for plotting options

Details

Examples

set.seed(1)
n <- 50
wiener = Wiener(n = n)[,-1]
p = ncol(wiener)
rdmorder = sample(size = p, x=1:p, replace = FALSE)
stringingfit = Stringing(X = wiener[,rdmorder], disOptns = "correlation")
diff_norev = sum(abs(rdmorder[stringingfit$StringingOrder] - 1:p))
diff_rev = sum(abs(rdmorder[stringingfit$StringingOrder] - p:1))
if(diff_rev <= diff_norev){
 stringingfit$StringingOrder = rev(stringingfit$StringingOrder)
 stringingfit$Ly = lapply(stringingfit$Ly, rev)
}
CreateStringingPlot(stringingfit, 1:20)
cumtrapzRcpp

Cumulative Trapezoid Rule Numerical Integration

Description
Cumulative Trapezoid Rule Numerical Integration using Rcpp

Usage
cumtrapzRcpp(X, Y)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Sorted vector of X values</td>
</tr>
<tr>
<td>Y</td>
<td>Vector of Y values.</td>
</tr>
</tbody>
</table>

DynCorr

Dynamical Correlation

Description
Calculates the Dynamical Correlation for 2 paired dense regular functional data observed on the same grid.

Usage
DynCorr(x, y, t)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a n by m matrix where rows representing subjects and columns representing measurements, missings are allowed.</td>
</tr>
<tr>
<td>y</td>
<td>a n by m matrix where rows representing subjects and columns representing measurements, missings are allowed.</td>
</tr>
<tr>
<td>t</td>
<td>a length m vector of time points where x, y are observed.</td>
</tr>
</tbody>
</table>

Value
A length n vector of individual dynamic correlations. The dynamic correlation can be obtained by taking average of this vector.

References

Examples

```r
set.seed(10)
n=200 # sample size
t=seq(0,1,length.out=100) # length of data
mu_quad_x=8*t^2-4*t+5
mu_quad_y=8*t^2-12*t+6
fun=rbind(rep(1,length(t)), -t, t^2)
z1=matrix(0,n,3)
z1[,1]=rnorm(n,0,2)
z1[,2]=rnorm(n,0,16/3)
z1[,3]=rnorm(n,0,4)
x1_quad_error=y1_quad_error=matrix(0,nrow=n,ncol=length(t))
for (i in 1:n){
x1_quad_error[i,]=mu_quad_x+z1[i,]%*%fun+rnorm(length(t),0,0.01)
y1_quad_error[i,]=mu_quad_y+2*z1[i,]%*%fun +rnorm(length(t),0,0.01)
}
dyn1_quad=DynCorr(x1_quad_error,y1_quad_error,t)
```

Dyn_test
Bootstrap test of Dynamic Correlation

Description

Perform one sample (H0: Dynamic correlation = 0) or two sample (H0:Dynamic_correlation_1 = Dynamic_correlation_2) bootstrap test of H_0: Dynamical Correlation=0.

Usage

```
Dyn_test(x1, y1, t1, x2, y2, t2, B = 1000)
```

Arguments

- `x1` a n by m matrix where rows representing subjects and columns representing measurements, missings are allowed.
- `y1` a n by m matrix where rows representing subjects and columns representing measurements, missings are allowed.
- `t1` a vector of time points where x1,y1 are observed.
- `x2` (optional if missing will be one sample test) a n by m matrix where rows representing subjects and columns representing measurements, missings are allowed.
- `y2` (optional if missing will be one sample test) a n by m matrix where rows representing subjects and columns representing measurements, missings are allowed.
- `t2` (optional if missing will be one sample test) a vector of time points where x2,y2 are observed.
- `B` number of bootstrap samples.
FAM

Description
Functional additive models with a single predictor process

Usage
FAM(
 Y,
 Lx,
 Lt,
 nEval = 51,
 newX = NULL,
 newLt = NULL,
 ...
)
bwMethod = 0,
alpha = 0.7,
supp = c(-2, 2),
optns = NULL
)

Arguments

Y: An n-dimensional vector whose elements consist of scalar responses.
Lx: A list of n vectors containing the observed values for each individual. See FPCA for detail.
Lt: A list of n vectors containing the observation time points for each individual. Each vector should be sorted in ascending order. See FPCA for detail.
nEval: The number of evaluation grid points for kernel smoothing (default is 51. If it is specified as 0, then estimated FPC scores in the training set are used for evaluation grid instead of equal grid).
newLx: A list of the observed values for test set. See predict.FPCA for detail.
newLt: A list of the observed time points for test set. See predict.FPCA for detail.
bwMethod: The method of bandwidth selection for kernel smoothing, a positive value for designating K-fold cross-validation and zero for GCV (default is 50).
alpha: The shrinkage factor (positive number) for bandwidth selection. See Han et al. (2016) (default is 0.7).
supp: The lower and upper limits of kernel smoothing domain for studentized FPC scores, which FPC scores are divided by the square roots of eigenvalues (default is [-2,2]).
optns: A list of options control parameters specified by list(name=value). See FPCA.

Details

FAM fits functional additive models for a scalar response and single predictor process proposed by Müller and Yao (2007) that

$$E(Y|X) = \sum_{k=1}^{K} g_k(\xi_k),$$

where ξ_k stand for the k-th FPC score of the the predictor process.

Value

A list containing the following fields:

mu: Mean estimator of EY
fam: A N by K matrix whose column vectors consist of the component function estimators at the given estimation points.
xi: An N by K matrix whose column vectors consist of N vectors of estimation points for each component function.
bw: A K-dimensional bandwidth vector.
lambda A K-dimensional vector containing eigenvalues.
phi An $n_{WorkGrid}$ by K matrix containing eigenfunctions, supported by WorkGrid. See FPCA.
workGrid An $n_{WorkGrid}$ by K_j working grid, the internal regular grid on which the eigen analysis is carried on. See FPCA.

References

Examples

```r
set.seed(1000)
library(MASS)

f1 <- function(t) 0.5*t
f2 <- function(t) 2*cos(2*pi*t/4)
f3 <- function(t) 1.5*sin(2*pi*t/4)
f4 <- function(t) 2*atan(2*pi*t/4)

n <- 100
N <- 100

sig <- diag(c(4.0,2.0,1.5,1.2))

scoreX <- mvrnorm(n,mu=rep(0,4),Sigma=sig)
scoreXTest <- mvrnorm(N,mu=rep(0,4),Sigma=sig)

Y <- f1(scoreX[,1]) + f2(scoreX[,2]) + f3(scoreX[,3]) + f4(scoreX[,4]) + rnorm(n,0,0.1)
YTest <- f1(scoreXTest[,1]) + f2(scoreXTest[,2]) + f3(scoreXTest[,3]) + f4(scoreXTest[,4]) + rnorm(N,0,0.1)

phi1 <- function(t) sqrt(2)*sin(2*pi*t)
phi2 <- function(t) sqrt(2)*sin(4*pi*t)
phi3 <- function(t) sqrt(2)*cos(2*pi*t)
phi4 <- function(t) sqrt(2)*cos(4*pi*t)

grid <- seq(0,1,length.out=21)
Lt <- Lx <- list()
for (i in 1:n) {
  Lt[[i]] <- grid
  Lx[[i]] <- scoreX[i,1]*phi1(grid) + scoreX[i,2]*phi2(grid) + scoreX[i,3]*phi3(grid) + scoreX[i,4]*phi4(grid) + rnorm(1,0,0.01)
}

LtTest <- LxTest <- list()
for (i in 1:N) {
  LtTest[[i]] <- grid
  LxTest[[i]] <- scoreXTest[i,1]*phi1(grid) + scoreXTest[i,2]*phi2(grid) + scoreXTest[i,3]*phi3(grid) + scoreXTest[i,4]*phi4(grid) + rnorm(1,0,0.01)
}
```
estimation
fit <- FAM(Y=Y,Lx=Lx,Lt=Lt)

xi <- fit$xi

op <- par(mfrow=c(2,2))
j <- 1
g1 <- f1(sort(xi[,j]))
tmpSgn <- sign(sum(g1*fit$fam[,j]))
plot(sort(xi[,j]),g1,type='l',col=2,ylim=c(-2.5,2.5),xlab='xi1',ylab='Var')
points(sort(xi[,j]),tmpSgn*fit$fam[order(xi[,j]),j],type='l')

j <- 2
g2 <- f2(sort(xi[,j]))
tmpSgn <- sign(sum(g2*fit$fam[,j]))
plot(sort(xi[,j]),g2,type='l',col=2,ylim=c(-2.5,2.5),xlab='xi2',ylab='Var')
points(sort(xi[,j]),tmpSgn*fit$fam[order(xi[,j]),j],type='l')

j <- 3
g3 <- f3(sort(xi[,j]))
tmpSgn <- sign(sum(g3*fit$fam[,j]))
plot(sort(xi[,j]),g3,type='l',col=2,ylim=c(-2.5,2.5),xlab='xi3',ylab='Var')
points(sort(xi[,j]),tmpSgn*fit$fam[order(xi[,j]),j],type='l')

j <- 4
g4 <- f4(sort(xi[,j]))
tmpSgn <- sign(sum(g4*fit$fam[,j]))
plot(sort(xi[,j]),g4,type='l',col=2,ylim=c(-2.5,2.5),xlab='xi4',ylab='Var')
points(sort(xi[,j]),tmpSgn*fit$fam[order(xi[,j]),j],type='l')
par(op)

fitting
fit <- FAM(Y=Y,Lx=Lx,Lt=Lt,nEval=0)
yHat <- fit$mu+apply(fit$fam,1,'sum')
plot(yHat,Y)
abline(coef=c(0,1),col=2)

R^2
R2 <- 1-sum((Y-yHat)^2)/sum((Y-mean(Y))^2)
R2

prediction
fit <- FAM(Y=Y,Lx=Lx,Lt=Lt,newLx=LxTest,newLt=LtTest)
yHat <- fit$mu+apply(fit$fam,1,'sum')
plot(yHat,YTest,xlim=c(-10,10))
abline(coef=c(0,1),col=2)
FCCor

Calculation of functional correlation between two simultaneously observed processes.

Description
Calculation of functional correlation between two simultaneously observed processes.

Usage
FCCor(
 x,
 y,
 Lt,
 bw = stop("bw missing"),
 kern = "epan",
 Tout = sort(unique(unlist(Lt)))
)

Arguments
x A list of function values corresponding to the first process.
y A list of function values corresponding to the second process.
Lt A list of time points for both x and y.
bw A numeric vector for bandwidth of length either 5 or 1, specifying the bandwidths for E(X), E(Y), var(X), var(Y), and cov(X, Y). If bw is a scalar then all five bandwidths are chosen to be the same.
kern Smoothing kernel for mu and covariance; "rect", "gauss", "epan", "gausvar", "quar" (default: "gauss")
Tout Output time points. Default to the sorted unique time points.

Details
FCCor calculate only the concurrent correlation corr(X(t), Y(t)) (note that the time points t are the same). It assumes no measurement error in the observed values.

Value
A list with the following components:
corr A vector of the correlation corr(X(t), Y(t)) evaluated at Tout.
Tout Same as the input Tout.
bw The bandwidths used for E(X), E(Y), var(X), var(Y), and cov(X, Y).
Examples

```r
set.seed(1)
n <- 200
nGridIn <- 50
sparsity <- 1:5 # must have length > 1
bw <- 0.2
kern <- 'epan'
T <- matrix(seq(0.5, 1, length.out=nGridIn))

## Corr(X(t), Y(t)) = 1/2
A <- Wiener(n, T)
B <- Wiener(n, T)
C <- Wiener(n, T) + matrix((1:nGridIn), n, nGridIn, byrow=TRUE)
X <- A + B
Y <- A + C
indEach <- lapply(1:n, function(x) sort(sample(nGridIn, sample(sparsity, 1))))
tAll <- lapply(1:n, function(i) T[ indEach[[i]] ])
Xsp <- lapply(1:n, function(i) X[i, indEach[[i]]])
Ysp <- lapply(1:n, function(i) Y[i, indEach[[i]]])

plot(T, FCCor(Xsp, Ysp, tAll, bw)['corr'], ylim=c(-1, 1))
abline(h=0.5)
```

FClust

Functional clustering and identifying substructures of longitudinal data

Description

Default: Cluster functional data using the functional principal component (FPC) scores obtained from the data FPC analysis using EMCluster (Chen and Maitra, 2015) or directly clustering the functional data using kCFC (Chiou and Li, 2007).

Usage

```r
FClust(Ly, Lt, k = 3, cmethod = "EMCluster", optnsFPCA = NULL, optnsCS = NULL)
```

Arguments

- **Ly**: A list of \(n \) vectors containing the observed values for each individual. Missing values specified by \(\text{NA} \)s are supported for dense case (\text{dataType}='dense').
- **Lt**: A list of \(n \) vectors containing the observation time points for each individual corresponding to \(y \).
- **k**: A scalar defining the number of clusters to define; default 3.
- **cmethod**: A string specifying the clustering method to use (‘EMCluster’ or ‘kCFC’); default: ‘EMCluster’.
optnsFPCA A list of options control parameters specified by `list(name=value)` to be used for by FPCA on the sample y; by default: "list(methodMuCovEst = 'smooth', FVEthreshold= 0.90, methodBwCov = 'GCV', methodBwMu = 'GCV')". See 'Details in 'FPCA'.

optnsCS A list of options control parameters specified by `list(name=value)` to be used for cluster-specific FPCA from kCFC; by default: "list(methodMuCovEst = 'smooth', FVEthreshold= 0.70, methodBwCov = 'GCV', methodBwMu = 'GCV')". See 'Details in 'FPCA' and '?kCFC'.

Details

Within EMCluster, uses the model initiated `EMCluster::em.EM` and returns the optimal model based on `EMCluster::emcluster`. See '?EMCluster::emcluster for details.

Value

A list containing the following fields:

- `cluster` A vector of levels 1:k, indicating the cluster to which each curve is allocated.
- `fpca` An FPCA object derived from the sample used by Rmixmod, otherwise NULL.
- `clusterObj` Either a EMCluster object or kCFC object.

References

Wei-Chen Chen and Ranjan Maitra, "EMCluster: EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution". (2015)

Examples

data(medfly25)
Flies <- MakeFPCAInputs(medfly25$ID, medfly25$Days, medfly25$nEggs)
newClust <- FClust(Flies$Ly, Flies$Lt, k = 2, optnsFPCA =
list(methodMuCovEst = 'smooth', userBwCov = 2, FVEthreshold = 0.90))

We denote as 'veryLowCount' the group of flies that lay less than twenty-five eggs during the 25-day period examined.
veryLowCount = ifelse(sapply(unique(medfly25$ID), function(u) sum(medfly25$nEggs[medfly25$ID == u])) < 25, 0, 1)
N <- length(unique(medfly25$ID))
(correctRate <- sum((1 + veryLowCount) == newClust$cluster) / N) # 99.6%
FCReg
Functional Concurrent Regression using 2D smoothing

Description

Functional concurrent regression with dense or sparse functional data for scalar or functional dependent variables. Note: function-to-scalar regression can also be handled using the VCAM function in fdapace.

Usage

```r
FCReg(
  vars,
  userBwMu,
  userBwCov,
  outGrid,
  kern = "gauss",
  measurementError = TRUE,
  diag1D = "none",
  useGAM = FALSE,
  returnCov = TRUE
)
```

Arguments

- **vars**
 A list of input functional/scalar covariates. Each field corresponds to a functional (a list) or scalar (a vector) covariate. The last entry is assumed to be the response if no entry is names 'Y'. If a field corresponds to a functional covariate, it should have two fields: 'Lt', a list of time points, and 'Ly', a list of function values.

- **userBwMu**
 A scalar with bandwidth used for smoothing the mean

- **userBwCov**
 A scalar with bandwidth used for smoothing the auto- and cross-covariances

- **outGrid**
 A vector with the output time points

- **kern**
 Smoothing kernel choice, common for mu and covariance; "rect", "gauss", "epan", "gausvar", "quar" (default: "gauss")

- **measurementError**
 Indicator measurement errors on the functional observations should be assumed. If TRUE the diagonal raw covariance will be removed when smoothing. (default: TRUE)

- **diag1D**
 A string specifying whether to use 1D smoothing for the diagonal line of the covariance. 'none': don't use 1D smoothing; 'cross': use 1D only for cross-covariances; 'all': use 1D for both auto- and cross-covariances. (default: 'none')

- **useGAM**
 Indicator to use gam smoothing instead of local-linear smoothing (semi-parametric option) (default: FALSE)
returnCov
Indicator to return the covariance surfaces, which is a four dimensional array. The first two dimensions correspond to outGrid and the last two correspond to the covariates and the response, i.e. (i, j, k, l) entry being Cov(X_k(t_i), X_l(t_j)) (default: FALSE)

Details

If measurement error is assumed, the diagonal elements of the raw covariance will be removed. This could result in highly unstable estimate if the design is very sparse, or strong seasonality presents. WARNING! For very sparse functional data, setting measurementError = TRUE is not recommended.

Value

A list containing the following fields:

beta
A matrix for the concurrent regression effects, where rows correspond to different predictors and columns to different time points.

beta0
A vector containing the time-varying intercept.

outGrid
A vector of the output time points.

cov
A 4-dimensional array for the (cross-)covariance surfaces, with the (i, j, k, l) entry being Cov(X_k(t_i), X_l(t_j))

R2
A vector of the time-varying R2.

n
The sample size.

References

Examples

Y(t) = \beta_0(t) + \beta_1(t) X_1(t) + \beta_2(t) Z_2 + \epsilon

Settings
set.seed(1)
n <- 75
nGridIn <- 150
sparsity <- 5:10 # Sparse data sparsity
T <- round(seq(0, 1, length.out=nGridIn), 4) # Functional data support
bw <- 0.1
outGrid <- round(seq(min(T), 1, by=0.05), 2)

Simulate functional data
mu <- T * 2 # mean function for X_1
sigma <- 1
beta_0 <- 0
beta_1 <- 1
beta_2 <- 1

Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(mu, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- matrix(NA, n, nGridIn)
for (i in seq_len(n)) {
 Y[i,] <- beta_0 + beta_1 * X_1[i,] + beta_2 * Z[i, 2] + epsilon[i]
}

Sparsify functional data
set.seed(1)
X_1sp <- Sparsify(X_1, T, sparsity)
set.seed(1)
Ysp <- Sparsify(Y, T, sparsity)
vars <- list(X_1=X_1sp, Z_2=Z[, 2], Y=Ysp)
withError2D <- FCReg(vars, bw, bw, outGrid)

fdapace

fdapace: Principal Analysis by Conditional Expectation and Applications in Functional Data Analysis (revised version 16 August 2019)

Description

fdapace for Functional Data Analysis

Details

fdapace is a versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fda-pace and vice versa.

PACE is based on the idea that observed functional data are generated by a sample of underlying (but usually not fully observed) random trajectories that are realizations of a stochastic process. It does not rely on pre-smoothing of trajectories, which is problematic if functional data are sparsely sampled.

The functional principal components can be used for further statistical analysis depending on the demands of a user, for example if one has densely sampled functional predictors and a generalized response, such as in a GLM, the predictor functions can be replaced by their first couple of principal component scores that will then be used as predictors; one can also easily fit polynomial functional models by using powers (usually squares) and interactions of functional principal components among the predictors for a scalar response.

fda-pace is a comprehensive package that directly implements fitting of the following models: – functional linear regression – functional additive regression – functional covariance and correlation (via dynamic correlation) – functional clustering – concurrent (varying coefficient) regression models for sparse and dense designs – varying coefficient additive models – multivariate functional data analysis (normalization and functional singular component analysis) – variance processes and volatility processes (the latter of interest in finance) – optimal designs for longitudinal data analysis (for trajectory prediction and for functional linear regression) – stringing, a method to convert high-dimensional data into functional data – quantile regression, with functions as predictors

Maintainer: Yaqing Chen <yaqchen@ucdavis.edu>

Author(s)
Yaqing Chen <yaqchen@ucdavis.edu> Cody Carroll <cjcarroll@ucdavis.edu> Xiongtao Dai <dai@ucdavis.edu> Jianing Fan Pantelis Z. Hadjipantelis Kyunghee Han Hao Ji Hans-Georg Müller <hgmueller@ucdavis.edu> Jane-Ling Wang <janelwang@ucdavis.edu>

fitted.FPCA
Fitted functional data from FPCA object

Description
Combines the zero-meaned fitted values and the interpolated mean to get the fitted values for the trajectories or the derivatives of these trajectories. Estimates are given on the work-grid, not on the observation grid. Use ConvertSupport to map the estimates to your desired domain. 100*(1-alpha)-percentage coverage intervals, or bands, for trajectory estimates (not derivatives) are provided. For details consult the example.

Usage
```r
## S3 method for class 'FPCA'
fitted(
  object,
  K = NULL,
  derOptns = list(p = 0),
  ciOptns = list(alpha = NULL, cvgMethod = NULL),
  ...
)
```

Arguments

object A object of class FPCA returned by the function FPCA().
K The integer number of the first K components used for the representation. (default: length(fpcaObj$lambda))
derOptns A list of options to control the derivation parameters specified by list(name=value). See ‘Details’. (default = NULL)
ciOptns A list of options to control the confidence interval/band specified by list(name=value). See ‘Details’. (default = NULL)

... Additional arguments

Details

Available derivation control options are

p The order of the derivatives returned (default: 0, max: 2)
method The method used to produce the sample of derivatives ('FPC' (default) or 'QUO'). See Liu and Müller (2009) for more details
bw Bandwidth for smoothing the derivatives (default: p * 0.10 * S)
kernelType Smoothing kernel choice; same available types are FPCA(). default('epan')

Available confidence interval/band control options are

alpha Significant level for confidence interval/band for trajectory coverage. default=0.05 (currently only work when p=0)
cvgMethod Option for trajectory coverage method between 'interval' (pointwise coverage) and 'band' (simultaneous coverage). default='band'

Value

If alpha is NULL, p>1 or functional observations are dense, an n by length(workGrid) matrix, each row of which contains a sample. Otherwise, it returns a list which consists of the following items:

workGrid An evaluation grid for fitted values.
fitted An n by length(workGrid) matrix, each row of which contains a sample.
cvgUpper An n by length(workGrid) matrix, each row of which contains the upper alpha-coverage limit
cvgLower An n by length(workGrid) matrix, each row of which contains the lower alpha-coverage limit

References

Examples

```r
set.seed(1)
n <- 100
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 5:10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
            list(dataType='Sparse', error=FALSE, kernel='epan', verbose=TRUE))
fittedY <- fitted(res, ciOptns = list(alpha=0.05))
workGrid <- res$workGrid
cvgUpper <- fittedY$cvgUpper
cvgLower <- fittedY$cvgLower

op <- par(mfrow=c(2,3))
ind <- sample(1:n,6)
for (i in 1:6) {
  j <- ind[i]
  plot(workGrid, cvgUpper[j,], type='l', ylim=c(min(cvgLower[j,]), max(cvgUpper[j,])), col=4, lty=2,
       xlab='t', ylab='X(t)', main=paste(j, '-th subject', sep=''))
  points(workGrid, cvgLower[j,], type='l', col=4, lty=2)
  points(res$inputData$Lt[[j]], res$inputData$Ly[[j]])
}
par(op)
```

fitted.FPCAder Fitted functional data for derivatives from the FPCAder object

Description

Combines the zero-meaned fitted values and the mean derivative to get the fitted values for the derivative trajectories. Estimates are given on the work-grid, not on the observation grid. Use ConvertSupport to map the estimates to your desired domain.

Usage

```r
## S3 method for class 'FPCAder'
fitted(object, K = NULL, ...)
```

Arguments

- `object` A object of class FPCA returned by the function FPCA().
- `K` The integer number of the first K components used for the representation. (default: length(derObj$lambda))
- `...` Additional arguments
Value

An n by length(workGrid) matrix, each row of which contains a sample.

References

Examples

```r
set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
```

FLM

Functional Linear Models

Description

Functional linear models for scalar or functional responses and functional predictors.

Usage

```r
FLM(Y, X, XTest = NULL, optnsListY = NULL, optnsListX = NULL)
```

Arguments

Y
Either an n-dimensional vector whose elements consist of scalar responses, or a list which contains functional responses in the form of a list LY and the time points LT at which they are observed (i.e., list(Ly = LY, Lt = LT)).

X
A list of lists which contains the observed functional predictors list Lxj and the time points list Lxj at which they are observed. It needs to be of the form list(list(Ly = Lx1, Lt = Lxt1), list(Ly = Lx2, Lt = Lxt2), ...).

XTest
A list which contains the values of functional predictors for a held-out testing set.

optnsListY
A list of options control parameters for the response specified by list(name=value). See ‘Details’ in FPCA.

optnsListX
A list of options control parameters for the predictors specified by list(name=value). See ‘Details’ in FPCA.
Value

A list of the following:

- **alpha**
 A length-one numeric if the response Y is scalar. Or a vector of \(\text{length(workGridY)} \) of the fitted constant \(\alpha(t) \) in the linear model if Y is functional.

- **betaList**
 A list of fitted beta(s) vectors, one per predictor, if Y is scalar. Each of dimension \(\text{length(workGridX[[j]] \times length(workGridY))} \).
 Or a list of fitted beta(s,t) matrices, one per predictor, if Y is functional. Each of dimension \(\text{length(workGridX[[j]] \times length(workGridY))} \).

- **yHat**
 A length n vector if Y is scalar.
 Or an n by \(\text{length(workGridY)} \) matrix of fitted Y’s from the model if Y is functional.

- **yPred**
 Same as YHat if XTest is not provided.
 Or a length \(\text{length(XTest[[1]]$Ly)} \) vector of predicted Y’s if Y is scalar.
 Or a length \(\text{length(XTest[[1]]$Ly)} \) by \(\text{length(workGridY)} \) matrix of predicted Y’s if Y is functional.

- **estXi**
 A list of n by \(k_j \) matrices of estimated functional principal component scores of predictors, where \(k_j \) is the number of eigenfunctions selected for each predictor.

- **testXi**
 A list of n by \(k_j \) matrices of estimated functional principal component scores of predictors in XTest, with eigenfunctions fitted only with X.

- **lambdaX**
 A length \(\sum_j k_j \) vector of estimated eigenvalues for predictors.

- **workGridX**
 A list of vectors, each is a working grid for a predictor.

- **phiY**
 A \(\text{length(workGridY)} \) by \(k_y \) the estimated eigenfunctions of Y’s, where \(k_y \) is number of eigenfunctions selected for Y. NULL if Y is scalar.

- **workGridY**
 A vector of working grid of the response Y’s. NULL if Y is scalar.

References

Examples

```r
set.seed(1000)
library(MASS)

### functional covariate
phi1 <- function(t,k) sqrt(2)*sin(2*pi*k*t)
phi2 <- function(t,k) sqrt(2)*cos(2*pi*k*t)

lambdaX <- c(1,0.7)

# training set
n <- 50
```
Xi <- matrix(rnorm(2*n), nrow=n, ncol=2)

denseLt <- list(); denseLy <- list()
sparseLt <- list(); sparseLy <- list()

t0 <- seq(0,1,length.out=51)
for (i in 1:n) {
 denseLt[[i]] <- t0
 denseLy[[i]] <- lambdaX[1]*Xi[i,1]*phi1(t0,1) + lambdaX[2]*Xi[i,2]*phi1(t0,2)
 ind <- sort(sample(1:length(t0),3))
 sparseLt[[i]] <- t0[ind]
 sparseLy[[i]] <- denseLy[[i]][ind]
}

denseX <- list(Ly=denseLy, Lt=denseLt)
sparseX <- list(Ly=sparseLy, Lt=sparseLt)

denseX <- list(X=denseX)
sparseX <- list(X=sparseX)

test set
N <- 30

XiTest <- matrix(rnorm(2*N), nrow=N, ncol=2)
denseLtTest <- list(); denseLyTest <- list()
sparseLtTest <- list(); sparseLyTest <- list()

t0 <- seq(0,1,length.out=51)
for (i in 1:N) {
 denseLtTest[[i]] <- t0
 denseLyTest[[i]] <- lambdaX[1]*XiTest[i,1]*phi1(t0,1) + lambdaX[2]*XiTest[i,2]*phi1(t0,2)
 ind <- sort(sample(1:length(t0),5))
 sparseLtTest[[i]] <- t0[ind]
 sparseLyTest[[i]] <- denseLyTest[[i]][ind]
}

denseXTest <- list(Ly=denseLyTest, Lt=denseLtTest)
sparseXTest <- list(Ly=sparseLyTest, Lt=sparseLtTest)

denseXTest <- list(X=denseXTest)
sparseXTest <- list(X=sparseXTest)

scalar response
beta <- c(1, -1)
Y <- c(Xi%*%diag(lambdaX)%*%beta) + rnorm(n,0,0.5)
YTest <- c(XiTest%*%diag(lambdaX)%*%beta) + rnorm(N,0,0.5)

dense
FOptDes <- FLM(Y=Y, X=denseX, XTest=denseXTest, optnsListX=list(FVEthreshold=0.95))

trueBetaList <- list()
trueBetaList[[1]] <- cbind(phi1(denseFLM$workGridX[[1]], 1), phi1(denseFLM$workGridX[[1]], 2)) %*% beta

coefficient function estimation error (L2-norm)
plot(denseFLM$workGridX[[1]], denseFLM$betaList[[1]], type='l', xlab='t', ylab=paste('beta', 1, sep=''))
points(denseFLM$workGridX[[1]], trueBetaList[[1]], type='l', col=2)

denseEstErr <-
 sqrt(trapzRcpp(denseFLM$workGridX[[1]], (denseFLM$betaList[[1]] - trueBetaList[[1]])^2))
denseEstErr

op <- par(mfrow=c(1, 2))
plot(denseFLM$yHat, Y, xlab='fitted Y', ylab='observed Y')
abline(coef=c(0, 1), col=8)
plot(denseFLM$yPred, YTest, xlab='predicted Y', ylab='observed Y')
abline(coef=c(0, 1), col=8)
par(op)

prediction error
densePredErr <- sqrt(mean((YTest - denseFLM$yPred)^2))
densePredErr

FOptDes

Optimal Designs for Functional and Longitudinal Data for Trajectory Recovery or Scalar Response Prediction

Description

Optimal Designs for Functional and Longitudinal Data for Trajectory Recovery or Scalar Response Prediction

Usage

```r
FOptDes(
  Ly,
  Lt,
  Resp,
  p = 3,
  optns = list(),
  isRegression = !missing(Resp),
  isSequential = FALSE,
  RidgeCand = NULL
)
```
Arguments

Ly A list of n vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType='dense').

Lt A list of n vectors containing the observation time points for each individual corresponding to y. Each vector should be sorted in ascending order.

Resp A vector of response values, keep void for trajectory recovery, only necessary for scalar response prediction task.

p A fixed positive integer indicating the number of optimal design points requested, with default: 3.

opts A list of options control parameters specified by list(name=value) for FPCA, with default: list().

isRegression A logical argument, indicating the purpose of the optimal designs: TRUE for scalar response prediction, FALSE for trajectory recovery, with default value missing(Resp).

isSequential A logical argument, indicating whether to use the sequential optimization procedure for faster computation, recommended for relatively large p (default: FALSE).

RidgeCand A vector of positive numbers as ridge penalty candidates for regularization. The final value is selected via cross validation. If only 1 ridge parameter is specified, CV procedure is skipped.

Details

To select a proper RidgeCand, check with the returned optimal ridge parameter. If the selected parameter is the maximum/minimum values in the candidates, it is possible that the selected one is too small/big.

Value

A list containing the following fields:

OptDes The vector of optimal design points of the regular time grid of the observed data.

R2 Coefficient of determination. (Check the paper for details.)

R2adj Adjusted coefficient of determination.

OptRidge The selected ridge parameter.

References

Examples

```r
set.seed(1)
n <- 50
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
```
sampWiener <- MakeFPCAInputs(IDs = rep(1:n, each=length(pts)),
tVec = rep(pts, times = n),
yVec = t(sampleWiener))
res <- FOptDes(Ly=sampWiener$Ly, Lt=sampWiener$Lt, p=2,
isSequential=FALSE, RidgeCand = seq(0.02,0.2,0.02))

FPCA

Functional Principal Component Analysis

Description
FPCA for dense or sparse functional data.

Usage
FPCA(Ly, Lt, optns = list())

Arguments
Ly
A list of n vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType='Dense').

Lt
A list of n vectors containing the observation time points for each individual corresponding to y. Each vector should be sorted in ascending order.

optns
A list of options control parameters specified by list(name=value). See ‘Details’.

Details
If the input is sparse data, make sure you check the design plot is dense and the 2D domain is well covered by support points, using plot or CreateDesignPlot. Some study design such as snippet data (where each subject is observed only on a sub-interval of the period of study) will have an ill-covered design plot, in which case the nonparametric covariance estimate will be unreliable. WARNING! Slow computation times may occur if the dataType argument is incorrect. If FPCA is taking a while, please double check that a dense design is not mistakenly coded as 'Sparse'. Applying FPCA to a mixture of very dense and sparse curves may result in computational issues. Available control options are

userBwCov The bandwidth value for the smoothed covariance function; positive numeric - default: determine automatically based on 'methodBwCov'

methodBwCov The bandwidth choice method for the smoothed covariance function; 'GMeanAndGCV' (the geometric mean of the GCV bandwidth and the minimum bandwidth),'CV','GCV' - default: 10% of the support

userBwMu The bandwidth value for the smoothed mean function (using 'CV' or 'GCV'); positive numeric - default: determine automatically based on 'methodBwMu'

methodBwMu The bandwidth choice method for the mean function; 'GMeanAndGCV' (the geometric mean of the GCV bandwidth and the minimum bandwidth),'CV','GCV' - default: 5% of the support
dataType The type of design we have (usually distinguishing between sparse or dense functional data); 'Sparse', 'Dense', 'DenseWithMV', 'p>n' - default: determine automatically based on 'IsRegular'

diagnosticsPlot Deprecated. Same as the option 'plot'

plot Plot FPCA results (design plot, mean, scree plot and first K (<=3) eigenfunctions); logical - default: FALSE

error Assume measurement error in the dataset; logical - default: TRUE

fitEigenValues Whether also to obtain a regression fit of the eigenvalues - default: FALSE

FVEthreshold Fraction-of-Variance-Explained threshold used during the SVD of the fitted covariance function; numeric (0,1] - default: 0.99

kernel Smoothing kernel choice, common for mu and covariance; "rect", "gauss", "epan", "gauss-var", "quar" - default: "gauss"; dense data are assumed noise-less so no smoothing is performed.

kFoldMuCov The number of folds to be used for mean and covariance smoothing. Default: 10

lean If TRUE the 'inputData' field in the output list is empty. Default: FALSE

maxK The maximum number of principal components to consider - default: min(20, N-2,nRegGrid-2), N: # of curves, nRegGrid: # of support points in each direction of covariance surface

methodXi The method to estimate the PC scores; 'CE' (Conditional Expectation), 'IN' (Numerical Integration) - default: 'CE' for sparse data and dense data with missing values, 'IN' for dense data. If time points are irregular but spacing is small enough, 'IN' method is utilized by default.

methodMuCovEst The method to estimate the mean and covariance in the case of dense functional data; 'cross-sectional', 'smooth' - default: 'cross-sectional'

nRegGrid The number of support points in each direction of covariance surface; numeric - default: 51

numBins The number of bins to bin the data into; positive integer > 10, default: NULL

methodSelectK The method of choosing the number of principal components K; 'FVE','AIC','BIC', or a positive integer as specified number of components: default 'FVE')

shrink Whether to use shrinkage method to estimate the scores in the dense case (see Yao et al. 2003) - default FALSE

outPercent A 2-element vector in [0,1] indicating the percentages of the time range to be considered as left and right boundary regions of the time window of observation - default (0,1) which corresponds to no boundary

methodRho The method of regularization (add to diagonal of covariance surface) in estimating principal component scores; 'trunc': rho is truncation of sigma2, 'ridge': rho is a ridge parameter, 'vanilla': vanilla approach or no regularization - default "trunc" if error == TRUE, and "vanilla" if error == FALSE.

rotationCut The 2-element vector in [0,1] indicating the percent of data truncated during sigma^2 estimation; default (0.25, 0.75))

useBinnedData Should the data be binned? 'FORCE' (Enforce the # of bins), 'AUTO' (Select the # of bins automatically), 'OFF' (Do not bin) - default: 'AUTO'

useBinnedCov Whether to use the binned raw covariance for smoothing; logical - default:TRUE
usergrid Whether to use observation grid for fitting, if false will use equidistant grid. logical -
default:FALSE

userCov The user-defined smoothed covariance function; list of two elements: numerical vector
't' and matrix 'cov', 't' must cover the support defined by 'Ly' - default: NULL

userMu The user-defined smoothed mean function; list of two numerical vector 't' and 'mu' of
equal size, 't' must cover the support defined 'Ly' - default: NULL

userSigma2 The user-defined measurement error variance. A positive scalar. If specified then the
vanilla approach is used (methodRho is set to 'vanilla', unless specified otherwise). Default to
'NULL'

userRho The user-defined measurement truncation threshold used for the calculation of functional
principal components scores. A positive scalar. Default to 'NULL'

useBW1SE Pick the largest bandwidth such that CV-error is within one Standard Error from the
minimum CV-error, relevant only if methodBwMu = 'CV' and/or methodBwCov = 'CV'; log-
cical - default: FALSE

verbose Display diagnostic messages; logical - default: FALSE

Value

A list containing the following fields:

sigma2 Variance for measurement error.

lambda A vector of length K containing eigenvalues.

phi An nWorkGrid by K matrix containing eigenfunctions, supported on workGrid.

xiEst A n by K matrix containing the FPC estimates.

xiVar A list of length n, each entry containing the variance estimates for the FPC
estimates.

obsGrid The (sorted) grid points where all observation points are pooled.

mu A vector of length nWorkGrid containing the mean function estimate.

workGrid A vector of length nWorkGrid. The internal regular grid on which the eigen
analysis is carried on.

smoothedCov A nWorkGrid by nWorkGrid matrix of the smoothed covariance surface.

fittedCov A nWorkGrid by nWorkGrid matrix of the fitted covariance surface, which is
guaranteed to be non-negative definite.

optns A list of actually used options.

timings A vector with execution times for the basic parts of the FPCA call.

bwMu The selected (or user specified) bandwidth for smoothing the mean function.

bwCov The selected (or user specified) bandwidth for smoothing the covariance func-
tion.

rho A regularizing scalar for the measurement error variance estimate.

cumFVE A vector with the fraction of the cumulative total variance explained with each
additional FPC.

FVE A fraction indicating the total variance explained by chosen FPCs with corre-
sponding 'FVEthreshold'.
criterionValue A scalar specifying the criterion value obtained by the selected number of components with specific method SelectK: FVE, AIC, BIC values or NULL for fixed K.

inputData A list containing the original 'Ly' and 'Lt' lists used as inputs to FPCA. NULL if 'lean' was specified to be TRUE.

References

Examples

set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
 list(dataType='Sparse', error=FALSE, kernel='epan', verbose=TRUE))
plot(res) # The design plot covers [0, 1] \times [0, 1] well.
CreateCovPlot(res, 'Fitted')

FPCAder

Obtain the derivatives of eigenfunctions/ eigenfunctions of derivatives (note: these two are not the same)

Description

Obtain the derivatives of eigenfunctions/ eigenfunctions of derivatives (note: these two are not the same)

Usage

FPCAder(fpcaObj, derOptns = list(p = 1))
Arguments

fpcaObj A object of class FPCA returned by the function FPCA().
derOptns A list of options to control the derivation parameters specified by list(name=value). See ‘Details’. (default = NULL)

Details

Available derivative options are

method The method used for obtaining the derivatives – default is 'FPC', which is the derivatives of eigenfunctions; 'DPC': eigenfunctions of derivatives, with $G^{(1,1)}$ estimated by an initial kernel local smoothing step for $G^{(1,0)}$, then applying a 1D smoother in the second direction; 'FPC': functional principal component, based on smoothing the eigenfunctions; 'FPC1': functional principal component, based on smoothing $G^{(1,0)}$. The latter may produce better estimates than 'FPC' but is slower.

p The order of the derivatives returned (default: 1, max: 2).

bw Bandwidth for the 1D and the 2D smoothers (default: p * 0.1 * S, where S is the length of the domain).

kernelType Smoothing kernel choice; same available types are FPCA(). default('epan')

References

Examples

```
bw <- 0.2
kern <- 'epan'
set.seed(1)
n <- 50
M <- 30
pts <- seq(0, 1, length.out=M)
lambdaTrue <- c(1, 0.8, 0.1)^2
sigma2 <- 0.1
samp2 <- MakeGPFunctionalData(n, M, pts, K=length(lambdaTrue),
                            lambda=lambdaTrue, sigma=sqrt(sigma2), basisType='legendre01')
samp2 <- c(samp2, MakeFPCAInputs(tVec=pts, yVec=samp2$Yn))
fpcaObj <- FPCA(samp2$Ly, samp2$Lt, list(methodMuCovEst='smooth',
                             userBwCov=bw, userBwMu=bw, kernel=kern, error=TRUE))
CreatePathPlot(fpcaObj, showObs=FALSE)
FPCoptn <- list(bw=bw, kernelType=kern, method='FPC')
DPCoptn <- list(bw=bw, kernelType=kern, method='DPC')
```
FPCquantile <- FPCAder(fpcaObj, FPCoptn)
DPC <- FPCAder(fpcaObj, DPCoptn)

CreatePathPlot(FPC, ylim=c(-5, 10))
CreatePathPlot(DPC, ylim=c(-5, 10))

Get the true derivatives
phi <- CreateBasis(K=3, type='legendre01', pts=pts)
basisDerMat <- apply(phi, 2, function(x)
 ConvertSupport(seq(0, 1, length.out=M - 1), pts, diff(x) * (M - 1)))
trueDer <- matrix(1, n, M, byrow=TRUE) + tcrossprod(samp2$xi, basisDerMat)
matplot(t(trueDer), type='l', ylim=c(-5, 10))

DPC is slightly better in terms of RMSE
mean((fitted(FPC) - trueDer)^2)
mean((fitted(DPC) - trueDer)^2)

FPCquantile Conditional Quantile estimation with functional covariates

Description
Main function to implement conditional Quantile estimation with functional covariates and scalar response. The method includes 3 steps: 1) FPCA using the PACE method for X(t_x) 2) Computation of the conditional distribution function through a functional generalized linear model. 3) Prediction of quantiles for given predictor values.

Usage
FPCquantile(
 Lx,
 Lt_x,
 y,
 outQ = c(0.1, 0.25, 0.5, 0.75, 0.9),
 optns_x = NULL,
 isNewSub = NULL
)

Arguments

Lx A length n list of predictor function where x[i] is the row vector of measurements for ith subject, i=1,...,n

Lt_x A length n list where the observations of x are taken, t_x[i] is a row vector of time points where x[i] are observed, i=1,...,n

y A 1*n vector for scalar response y. y[i] is the response value for the ith subject, i = 1,...,n.
FPCquantile

outQ A vector of desired quantile levels with default value outQ = c(0.1, 0.25, 0.5, 0.75, 0.9).

optns_x A list of options for predictor x with control parameters specified by list(name=value) with default NA. See function FPCA for details.

isNewSub A 1*n vector of 0s or 1s, where n is the total count of subjects. 0 denotes the corresponding subject is only used for training and 1 denotes the corresponding subject is only used for prediction. (default: 0’s)

Value

A list of the following

pred_quantile A matrix of n*length(outQ) where the the first nn (number of 0s in isNewSub) rows containing fitted conditional quantiles of Y corresponding to the training subjects, and the last n-nn rows containing predicted conditional quantiles of Y corresponding to the subjects isNewSub ==1.

pred_CDF A matrix of n*100. The ith row contains the fitted or predicted conditional distribution function $F(y|X_i)$, evaluated at an equally spaced grid of 100 points.

b A matrix of 50*(K+1) contains the coefficient functions, defined as $F(y|X) = g(\sum_{k=0}^{K} b_k(y)\xi_k)$, see equation (5) in the paper for details, where K is the number of components selected to expand the predictor functions X, and ξ_k is the kth principal component score.

References

Examples

```r
set.seed(10)

n = 200
npred = 50
m = 50
xi <- Wiener(n, 0:m/m)

x = list()
t_x = list()
y = numeric(n)
for(i in 1:n){
  t_x = c(t_x, list(0:m/m))
  x = c(x, list(xi[i,]))
  y[i] = 5*rnorm(1)+2*sum(xi[i,])
}

outQ = c(0.1, 0.25, 0.5, 0.75, 0.9, 0.95)
isNewSub = c(rep(0,150), rep(1,50))
qtreg = FPCquantile(x, t_x, y, outQ, optns_x = NULL, isNewSub)
```
FSVD for a pair of dense or sparse functional data.

Usage

FSVD(
 Ly1,
 Lt1,
 Ly2,
 Lt2,
 FPCAoptns1 = NULL,
 FPCAoptns2 = NULL,
 SVDoptns = list()
)

Arguments

Ly1 A list of \(n \) vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType=’dense’).

Lt1 A list of \(n \) vectors containing the observation time points for each individual corresponding to \(y \). Each vector should be sorted in ascending order.

Ly2 A list of \(n \) vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType=’dense’).

Lt2 A list of \(n \) vectors containing the observation time points for each individual corresponding to \(y \). Each vector should be sorted in ascending order.

FPCAoptns1 A list of options control parameters specified by list(name=value) for the FPCA analysis of sample 1. See ‘?FPCA’.

FPCAoptns2 A list of options control parameters specified by list(name=value) for the FPCA analysis of sample 2. See ‘?FPCA’.

SVDoptns A list of options control parameters specified by list(name=value) for the FSVD analysis of samples 1 & 2. See ’Details’.

Details

Available control options for SVDoptns are:

bw1 The bandwidth value for the smoothed cross-covariance function across the direction of sample 1; positive numeric - default: determine automatically based on ’methodBwCov’

bw2 The bandwidth value for the smoothed cross-covariance function across the direction of sample 2; positive numeric - default: determine automatically based on ’methodBwCov’
methodBwCov The bandwidth choice method for the smoothed covariance function; ‘GMeanAndGCV’ (the geometric mean of the GCV bandwidth and the minimum bandwidth),’CV’, ’GCV’ - default: 10% of the support

userMu1 The user defined mean of sample 1 used to centre it prior to the cross-covariance estimation. - default: determine automatically based by the FPCA of sample 1

userMu2 The user defined mean of sample 2 used to centre it prior to the cross-covariance estimation. - default: determine automatically based by the FPCA of sample 2

maxK The maximum number of singular components to consider; default: min(20, N-1), N:# of curves.

kernel Smoothing kernel choice, common for mu and covariance; ”rect”, ”gauss”, ”epan”, ”gauss-var”, ”quar” - default: ”gauss”; dense data are assumed noise-less so no smoothing is performed.

rmDiag Logical describing if the routine should remove diagonal raw cov for cross cov estimation (default: FALSE)

noScores Logical describing if the routine should return functional singular scores or not (default: TRUE)

regulRS String describing if the regularisation of the composite cross-covariance matrix should be done using ‘sigma1’ or ‘rho’ (see ?FPCA for details) (default: ‘sigma2’)

bwRoutine String specifying the routine used to find the optimal bandwidth ‘grid-search’, ‘bobyqa’, ’l-bfgs-b’ (default: ’l-bfgs-b’)

flip Logical describing if the routine should flip the sign of the singular components functions or not after the SVD of the cross-covariance matrix. (default: FALSE)

useGAM Indicator to use gam smoothing instead of local-linear smoothing (semi-parametric option) (default: FALSE)

dataType1 The type of design we have for sample 1 (usually distinguishing between sparse or dense functional data); ‘Sparse’, ‘Dense’, ’DenseWithMV’ - default: determine automatically based on ’IsRegular’

dataType2 The type of design we have for sample 2 (usually distinguishing between sparse or dense functional data); ‘Sparse’, ’Dense’, ’DenseWithMV’ - default: determine automatically based on ’IsRegular’

Value

A list containing the following fields:

- **bw1** The selected (or user specified) bandwidth for smoothing the cross-covariance function across the support of sample 1.
- **bw2** The selected (or user specified) bandwidth for smoothing the cross-covariance function across the support of sample 2.
- **CrCov** The smoothed cross-covariance between samples 1 & 2.
- **sValues** A list of length nsvd, each entry containing the singular value estimates for the FSC estimates.
- **nsvd** The number of singular components used.
- **canCorr** The canonical correlations for each dimension.
FVE A percentage indicating the total variance explained by chosen FSCs with corresponding 'FVEthreshold'.
sFun1 An \(n \text{WorkGrid by } K \) matrix containing the estimated singular functions for sample 1.
sFun2 An \(n \text{WorkGrid by } K \) matrix containing the estimated singular functions for sample 2.
grid1 A vector of length \(n \text{WorkGrid1} \). The internal regular grid on which the singular analysis is carried on the support of sample 1.
grid2 A vector of length \(n \text{WorkGrid2} \). The internal regular grid on which the singular analysis is carried on the support of sample 2.
sScores1 An \(n \) by \(K \) matrix containing the singular scores for sample 1.
sScores2 An \(n \) by \(K \) matrix containing the singular scores for sample 2.
optns A list of options used by the SVD and the FPCA’s procedures.

References

FVPA Functional Variance Process Analysis for dense functional data

Description

Functional Variance Process Analysis for dense functional data

Usage

FVPA(y, t, q = 0.1, optns = list(error = TRUE, FVEthreshold = 0.9))

Arguments

y A list of \(n \) vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType=’dense’).
t A list of \(n \) vectors containing the observation time points for each individual corresponding to y.
q A scalar defining the percentile of the pooled sample residual sample used for adjustment before taking log (default: 0.1).
optns A list of options control parameters specified by list(name=value); by default: 'error' has to be TRUE, 'FVEthreshold' is set to 0.90. See ‘Details in ?FPCA’.
GetCovSurface

Value

A list containing the following fields:

- `sigma2` Variance estimator of the functional variance process.
- `fpcaObjY` FPCA object for the original data.
- `fpcaObjR` FPCA object for the functional variance process associated with the original data.

References

Examples

```r
set.seed(1)
n <- 25
pts <- seq(0, 1, by=0.01)
sampWiener <- Wiener(n, pts)
# Data have to dense for FVPA to be relevant!
sampWiener <- Sparsify(sampWiener, pts, 101)
fvpaObj <- FVPA(sampWiener$Ly, sampWiener$Lt)

GetCovSurface

Covariance Surface

Description

Covariance surface estimation for dense or sparse functional data.

Usage

GetCovSurface(Ly, Lt, optns = list())

Arguments

- `Ly` A list of n vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType='Dense').
- `Lt` A list of n vectors containing the observation time points for each individual corresponding to y. Each vector should be sorted in ascending order.
- `optns` A list of options control parameters specified by list(name=value). See ‘Details’.

Available control options are

- `userBwCov` The bandwidth value for the smoothed covariance function; positive numeric - default: determine automatically based on ‘methodBwCov’
methodBwCov  The bandwidth choice method for the smoothed covariance function; 'GMeanAndGCV' (the geometric mean of the GCV bandwidth and the minimum bandwidth), 'CV', 'GCV'; default: 10% of the support

userBwMu  The bandwidth value for the smoothed mean function (using 'CV' or 'GCV'); positive numeric - default: determine automatically based on 'methodBwMu'

methodBwMu  The bandwidth choice method for the mean function; 'GMeanAndGCV' (the geometric mean of the GCV bandwidth and the minimum bandwidth), 'CV', 'GCV'; default: 5% of the support

dataType  The type of design we have (usually distinguishing between sparse or dense functional data); 'Sparse', 'Dense', 'DenseWithMV', 'p>n'; default: determine automatically based on 'IsRegular'

error  Assume measurement error in the dataset; logical - default: TRUE

kernel  Smoothing kernel choice, common for mu and covariance; 'rect', 'gauss', 'epan', 'gausvar', 'quar'; default: 'gauss'; dense data are assumed noiseless so no smoothing is performed.

kFoldMuCov  The number of folds to be used for mean and covariance smoothing. Default: 10

lean  If TRUE the 'inputData' field in the output list is empty. Default: FALSE

methodMuCovEst  The method to estimate the mean and covariance in the case of dense functional data; 'cross-sectional', 'smooth'; default: 'cross-sectional'

nRegGrid  The number of support points in each direction of covariance surface; numeric - default: 51

numBins  The number of bins to bin the data into; positive integer > 10, default: NULL

rotationCut  The 2-element vector in [0,1] indicating the percent of data truncated during sigma^2 estimation; default (0.25, 0.75)

useBinnedData  Should the data be binned? 'FORCE' (Enforce the # of bins), 'AUTO' (Select the # of bins automatically), 'OFF' (Do not bin) - default: 'AUTO'

useBinnedCov  Whether to use the binned raw covariance for smoothing; logical - default: TRUE

userMu  The user-defined smoothed mean function; list of two numerical vector 't' and 'mu' of equal size, 't' must cover the support defined 'Ly'; default: NULL

userSigma2  The user-defined measurement error variance. A positive scalar. If specified then no regularization is used (rho is set to 'no', unless specified otherwise). Default to 'NULL'

useBWISE  Pick the largest bandwidth such that CV-error is within one Standard Error from the minimum CV-error, relevant only if methodBwMu = 'CV' and/or methodBwCov = 'CV'; logical - default: FALSE

Value

A list containing the following fields:
GetCrCorYX

Description

Create cross-correlation matrix from auto- and cross-covariance matrix

Usage

GetCrCorYX(ccXY, ccXX, ccYY)

Arguments

ccXY The cross-covariance matrix between variables X and Y.
ccXX The auto-covariance matrix of variable X or the diagonal of that matrix.
ccYY The auto-covariance matrix of variable Y or the diagonal of that matrix.

Value

A cross-correlation matrix between variables X and Y.
GetCrCorYZ

Create cross-correlation matrix from auto- and cross-covariance matrix

Description

Create cross-correlation matrix from auto- and cross-covariance matrix

Usage

GetCrCorYZ(ccYZ, acYY, covZ)

Arguments

ccYZ The cross-covariance vector between variables Y and Z (n-by-1).
acYY The auto-covariance n-by-n matrix of variable Y or the (n-by-1) diagonal of that matrix.
covZ The (scalar) covariance of variable Z.

Value

A cross-correlation matrix between variables Y (functional) and Z (scalar).

GetCrCovYX

Functional Cross Covariance between longitudinal variable Y and longitudinal variable X

Description

Calculate the raw and the smoothed cross-covariance between functional predictors using bandwidth bw or estimate that bw using GCV.

Usage

GetCrCovYX(
    bw1 = NULL,
    bw2 = NULL,
    Ly1,
    Lt1 = NULL,
    Ymu1 = NULL,
    Ly2,
    Lt2 = NULL,
    Ymu2 = NULL,
    useGAM = FALSE,
    rmDiag = FALSE,
kern = "gauss",
bwRoutine = "l-bfgs-b"
)

Arguments

bw1 Scalar bandwidth for smoothing the cross-covariance function (if NULL it will be automatically estimated) (Y)
bw2 Scalar bandwidth for smoothing the cross-covariance function (if NULL it will be automatically estimated) (X)
Ly1 List of N vectors with amplitude information (Y)
Lt1 List of N vectors with timing information (Y)
Ymu1 Vector Q-1 Vector of length nObsGrid containing the mean function estimate (Y)
Ly2 List of N vectors with amplitude information (X)
Lt2 List of N vectors with timing information (X)
Ymu2 Vector Q-1 Vector of length nObsGrid containing the mean function estimate (X)
useGAM Indicator to use gam smoothing instead of local-linear smoothing (semi-parametric option) (default: FALSE)
rmDiag Indicator to remove the diagonal element when smoothing (default: FALSE)
kern String specifying the kernel type (default: FALSE; see ?FPCA for details)
bwRoutine String specifying the routine used to find the optimal bandwidth 'grid-search', 'bobyqa', 'l-bfgs-b' (default: 'l-bfgs-b') If the variables Ly1 and Ly2 are in matrix form the data are assumed dense and only the raw cross-covariance is returned. One can obtain Ymu1 and Ymu2 from FPCA and ConvertSupport.

Value

A list containing:
smoothedCC The smoothed cross-covariance as a matrix (currently only 51 by 51)
rawCC The raw cross-covariance as a list
bw The bandwidth used for smoothing as a vector of length 2
score The GCV score associated with the scalar used
smoothGrid The grid over which the smoothed cross-covariance is evaluated

References

Examples

```r
Ly1 = list(rep(2.1,7), rep(2.1,3), 2.1);
Lt1 = list(1:7, 1:3, 1);
Ly2 = list(rep(1.1,7), rep(1.1,3), 1.1);
Lt2 = list(1:7, 1:3, 1);
Ymu1 = rep(55,7);
Ymu2 = rep(1.1,7);
AA <- GetCrCovYZ(Ly1 = Ly1, Ly2 = Ly2, Lt1 = Lt1, Lt2 = Lt2, Ymu1 = Ymu1, Ymu2 = Ymu2)
```

GetCrCovYZ

Functional Cross Covariance between longitudinal variable Y and scalar variable Z

Description

Calculate the raw and the smoothed cross-covariance between functional and scalar predictors using bandwidth bw or estimate that bw using GCV

Usage

```r
GetCrCovYZ(
 bw = NULL,
 Z,
 Zmu = NULL,
 Ly,
 Lt = NULL,
 Ymu = NULL,
 support = NULL,
 kern = "gauss"
)
```

Arguments

- `bw` Scalar bandwidth for smoothing the cross-covariance function (if NULL it will be automatically estimated)
- `Z` Vector N-1 Vector of length N with the scalar function values
- `Zmu` Scalar with the mean of Z (if NULL it will be automatically estimated)
- `Ly` List of N vectors with amplitude information
- `Lt` List of N vectors with timing information
- `Ymu` Vector Q-1 Vector of length nObsGrid containing the mean function estimate
- `support` Vector of unique and sorted values for the support of the smoothed cross-covariance function (if NULL it will be automatically estimated)
- `kern` Kernel type to be used. See '?FPCA' for more details. (default: 'gauss') If the variables Ly1 is in matrix form the data are assumed dense and only the raw cross-covariance is returned. One can obtain Ymu1 from FPCA and ConvertSupport.
GetMeanCI

Value

A list containing:

- `smoothedCC`: The smoothed cross-covariance as a vector
- `rawCC`: The raw cross-covariance as a vector
- `bw`: The bandwidth used for smoothing as a scalar
- `score`: The GCV score associated with the scalar used

References


Examples

```r
Ly <- list(runif(5), c(1:3), c(2:4), c(4))
Lt <- list(c(1:5), c(1:3), c(1:3), 4)
Z = rep(4,4) # Constant vector so the covariance has to be zero.
sccObj = GetCrCovYZ(bw=1, Z= Z, Ly=Ly, Lt=Lt, Ymu=rep(4,5))
```

Description

Note that bootstrap pointwise confidence intervals do not work for sparsely observed data.

Usage

```r
GetMeanCI(Ly, Lt, level = 0.95, R = 999, optns = list())
```

Arguments

- `Ly`: A list of n vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (`dataType='dense'`).
- `Lt`: A list of n vectors containing the observation time points for each individual corresponding to each element in `Ly`. Each vector should be sorted in ascending order.
- `level`: A number taking values in [0,1] determining the confidence level. Default: 0.95.
- `R`: An integer holding the number of bootstrap replicates. Default: 999.
- `optns`: A list of options; see `FPCA` for details.
Value
A list of two elements:

CI A data frame holding three variables: CIgrid — the time grid where the CIs are evaluated; lower and upper — the lower and upper bounds of the CIs on CIgrid.

level The confidence level of the CIs

Examples

n <- 30
tgrid <- seq(0,1,length.out=21)
phi1 <- function(t) sqrt(2)*sin(2*pi*t)
phi2 <- function(t) sqrt(2)*sin(4*pi*t)
Lt <- rep(list(tgrid), n)
Ly <- lapply(1:n, function(i){
tgrid + rnorm(1,0,2) * phi1(tgrid) + rnorm(1,0,0.5) * phi2(tgrid) + rnorm(1,0,0.01)
})
res <- GetMeanCI(Lt = Lt, Ly = Ly, level = 0.9)

GetMeanCurve

Description
Mean curve calculation for dense or sparse functional data.

Usage
GetMeanCurve(Ly, Lt, optns = list())

Arguments

Ly A list of n vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType='Dense').

Lt A list of n vectors containing the observation time points for each individual corresponding to y. Each vector should be sorted in ascending order.

optns A list of options control parameters specified by list(name=value). See ‘Details’.

Available control options are

userBwMu The bandwidth value for the smoothed mean function (using ‘CV’ or ‘GCV’); positive numeric - default: determine automatically based on ‘methodBwMu’
methodBwMu  The bandwidth choice method for the mean function; 'GMeanAndGCV' (the geometric mean of the GCV bandwidth and the minimum bandwidth), 'CV', 'GCV' - default: 5% of the support

dataType The type of design we have (usually distinguishing between sparse or dense functional data); 'Sparse', 'Dense', 'DenseWithMV', 'p>n' - default: determine automatically based on 'IsRegular'

plot Plot mean curve; logical - default: FALSE

kernel Smoothing kernel choice, common for mu and covariance; "rect", "gauss", "epan", "gausvar", "quar" - default: "gauss"; dense data are assumed noiseless so no smoothing is performed.

kFoldMuCov The number of folds to be used for mean and covariance smoothing. Default: 10

methodMuCovEst The method to estimate the mean and covariance in the case of dense functional data; 'cross-sectional', 'smooth' - default: 'cross-sectional'

numBins The number of bins to bin the data into; positive integer > 10, default: NULL

useBinnedData Should the data be binned? 'FORCE' (Enforce the # of bins), 'AUTO' (Select the # of bins automatically), 'OFF' (Do not bin) - default: 'AUTO'

userMu The user-defined smoothed mean function; list of two numerical vector 't' and 'mu' of equal size, 't' must cover the support defined 'Ly' - default: NULL

useBW1SE Pick the largest bandwidth such that CV-error is within one Standard Error from the minimum CV-error, relevant only if methodBwMu = 'CV' and/or methodBwCov = 'CV'; logical - default: FALSE

Value

A list containing the following fields:

mu A vector of length nWorkGrid containing the mean function estimate.

workGrid A vector of length nWorkGrid. The internal regular grid on which the mean estimation is carried out.

bwMu The selected (or user specified) bandwidth for smoothing the mean function.

optns A list of actually-used options relevant to the mean function calculation.

Examples

set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.025)
sampWiener <- Wiener(n, pts)
mu = sin(2*pi*pts)
sampWiener <- Sparsify(t(t(sampWiener) + mu), pts, 10)
res = GetMeanCurve(Ly = sampWiener$Ly, Lt = sampWiener$Lt, optns = list(plot = TRUE))
GetNormalisedSample

Normalise sparse multivariate functional data

Description

Normalise sparse functional sample given in an FPCA object

Usage

GetNormalisedSample(fpcaObj, errorSigma = FALSE)

GetNormalizedSample(...)

Arguments

fpcaObj      An FPCA object.
errorSigma   Indicator to use sigma^2 error variance when normalising the data (default: FALSE)
...          Passed into GetNormalisedSample

Value

A list containing the normalised sample 'y' at times 't'

References


Examples

set.seed(1)
n <- 100
M <- 51
pts <- seq(0, 1, length.out=M)
mu <- rep(0, length(pts))
sampDense <- MakeGPFunctionalData(n, M, mu, K=1, basisType='sin', sigma=0.01)
samp4 <- MakeFPCAInputs(tVec=sampDense$pts, yVec=sampDense$Yn)
res4E <- FPCA(samp4$Ly, samp4$Lt, list(error=TRUE))
sampN <- GetNormalisedSample(res4E, errorSigma=TRUE)

CreatePathPlot(subset=1:20, inputData=samp4, obsOnly=TRUE, showObs=FALSE)
CreatePathPlot(subset=1:20, inputData=sampN, obsOnly=TRUE, showObs=FALSE)
kCFC

Function clustering and identifying substructures of longitudinal data using kCFC.

Description

Function clustering and identifying substructures of longitudinal data using kCFC.

Usage

```r
kCFC(
 y,
 t,
 k = 3,
 kSeed = 123,
 maxIter = 125,
 optnsSW = list(methodMuCovEst = "smooth", FVEthreshold = 0.9, methodBwCov = "GCV", methodBwMu = "GCV"),
 optnsCS = list(methodMuCovEst = "smooth", FVEthreshold = 0.7, methodBwCov = "GCV", methodBwMu = "GCV")
)
```

Arguments

- **y**: A list of \( n \) vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (\texttt{dataType}='dense').
- **t**: A list of \( n \) vectors containing the observation time points for each individual corresponding to \( y \).
- **k**: A scalar defining the number of clusters to define; default 3. Values that define very small clusters (eg.cluster size \( \leq 3 \)) will potentially err.
- **kSeed**: A scalar valid seed number to ensure replication; default: 123
- **maxIter**: A scalar defining the maximum number of iterations allowed; default 20, common for both the simple \texttt{kmeans} initially and the subsequent \texttt{k-centres}
- **optnsSW**: A list of options control parameters specified by \texttt{list(name=value)} to be used for sample-wide FPCA; by default: \texttt{"list(methodMuCovEst = 'smooth', FVEthreshold = 0.9, methodBwCov = 'GCV', methodBwMu = 'GCV')"}. See ‘Details in ‘\texttt{FPCA}’.
- **optnsCS**: A list of options control parameters specified by \texttt{list(name=value)} to be used for cluster-specific FPCA; by default: \texttt{"list(methodMuCovEst = 'smooth', FVEthreshold = 0.7, methodBwCov = 'GCV', methodBwMu = 'GCV')"}. See ‘Details in ‘\texttt{FPCA}’.
Value

A list containing the following fields:

- **cluster**: A vector of levels 1:k, indicating the cluster to which each curve is allocated.
- **fpcaList**: A list with the fpcaObj for each separate cluster.
- **iterToConv**: A number indicating how many iterations were required until convergence.

References


Examples

data(medfly25)
Flies <- MakeFPCAInputs(medfly25$ID, medfly25$Days, medfly25$nEggs)
kcfcObj <- kCFC(Flies$Ly[1:150], Flies$Lt[1:150], # using only 150 for speed consideration
                 optnsSW = list(methodMuCovEst = 'smooth', userBwCov = 2, FVEthreshold = 0.90),
                 optnsCS = list(methodMuCovEst = 'smooth', userBwCov = 2, FVEthreshold = 0.70))

Lwls1D

One dimensional local linear kernel smoother

Description

One dimensional local linear kernel smoother for longitudinal data.

Usage

Lwls1D(
    bw,          <-
    kernel_type, <-
    win = rep(1L, length(xin)), <-
    xin,         <-
    yin,         <-
    xout,        <-
    npoly = 1L,  <-
    nder = 0L)   <-
)
Lwls2D

Arguments

- **bw**: A scalar or a vector of length 2 specifying the bandwidth.
- **kern**: Kernel used: 'gauss', 'rect', 'gausvar', 'epan' (default), 'quar'.
- **xin**: An n by 2 data frame or matrix of x-coordinate.
- **yin**: A vector of y-coordinate.

Value

Vector of length M with measurement values at the the point specified by 'xout'

Description

Two dimensional local weighted least squares smoother. Only local linear smoother for estimating the original curve is available (no higher order, no derivative).

Usage

Lwls2D(
  bw,  
kern = "epan", 
  xin, 
  yin, 
  win = NULL, 
  xout1 = NULL, 
  xout2 = NULL, 
  xout = NULL, 
  subset = NULL, 
  crosscov = FALSE, 
  method = ifelse(kern == "gauss", "plain", "sort2")
)

Arguments

- **bw**: A scalar or a vector of length 2 specifying the bandwidth.
- **kern**: Kernel used: 'gauss', 'rect', 'gausvar', 'epan' (default), 'quar'.
- **xin**: An n by 2 data frame or matrix of x-coordinate.
- **yin**: A vector of y-coordinate.
Lwls2DDeriv

Two dimensional local linear kernel smoother to target derivatives.

Description

Two dimensional local weighted least squares smoother. Only a local linear smoother for estimating the original curve is available (no higher order)

Usage

Lwls2DDeriv(
  bw,
  kern = "epan",
  xin,  
  yin,  
  win = NULL,
  xout1 = NULL,
  xout2 = NULL,
  xout = NULL,
  npoly = 1L,
  nder1 = 0L,
  nder2 = 0L,
  subset = NULL,
  crosscov = TRUE,
  method = "sort2"
)

Value

a p1 by p2 matrix of fitted values if xout is not specified. Otherwise a vector of length p corresponding to the rows of xout.
MakeBWtoZscore02y

Z-score body-weight for age 0 to 24 months based on WHO standards

Arguments

- `bw`: A scalar or a vector of length 2 specifying the bandwidth.
- `kern`: Kernel used: 'gauss', 'rect', 'gausvar', 'epan' (default), 'quar'.
- `xin`: An n by 2 data frame or matrix of x-coordinate.
- `yin`: A vector of y-coordinate.
- `win`: A vector of weights on the observations.
- `xout1`: A p1-vector of first output coordinate grid. Defaults to the input gridpoints if left unspecified.
- `xout2`: A p2-vector of second output coordinate grid. Defaults to the input gridpoints if left unspecified.
- `xout`: alternative to `xout1` and `xout2`. A matrix of p by 2 specifying the output points (may be inefficient if the size of `xout` is small).
- `npoly`: The degree of polynomials (include all $x^a y^b$ terms where $a + b \leq npoly$)
- `nder1`: Order of derivative in the first direction
- `nder2`: Order of derivative in the second direction
- `subset`: a vector with the indices of x-/y-/w-in to be used (Default: NULL)
- `crosscov`: using function for cross-covariance estimation (Default: TRUE)
- `method`: should one try to sort the values xin and yin before using the lwls smoother? if yes ('sort2' - default for non-Gaussian kernels), if no ('plain' - fully stable; de

Value

A p1 by p2 matrix of fitted values if xout is not specified. Otherwise a vector of length p corresponding to the rows of xout.

Description

Make vector of age and body-weight to z-scores based on WHO standards using LMS

Usage

MakeBWtoZscore02y(sex, age, bw)

Arguments

- `sex`: A character 'M' or 'F' indicating the sex of the child.
- `age`: A vector of time points of size Q.
- `bw`: A vector of body-weight readings of size Q.

Value

A vector of Z-scores of size Q.
### MakeFPCAInputs

**Format FPCA input**

**Description**

Turn vector inputs to the list so they can be used in FPCA

**Usage**

```r
MakeFPCAInputs(
 IDs = NULL,
 tVec,
 yVec,
 na.rm = FALSE,
 sort = FALSE,
 deduplicate = FALSE
)
```

**Arguments**

- **IDs** np-by-1 vector of subject IDs (Default: NULL)
- **tVec** Either an np-by-1 vector of measurement times, or a p-by-1 vector corresponding to the common time support
- **yVec** n-by-1 vector of measurements from the variable of interest, or a n-by-p matrix with each row corresponding to the dense observations.
- **na.rm** logical indicating if NA should be omitted (Default: FALSE)
- **sort** logical indicating if Lt (and the corresponding Ly values) should be ensured to be sorted (Default: FALSE)
- **deduplicate** logical indicating if the Lt should be ensured not to have within-subject duplicated values; the Ly values of repeated Lt values are averaged (Default: FALSE)

**Value**

L list containing 3 lists each of length 'm', 'm' being the number of unique subject IDs

---

### MakeGPFunctionalData

**Create a Dense Functional Data sample for a Gaussian process**

**Description**

For a Gaussian process, create a dense functional data sample of size n over a [0,1] support.
MakeHCtoZscore02y

Usage

MakeGPFunctionalData(
  n,
  M = 100,
  mu = rep(0, M),
  K = 2,
  lambda = rep(1, K),
  sigma = 0,
  basisType = "cos"
)

Arguments

n number of samples to generate
M number of equidistant readings per sample (default: 100)
mu vector of size M specifying the mean (default: rep(0,M))
K scalar specifying the number of basis to be used (default: 2)
lambda vector of size K specifying the variance of each components (default: rep(1,K))
sigma The standard deviation of the Gaussian noise added to each observation points.
basisType string specifying the basis type used; possible options are: 'sin', 'cos' and 'fourier' (default: 'cos') (See code of 'CreateBasis' for implementation details.)

Value

Y: X(t_j), Yn: noisy observations

MakeHCtoZscore02y

Z-score head-circumference for age 0 to 24 months based on WHO standards

Description

Convert vector of age and height measurement to z-scores based on WHO standards using mu and sigma (not LMS)

Usage

MakeHCtoZscore02y(sex, age, hc)

Arguments

sex A character 'M' or 'F' indicating the sex of the child.
age A vector of time points of size Q.
hc A vector of head circumference readings of size Q (in cm).
**MakeSparseGP**

*Create a sparse Functional Data sample for a Gaussian Process*

**Description**

Functional data sample of size n, sparsely sampled from a Gaussian process

**Usage**

```r
MakeSparseGP(n,
 rdist = runif,
 sparsity = 2:9,
 muFun = function(x) rep(0, length(x)),
 K = 2,
 lambda = rep(1, K),
 sigma = 0,
 basisType = "cos",
 CovFun = NULL
)
```

---

**MakeLNtoZscore02y**

*Z-score height for age 0 to 24 months based on WHO standards*

**Description**

Convert vector of age and height measurement to z-scores based on WHO standards using mu and sigma (not LMS)

**Usage**

```r
MakeLNtoZscore02y(sex, age, ln)
```

**Arguments**

- `sex` A character 'M' or 'F' indicating the sex of the child.
- `age` A vector of time points of size Q.
- `ln` A vector of body-length readings of size Q (in cm).

**Value**

A vector of Z-scores of size Q.

---

**Value**

A vector of Z-scores of size Q.
Arguments

- **n**
  number of samples to generate.

- **rdist**
  a sampler for generating the random design time points within [0, 1].

- **sparsity**
  A vector of integers. The number of observation per sample is chosen to be one of the elements in sparsity with equal chance.

- **muFun**
  a function that takes a vector input and output a vector of the corresponding mean (default: zero function).

- **K**
  scalar specifying the number of basis to be used (default: 2).

- **lambda**
  vector of size K specifying the variance of each components (default: rep(1,K)).

- **sigma**
  The standard deviation of the Gaussian noise added to each observation points.

- **basisType**
  string specifying the basis type used; possible options are: ‘sin’, ‘cos’ and ’fourier’ (default: ‘cos’) (See code of ‘CreateBasis’ for implementation details.)

- **CovFun**
  an alternative specification of the covariance structure.

Value

TODO

---

**medfly25**

*Number of eggs laid daily from medflies*

Description

A dataset containing the eggs laid from 789 medflies (Mediterranean fruit flies, Ceratitis capitata) during the first 25 days of their lives. This is a subset of the dataset used by Carey at al. (1998); only flies that lived at least 25 days are included, i.e, at the end of the recording period [0,25] all flies are still alive.

Format

A data frame with 19725 rows and 3 variables:

- **ID** : Medfly ID according to the original dataset
- **Days** : Day of measurement
- **nEggs** : Number of eggs laid at that particular day
- **nEggsRemain** : Remaining total number of eggs laid

Source

[https://anson.ucdavis.edu/~mueller/data/medfly1000.html](https://anson.ucdavis.edu/~mueller/data/medfly1000.html)

References

Description
Smooth backfitting procedure for functional additive models with multiple predictor processes

Usage

```r
MultiFAM(
Y,
X,
ker = "epan",
nEval = 51,
XTest = NULL,
bwMethod = 0,
alpha = 0.7,
supp = c(-2, 2),
optnsList = NULL
)
```

Arguments

- `Y`: An `n`-dimensional vector whose elements consist of scalar responses.
- `X`: A `d`-dimensional list whose components consist of two lists of `Ly` and `Lt` containing observation times and functional covariate values for each predictor component, respectively. For details of `Ly` and `Lt`, see `FPCA` for detail.
- `ker`: A function object representing the base kernel to be used in the smooth backfitting algorithm (default is 'epan' which is the only option supported currently).
- `nEval`: The number of evaluation grid points for kernel smoothing (default is 51. If it is specified as 0, then estimated FPC scores in the training set are used for evaluation grid instead of equal grid).
- `XTest`: A `d`-dimensional list for test set of functional predictors (default is NULL). If `XTest` is specified, then estimated FPC scores in the test set are used for evaluation grid.
- `bwMethod`: The method of initial bandwidth selection for kernel smoothing, a positive value for designating K-fold cross-validation and zero for GCV (default is 0).
- `alpha`: The shrinkage factor (positive number) for bandwidth selection. See Han et al. (2016) (default is 0.7).
- `supp`: The lower and upper limits of kernel smoothing domain for studentized FPC scores, which FPC scores are divided by the square roots of eigenvalues (default is [-2,2]).
- `optnsList`: A `d`-dimensional list whose components consist of `optns` for each predictor component, respectively. (default is NULL which assigns the same default `optns` for all components as in `FPCA`).
Details


It is based on the model

\[ E(Y|X) = \sum_{j=1}^{d} \sum_{k=1}^{K_j} g_{jk}(\xi_{jk}), \]

where \( \xi_{jk} \) stand for the k-th FPC scores of the j-th predictor process. MultiFAM only is for the multiple predictor processes case. For a univariate predictor use FAM, the functional additive model (Müller and Yao 2008). It is necessary to designate an estimation support for the additive component functions where the additive modeling is only allowed over restricted intervals (see Han et al., 2018).

Value

A list containing the following fields:

- **mu**: A scalar for the centered regression model.
- **SBFit**: An \( N \) by \((K_1 + \ldots + K_d)\) matrix whose column vectors consist of the smooth backfitting component function estimators at the given \( N \) estimation points.
- **xi**: An \( N \) by \((K_1 + \ldots + K_d)\) matrix whose column vectors consist of the FPC score grid vectors at which each additive component function is evaluated.
- **bw**: A \((K_1 + \ldots + K_d)\)-dimensional bandwidth vector.
- **lambda**: A \((K_1 + \ldots + K_d)\)-dimensional vector containing eigenvalues.
- **phi**: A \( d \)-dimensional list whose components consist of an \( nWorkGrid \) by \( K_j \) matrix containing eigenfunctions, supported by WorkGrid. See FPCA.
- **workGrid**: A \( d \)-dimensional list whose components consist of an \( nWorkGrid \) by \( K_j \) working grid, a regular grid on which the eigenanalysis is carried out. See FPCA.

References


Han, K., Müller, H.-G. and Park, B. U. (2016), "Smooth backfitting for additive modeling with small errors-in-variables, with an application to additive functional regression for multiple predictor functions", Bernoulli (accepted).
**Examples**

```r
set.seed(1000)

library(MASS)

f11 <- function(t) t
f12 <- function(t) 2*cos(2*pi*t/4)
f21 <- function(t) 1.5*sin(2*pi*t/4)
f22 <- function(t) 1.5.atan(2*pi*t/4)

n<-100
N<-200

sig <- matrix(c(2.0, 0.0, 0.5, -.2, 0.0, 1.2, -.2, 0.3, 0.5, -.2, 1.7, 0.0, -.2, 0.3, 0.0, 1.0),
 nrow=4,ncol=4)
scoreX <- mvrnorm(n,mu=rep(0,4),Sigma=sig)
scoreXTest <- mvrnorm(N,mu=rep(0,4),Sigma=sig)

Y <- f11(scoreX[,1]) + f12(scoreX[,2]) + f21(scoreX[,3]) + f22(scoreX[,4]) + rnorm(n,0,0.5)
YTest <- f11(scoreXTest[,1]) + f12(scoreXTest[,2]) + f21(scoreXTest[,3]) + f22(scoreXTest[,4]) + rnorm(N,0,0.5)

phi11 <- function(t) sqrt(2)*sin(2*pi*t)
phi12 <- function(t) sqrt(2)*sin(4*pi*t)
phi21 <- function(t) sqrt(2)*cos(2*pi*t)
phi22 <- function(t) sqrt(2)*cos(4*pi*t)

grid <- seq(0,1,length.out=21)
Lt <- Lx1 <- Lx2 <- list()
for (i in 1:n) {
 Lt[[i]] <- grid
 Lx1[[i]] <- scoreX[i,1]*phi11(grid) + scoreX[i,2]*phi12(grid) + rnorm(1,0,0.01)
 Lx2[[i]] <- scoreX[i,3]*phi21(grid) + scoreX[i,4]*phi22(grid) + rnorm(1,0,0.01)
}

LtTest <- Lx1Test <- Lx2Test <- list()
for (i in 1:N) {
 LtTest[[i]] <- grid
 Lx1Test[[i]] <- scoreXTest[i,1]*phi11(grid) + scoreXTest[i,2]*phi12(grid) + rnorm(1,0,0.01)
 Lx2Test[[i]] <- scoreXTest[i,3]*phi21(grid) + scoreXTest[i,4]*phi22(grid) + rnorm(1,0,0.01)
}

X1 <- list(Ly=Lx1, Lt=Lt)
X2 <- list(Ly=Lx2, Lt=Lt)

X1Test <- list(Ly=Lx1Test, Lt=LtTest)
X2Test <- list(Ly=Lx2Test, Lt=LtTest)
```
X <- list(X1, X2)
XTest <- list(X1Test, X2Test)

# estimation
sbf <- MultiFAM(Y=Y, X=X)

xi <- sbf$xi

par(mfrow=c(2,2))
j <- 1
p0 <- trapzRcpp(sort(xi[,j]),dnorm(sort(xi[,j]),0,sqrt(sig[j,j])))
g11 <- f11(sort(xi[,j])) * dnorm(sort(xi[,j]),0,sqrt(sig[j,j]))/p0
tmpSgn <- sign(sum(g11*sbf$SBFit[,j]))
plot(sort(xi[,j]),g11,type="l",col=2,ylim=c(-2.5,2.5),xlab="xi11")
points(sort(xi[,j]),tmpSgn*sbf$SBFit[order(xi[,j]),j],type="l")
legend('top',c('true','SBF'),col=c(2,1),lwd=2,bty="n",horiz=TRUE)

j <- 2
p0 <- trapzRcpp(sort(xi[,j]),dnorm(sort(xi[,j]),0,sqrt(sig[j,j])))
g12 <- f12(sort(xi[,j])) * dnorm(sort(xi[,j]),0,sqrt(sig[j,j]))/p0
tmpSgn <- sign(sum(g12*sbf$SBFit[,j]))
plot(sort(xi[,j]),g12,type="l",col=2,ylim=c(-2.5,2.5),xlab="xi12")
points(sort(xi[,j]),tmpSgn*sbf$SBFit[order(xi[,j]),j],type="l")
legend('top',c('true','SBF'),col=c(2,1),lwd=2,bty="n",horiz=TRUE)

j <- 3
p0 <- trapzRcpp(sort(xi[,j]),dnorm(sort(xi[,j]),0,sqrt(sig[j,j])))
g21 <- f21(sort(xi[,j])) * dnorm(sort(xi[,j]),0,sqrt(sig[j,j]))/p0
tmpSgn <- sign(sum(g21*sbf$SBFit[,j]))
plot(sort(xi[,j]),g21,type="l",col=2,ylim=c(-2.5,2.5),xlab="xi21")
points(sort(xi[,j]),tmpSgn*sbf$SBFit[order(xi[,j]),j],type="l")
legend('top',c('true','SBF'),col=c(2,1),lwd=2,bty="n",horiz=TRUE)

j <- 4
p0 <- trapzRcpp(sort(xi[,j]),dnorm(sort(xi[,j]),0,sqrt(sig[j,j])))
g22 <- f22(sort(xi[,j])) * dnorm(sort(xi[,j]),0,sqrt(sig[j,j]))/p0
tmpSgn <- sign(sum(g22*sbf$SBFit[,j]))
plot(sort(xi[,j]),g22,type="l",col=2,ylim=c(-2.5,2.5),xlab="xi22")
points(sort(xi[,j]),tmpSgn*sbf$SBFit[order(xi[,j]),j],type="l")
legend('top',c('true','SBF'),col=c(2,1),lwd=2,bty="n",horiz=TRUE)

# fitting
sbf <- MultiFAM(Y=Y, X=X, nEval=0)
yHat <- sbf$mu+apply(sbf$SBFit,1,"sum")
plot(yHat,Y)
abline(coef=c(0,1),col=2)
# R^2
R2 <- 1-sum((Y-yHat)^2)/sum((Y-mean(Y))^2)
R2

# prediction
sbf <- MultiFAM(Y=Y,X=X,XTest=XTest)
yHat <- sbf$mu+apply(sbf$SBFit,1,'sum')
plot(yHat,YTest)
abline(coef=c(0,1),col=2)

NormCurvToArea

Normalise a curve to a particular area, by multiplication with a factor

Description
Normalise a curve such that \( \int y_{\text{new}} dx = \text{area} \) (according to trapezoid integration)

Usage
NormCurvToArea(y, x = seq(0, 1, length.out = length(y)), area = 1)

Arguments
- \( y \): values of curve at time-points \( x \)
- \( x \): design time-points (default: seq(0,1, length.out=length(y)))
- \( \text{area} \): value to normalise the curve onto (default: 1)

Value
\( y_{\text{new}} \) values of curve at times \( x \) such that \( \int y_{\text{new}} dx = \text{area} \)

predict.FPCA

Predict FPC scores and curves for a new sample given an FPCA object

Description
Return a list containing the matrix with the first \( k \) FPC scores according to conditional expectation or numerical integration, the matrix of predicted trajectories and the prediction work grid.

Usage
```r
S3 method for class 'FPCA'
predict(object, newLy, newLt, sigma2 = NULL, K = NULL, xiMethod = "CE", ...)
```
Arguments

object An FPCA object.
newLy A list of \( n \) vectors containing the observed values for each individual.
newLt A list of \( n \) vectors containing the observation time points for each individual corresponding to \( y \).
sigma2 The user-defined measurement error variance. A positive scalar. (default: rho if applicable, otherwise sigma2 if applicable, otherwise 0 if no error.)
K The scalar defining the number of clusters to define; (default: from user-specified FPCA Object).
xiMethod The integration method used to calculate the functional principal component scores (standard numerical integration 'IN' or conditional expectation 'CE'); default: 'CE'.
...
Not used.

Value

A list containing the following fields:

scores A matrix of size \( n \)-by-\( k \) which comprise of the predicted functional principal component scores.
predCurves A matrix of size \( n \)-by-\( l \) where \( l \) is the length of the work grid in \( \text{object} \).
predGrid A vector of length \( l \) which is the output grid of the predicted curves. This is same is the workgrid of \( \text{object} \).

Examples

```r
set.seed(1)
n <- 50
pts <- seq(0, 1, by=0.05)
The first n samples are for training and the rest testing
sampWiener <- Wiener(2 * n, pts)
sparsity <- 2:5
train <- Sparsify(sampWiener[seq_len(n), , drop=FALSE], pts, sparsity)
test <- Sparsify(sampWiener[seq(n + 1, 2 * n), , drop=FALSE], pts, sparsity)
res <- FPCA(train$Ly, train$Lt)
pred <- predict(res, test$Ly, test$Lt, K=3)
plot(pred$predGrid, pred$predCurves[1,])
```
print.FPCA  

Print an FPCA object 

Description

Print a simple description of an FPCA object

Usage

## S3 method for class 'FPCA'
print(x, ...)

Arguments

x  
An FPCA object.

...  
Not used.

Examples

```r
set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt)
res
```

print.FSVD  

Print an FSVD object 

Description

Print a simple description of an FSVD object

Usage

## S3 method for class 'FSVD'
print(x, ...)

Arguments

x  
An FSVD object.

...  
Not used.
print.WFDA

Print a WFDA object

Description

Print a simple description of a WFDA object

Usage

## S3 method for class 'WFDA'
print(x, ...)

Arguments

x
A WFDA object.

... Not used.

SBFitting

Iterative Smooth Backfitting Algorithm

Description

Smooth backfitting procedure for nonparametric additive models

Usage

SBFitting(Y, x, X, h = NULL, K = "epan", supp = NULL)

Arguments

Y
An n-dimensional vector whose elements consist of scalar responses.

x
An N by d matrix whose column vectors consist of N vectors of estimation points for each component function.

X
An n by d matrix whose row vectors consist of multivariate predictors.

h
A d vector of bandwidths for kernel smoothing to estimate each component function.

K
A function object representing the kernel to be used in the smooth backfitting (default is 'epan', the Epanechnikov kernel.).

supp
A d by 2 matrix whose row vectors consist of the lower and upper limits of estimation intervals for each component function (default is the d-dimensional unit rectangle of \([0,1])\).
SBFitting fits component functions of additive models for a scalar response and a multivariate predictor based on the smooth backfitting algorithm proposed by Mammen et al. (1999), see also Mammen and Park (2006), Yu et al. (2008), Lee et al. (2010, 2012) and others. SBFitting only focuses on the locally constant smooth backfitting estimator for the multivariate predictor case. Note that the fitting in the special case of a univariate predictor is the same as that provided by a local constant kernel regression estimator (Nadaraya-Watson estimator). The local polynomial approach can be extended similarly (currently omitted). Support of the multivariate predictor is assumed to be a product of closed intervals. Users should designate an estimation support for the additive component function where modeling is restricted to subintervals of the domain (see Han et al., 2016). If one puts \( X \) in the argument for the estimation points \( x \), SBFitting returns the estimated values of the conditional mean responses given the observed predictors.

**Value**

A list containing the following fields:

- **SBFit**: An \( N \) by \( d \) matrix whose column vectors consist of the smooth backfitting component function estimators at the given estimation points.
- **mY**: A scalar of centered part of the regression model.
- **NW**: An \( N \) by \( d \) matrix whose column vectors consist of the Nadaraya-Watson marginal regression function estimators for each predictor component at the given estimation points.
- **mgnDens**: An \( N \) by \( d \) matrix whose column vectors consist of the marginal kernel density estimators for each predictor component at the given estimation points.
- **jntDens**: An \( N \) by \( N \) by \( d \) by \( d \) array representing the 2-dimensional joint kernel density estimators for all pairs of predictor components at the given estimation grid. For example, \([\cdot, j, k]\) of the object provides the 2-dimensional joint kernel density estimator of the \((j,k)\)-component of predictor components at the corresponding \( N \) by \( N \) matrix of estimation grid.
- **itemNum**: The iteration number that the smooth backfitting algorithm has stopped.
- **itemErr**: The iteration error of the smooth backfitting algorithm that represents the maximum L2 distance among component functions in the last successive updates.

**References**


Han, K., Müller, H.-G. and Park, B. U. (2016), "Smooth backfitting for additive modeling with small errors-in-variables, with an application to additive functional regression for multiple predictor functions", Bernoulli (accepted).

Examples

```r
set.seed(100)

n <- 100
d <- 2
X <- pnorm(matrix(rnorm(n*d),nrow=n,ncol=d)%*%matrix(c(1,0.6,0.6,1),nrow=2,ncol=2))
f1 <- function(t) 2*(t-0.5)
f2 <- function(t) sin(2*pi*t)
Y <- f1(X[,1])+f2(X[,2])+rnorm(n,0,0.1)

component function estimation
N <- 101
x <- matrix(rep(seq(0,1,length.out=N),d),nrow=N,ncol=d)
h <- c(0.12,0.08)
sbfEst <- SBFitting(Y,x,X,h)

fFit <- sbfEst$SBFit

op <- par(mfrow=c(1,2))
plot(x[,1],f1(x[,1]),type='l',lwd=2,col=2,lty=4,xlab='X1',ylab='Y')
points(x[,1],fFit[,1],type='l',lwd=2,col=1)
points(X[,1],Y,cex=0.3,col=8)
legend('topleft',legend=c('SBF','true'),col=c(1,2),lwd=2,lty=c(1,4),horiz=FALSE,bty='n')
abline(h=0,col=8)

plot(x[,2],f2(x[,2]),type='l',lwd=2,col=2,lty=4,xlab='X2',ylab='Y')
points(x[,2],fFit[,2],type='l',lwd=2,col=1)
points(X[,2],Y,cex=0.3,col=8)
legend('topright',legend=c('SBF','true'),col=c(1,2),lwd=2,lty=c(1,4),horiz=FALSE,bty='n')
abline(h=0,col=8)
par(op)

prediction
x <- X
h <- c(0.12,0.08)
sbfPred <- SBFitting(Y,x,X,h)
fPred <- sbfPred$mY+apply(sbfPred$SBFit,1,'sum')

op <- par(mfrow=c(1,1))
plot(fPred,Y,cex=0.5,xlab='SBFitted values',ylab='Y')
abline(coef=c(0,1),col=8)
par(op)
```
SelectK

Selects number of functional principal components for given FPCA output and selection criteria

Usage

SelectK(fpcaObj, criterion = "FVE", FVEthreshold = 0.95, Ly = NULL, Lt = NULL)

Arguments

fpcaObj A list containing FPCA related objects returned by MakeFPCAResults().
criterion A string or positive integer specifying selection criterion for the number of functional principal components. Available options: 'FVE', 'AIC', 'BIC', or the specified number of components - default: 'FVE' For explanations of these criteria, see Yao et al (2005, JASA)
FVEthreshold A threshold fraction to be specified by the user when using "FVE" as selection criterion: (0,1] - default: NULL
Ly A list of $n$ vectors containing the observed values for each individual - default: NULL
Lt A list of $n$ vectors containing the observation time points for each individual corresponding to Ly - default: NULL

Value

A list including the following two fields:

K An integer indicating the selected number of components based on given criterion.
criterion The calculated criterion value for the selected number of components, i.e. FVE, AIC or BIC value, NULL for fixedK criterion.

SetOptions

Set the PCA option list

Description

Set the PCA option list

Usage

SetOptions(y, t, optns)
**Sparsify**

Sparsify densely observed functional data

**Description**

Given a matrix of densely observed functional data, create a sparsified sample for experimental purposes.

**Usage**

Sparsify(samp, pts, sparsity, aggressive = FALSE, fragment = FALSE)

**Arguments**

- **samp**
  - A matrix of densely observed functional data, with each row containing one sample.
- **pts**
  - A vector of grid points corresponding to the columns of samp.
- **sparsity**
  - A vector of integers. The number of observation per sample is chosen to be one of the elements in sparsity with equal chance.
- **aggressive**
  - Sparsify in an "aggressive" manner making sure that near-by readings are excluded.
- **fragment**
  - Sparsify the observations into fragments, which are (almost) uniformly distributed in the time domain. Default to FALSE as not fragmenting. Otherwise a positive number specifying the approximate length of each fragment.

**Value**

A list of length 2, containing the following fields:

- **Lt**
  - A list of observation time points for each sample.
- **Ly**
  - A list of values for each sample, corresponding to the time points.
### str.FPCA

*Compactly display the structure of an FPCA object*

#### Description

Compactly display the structure of an FPCA object

#### Usage

```r
S3 method for class 'FPCA'
str(object, ...)
```

#### Arguments

- `object`: An FPCA object
- `...`: Not used

### Stringing

*Stringing for High-Dimensional data*

#### Description

Converting high-dimensional data to functional data

#### Usage

```r
Stringing(
 X,
 Y = NULL,
 standardize = FALSE,
 disOptns = "euclidean",
 disMat = NA
)
```

#### Arguments

- `X`: A matrix (n by p) of data, where X[i,] is the row vector of measurements for the ith subject.
- `Y`: A vector (n by 1), where Y[i] is the response associated with X[i,]
- `standardize`: A logical variable indicating whether standardization of the input data matrix is required, with default: FALSE.
- `disOptns`: A distance metric to be used, one of the following: "euclidean" (default), "maximum", "manhattan", "canberra", "binary", "minkowski", "correlation", "spearman", "hamming", "xycor", or "user". If specified as "xycor", the absolute difference of correlation between predictor and response is used. If specified as "user", a dissimilarity matrix for the argument `disMat` must be provided.
- `disMat`: A user-specified dissimilarity matrix, only necessary when `disOptns` is "user".
**Value**

A list containing the following fields:

- **Ly**: A list of n vectors, which are the random trajectories for all subjects identified by the Stringing method.
- **Lt**: A list of n time points vectors, at which corresponding measurements Ly are taken.
- **StringingOrder**: A vector representing the order of the stringing, s.t. using as column index on \( X \) yields recovery of the underlying process.
- **Xin**: A matrix, corresponding to the input data matrix.
- **Xstd**: A matrix, corresponding to the standardized input data matrix. It is NULL if standardize is FALSE.

**References**


**Examples**

```r
set.seed(1)
n <- 50
wiener = Wiener(n = n)[-1]
p = ncol(wiener)
rdmorder = sample(size = p, x=1:p, replace = FALSE)
stringingfit = Stringing(X = wiener[,rdmorder], disOptns = "correlation")
diff_norev = sum(abs(rdmorder[stringingfit$StringingOrder] - 1:p))
diff_rev = sum(abs(rdmorder[stringingfit$StringedOrder] - p:1))
if(diff_rev <= diff_norev){
 stringingfit$StringingOrder = rev(stringingfit$StringingOrder)
 stringingfit$Ly = lapply(stringingfit$Ly, rev)
}
plot(1:p, rdmorder[stringingfit$StringingOrder], pch=18); abline(a=0,b=1)
```

---

**trapzRcpp**

*Trapezoid Rule Numerical Integration*

**Description**

Trapezoid Rule Numerical Integration using Rcpp

**Usage**

```
trapzRcpp(X, Y)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Sorted vector of X values</td>
</tr>
<tr>
<td>Y</td>
<td>Vector of Y values</td>
</tr>
</tbody>
</table>

---

**TVAM**  
*Iterative Smooth Backfitting Algorithm*

Description

Smooth backfitting procedure for time-varying additive models

Usage

```r
tvam(
 Lt,
 Ly,
 LLx,
 gridT = NULL,
 x = NULL,
 ht = NULL,
 hx = NULL,
 K = "epan",
 suppT = NULL,
 suppX = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lt</td>
<td>An ( n )-dimensional list of ( N_i )-dimensional vector whose elements consist of longitudinal time points for each ( i )-th subject.</td>
</tr>
<tr>
<td>Ly</td>
<td>An ( n )-dimensional list of ( N_i )-dimensional vector whose elements consist of longitudinal response observations of each ( i )-subject corresponding to ( Lt ).</td>
</tr>
<tr>
<td>LLx</td>
<td>A tuple of ( d )-lists, where each list represents longitudinal covariate observations of the ( j )-th component corresponding to ( Lt ) and ( Ly ).</td>
</tr>
<tr>
<td>gridT</td>
<td>An ( M )-dimensional sequence of evaluation time points for additive surface estimators. (Must be sorted in increasing orders.)</td>
</tr>
<tr>
<td>x</td>
<td>An ( N ) by ( d ) matrix whose column vectors consist of ( N ) vectors of evaluation points for additive surface component estimators at each covariate value.</td>
</tr>
<tr>
<td>ht</td>
<td>A bandwidth for kernel smoothing in time component.</td>
</tr>
<tr>
<td>hx</td>
<td>A ( d ) vector of bandwidths for kernel smoothing covariate components, respectively.</td>
</tr>
<tr>
<td>K</td>
<td>A function object representing the kernel to be used in the smooth backfitting (default is 'epan', the Epanechnikov kernel.).</td>
</tr>
</tbody>
</table>
A 2-dimensional vector consists of the lower and upper limits of estimation intervals for time component (default is \([0,1]\)).

A \(d\) by 2 matrix whose row vectors consist of the lower and upper limits of estimation intervals for each component function (default is the \(d\)-dimensional unit rectangle of \([0,1]\)).

Details

TVAM estimates component surfaces of time-varying additive models for longitudinal observations based on the smooth backfitting algorithm proposed by Zhang et al. (2013). TVAM only focuses on the local constant smooth backfitting in contrast to the original development as in Zhang et al. (2013). However, the local polynomial version can be extended similarly, so that those are omitted in the development. Especially in this development, one can designate an estimation support of additive surfaces when the additive modeling is only allowed over restricted intervals or one is interested in the modeling over the support (see Han et al., 2016).

Value

A list containing the following fields:

- **tvamComp**: A tuple of \(d\)-lists, where each list is given by \(M\) by \(N\) matrix whose elements represents the smooth backfitting surface estimator of the \(j\)-component evaluated at \(\text{gridT}\) and the \(j\)-th column of \(x\).
- **tvamMean**: An \(M\)-dimensional vector whose elements consist of the marginal time regression function estimated at \(\text{gridT}\).

References


Examples

```r
set.seed(1000)
n <- 30
Lt <- list()
Ly <- list()
Lx1 <- list()
Lx2 <- list()

for (i in 1:n) {
 Ni <- sample(10:15,1)
 Lt[[i]] <- sort(runif(Ni,0,1))
 Lx1[[i]] <- runif(Ni,0,1)
}```
Lx2[i] <- runif(Ni,0,1)
Ly[i] <- Lt[i]*((cos(2*pi*Lx1[i]) + sin(2*pi*Lx2[i])) + rnorm(Ni,0,0.1))
}
LLx <- list(Lx1,Lx2)
gridT <- seq(0,1,length.out=31)
x0 <- seq(0,1,length.out=31)
x <- cbind(x0,x0)
ht <- 0.1
hx <- c(0.1,0.1)
tvam <- TVAM(Lt,Ly,LLx,gridT=gridT,x=x,ht=ht,hx=hx,K='epan')
g0Sbf <- tvam$tvamMean
g1Sbf <- tvam$tvamComp
op <- par(mfrow=c(1,2), mar=c(1,1,1,1)+0.1)
persp(gridT,x0,g1Sbf[[1]],theta=60,phi=30,
xlab='time',ylab='x1',zlab='g1(t, x1)')
persp(gridT,x0,g1Sbf[[2]],theta=60,phi=30,
xlab='time',ylab='x2',zlab='g1(t, x2)')
par(op)

VCAM

Sieve estimation: B-spline based estimation procedure for time-varying additive models. The VCAM function can be used to perform function-to-scalar regression.

Description

Sieve estimation: B-spline based estimation procedure for time-varying additive models. The VCAM function can be used to perform function-to-scalar regression.

Usage

VCAM(Lt, Ly, X, optnAdd = list(), optnVc = list())

Arguments

- **Lt** An n-dimensional list of N_i-dimensional vectors whose elements consist of longitudinal time points for each i-th subject.
- **Ly** An n-dimensional list of N_i-dimensional vectors whose elements consist of longitudinal response observations of each i-subject corresponding to Lt.
- **X** An n by d matrix whose row vectors consist of covariate vector of additive components for each subject.
optnAdd A list of options controls B-spline parameters for additive components, specified by list(name=value). See 'Details'.

optnVc A list of options controls B-spline parameters for varying-coefficient components, specified by list(name=value). See 'Details'.

Details

VCAM provides a simple algorithm based on B-spline basis to estimate its nonparametric additive and varying-coefficient components.

Available control options for optnAdd are

nKnot A d-dimensional vector which designates the number of knots for each additive component function estimation (default=10).

order A d-dimensional vector which designates the order of B-spline basis for each additive component function estimation (default=3).

grid A N by d matrix whose column vector consist of evaluation grid points for each component function estimation.

and control options for optnVc are

nKnot A $(d+1)$-dimensional vector which designates the number of knots for overall mean function and each varying-coefficient component function estimation (default=10).

order A $(d+1)$-dimensional vector which designates the order of B-spline basis for overall mean function and each varying-coefficient component function estimation (default=3).

grid A M by $(d+1)$ matrix whose column vectors consist of evaluation grid points for overall mean function and each varying-coefficient component function estimation.

Value

A list containing the following fields:

Lt The same with input given by Lt
LyHat Fitted values corresponding to Ly
phiEst An N by d matrix whose column vectors consist of estimates for each additive component function evaluated at gridX.

beta0Est An M-dimensional vector for overall mean function estimates evaluated at gridT.

betaEst An M by d matrix whose column vectors consist of estimates for each varying-coefficient components evaluated at gridT.

gridX The same with input given by optnAdd$grid

gridT The same with input given by optnVc$grid

References

Examples

library(MASS)

set.seed(100)

n <- 100
d <- 2

Lt <- list()
Ly <- list()

m <- rep(0,2)
S <- matrix(c(1,0.5,0.5,1),nrow=2,ncol=2)
X <- pnorm(mvrnorm(n,m,S))

beta0 <- function(t) 1.5*sin(3*pi*(t+0.5))
beta1 <- function(t) 3*(1-t)^2
beta2 <- function(t) 4*t^3
phi1 <- function(x) sin(2*pi*x)
phi2 <- function(x) 4*x^3-1

for (i in 1:n) {
 Ni <- sample(10:20,1)
 Lt[[i]] <- sort(runif(Ni,0,1))
 Ly[[i]] <- beta0(Lt[[i]]) +
 beta1(Lt[[i]])*phi1(X[i,1]) + beta2(Lt[[i]])*phi2(X[i,2]) + rnorm(Ni,0,0.1)
}

cam <- VCAM(Lt,Ly,X)

op <- par(no.readonly = TRUE)

par(mfrow=c(1,1))
plot(unlist(cam$LyHat),unlist(Ly),xlab='observed Y',ylab='fitted Y')
abline(coef=c(0,1),col=8)

par(mfrow=c(1,2))
plot(0,0,ylim=c(-1,1),xlab='x1',ylab='phi1')
points(cam$gridX[,1],cam$phiEst[,1],type='l',ylim=c(-1,1),xlab='x1',ylab='phi1')
legend('topright',c('true','est'),lwd=2,1ty=2,lwd=2)

par(mfrow=c(1,3))
plot(0,0,ylim=c(-1,3),xlab='x2',ylab='phi2')
points(cam$gridX[,2],cam$phiEst[,2],type='l',ylim=c(-1,3),xlab='x2',ylab='phi2')
legend('topleft',c('true','est'),lwd=2,1ty=2,lwd=2)

par(mfrow=c(1,1))
plot(0,0,xlab='t',ylab='beta0')

points(vcam$gridT,beta0(vcam$gridT),col=2,type='l',lty=2,lwd=2)
legend('topright',c('true','est'),lwd=2,lty=c(1,2),col=c(1,2))

plot(vcam$gridT,vcam$betaEst[,1],type='l',xlab='t',ylab='beta1')
points(vcam$gridT,beta1(vcam$gridT),col=2,type='l',lty=2,lwd=2)
legend('topright',c('true','est'),lwd=2,lty=c(1,2),col=c(1,2))

plot(vcam$gridT,vcam$betaEst[,2],type='l',xlab='t',ylab='beta2')
points(vcam$gridT,beta2(vcam$gridT),col=2,type='l',lty=2,lwd=2)
legend('topright',c('true','est'),lwd=2,lty=c(1,2),col=c(1,2))

par(op)

WFDA

Time-Warping in Functional Data Analysis: Pairwise curve synchronization for functional data

Description

Time-Warping in Functional Data Analysis: Pairwise curve synchronization for functional data

Usage

```r
WFDA(Ly, Lt, optns = list())
```

Arguments

- **Ly**: A list of \(n \) vectors containing the observed values for each individual.
- **Lt**: A list of \(n \) vectors containing the observation time points for each individual corresponding to \(y \). Each vector should be sorted in ascending order.
- **optns**: A list of options control parameters specified by `list(name=value)`. See 'Details'.

Details

WFDA uses a pairwise warping method to obtain the desired alignment (registration) of the random trajectories. The data has to be regular. The routine returns the aligned curves and the associated warping function.

Available control options are

- **choice**: Choice of estimating the warping functions ('weighted' or 'truncated'). If 'weighted' then weighted averages of pairwise warping functions are computed; the weighting is based on the inverse pairwise distances. If 'truncated' the pairs with the top 10% largest distances are truncated and the simple average of the remaining pairwise distances are used - default: 'truncated'.
- **subsetProp**: Pairwise warping functions are determined by using a subset of the whole sample; numeric \((0,1]\) - default: 0.50
lambda Penalty parameter used for estimating pairwise warping functions; numeric - default: \(V \times 10^{-4} \), where \(V \) is the average L2 norm of y-mean(y).

nknots Number of knots used for estimating the piece-wise linear pairwise warping functions; numeric - default: 2

isPWL Indicator if the resulting warping functions should piece-wise linear, if FALSE 'nknots' is ignored and the resulting warping functions are simply monotonic; logical - default: TRUE (significantly larger computation time.)

seed Random seed for the selection of the subset of warping functions; numeric - default: 666

verbose Indicator if the progress of the pairwise warping procedure should be displayed; logical - default: FALSE

Value

A list containing the following fields:

- **optns** Control options used.
- **lambda** Penalty parameter used.
- **aligned** Aligned curves evaluated at time 't'
- **h** Warping functions for 't'
- **hInv** Inverse warping functions evaluated at 't'
- **costs** The mean cost associated with each curve
- **timing** The time required by time-warping.

References

Examples

```r
N = 44;
eps = 0.123;
M = 41;
set.seed(123)
Tfinal = 3
me <- function(t) exp(-Tfinal*(((t/Tfinal^2)-0.5))^2);
T = seq(0,Tfinal,length.out = M)
recondingTimesMat = matrix(nrow = N, ncol = M)
yMat = matrix(nrow = N, ncol = M)
for (i in 1:N){
  peak = runif(min = 0.2,max = 0.8,1) * Tfinal
  recondingTimesMat[i,] = sort( unique(c( seq(0,0 , peak, length.out = round((M+1)/2)),
                    seq( peak, Tfinal, length.out = round((M+1)/2)))) * Tfinal)
  yMat[i,] = me(recondingTimesMat[i,]) * rnorm(1, mean=4.0, sd= eps)
}```
+ rnorm(M, mean=0, sd = eps)
}

Y = as.list(as.data.frame(t(yMat)))
X = rep(list(T),N)

sss = WFDA(Ly = Y, Lt = X, list( choice = 'weighted'))

op <- par(mfrow=c(1,2))
matplot(x= T, t(yMat), t='l', main = 'Raw', ylab = 'Y'); grid()
matplot(x= T, t(sss$aligned), t='l', main = 'Aligned', ylab='Y'); grid()
par(op)

Wiener

Simulate a standard Wiener processes (Brownian motions)

Description

Simulate n standard Wiener processes on [0, 1], possibly sparsifying the results.

Usage

Wiener(n = 1, pts = seq(0, 1, length = 50), sparsify = NULL, K = 50)

Arguments

n Sample size.
pts A vector of points in [0, 1] specifying the support of the processes.
sparsify A vector of integers. The number of observations per curve will be uniform
distribution on sparsify.
K The number of components.

Details

The algorithm is based on the Karhunen-Loève expansion of the Wiener process

Value

If sparsify is not specified, a matrix with n rows corresponding to the samples are returned. Other-
wise the sparsified sample is returned.

See Also

Sparsify
Index

BwNN, 4
CheckData, 4
CheckOptions, 5
ConvertSupport, 5
CreateBasis, 6
CreateBWPlot, 7
CreateCovPlot, 7
CreateDesignPlot, 8
CreateDiagnosticsPlot, 9
CreateFuncBoxPlot, 10
CreateModeOfVarPlot, 11
CreateOutliersPlot, 12
CreatePathPlot, 14
CreateScreepPlot, 15
CreateStringingPlot, 16
cumtrapzRcpp, 17

Dyn_test, 18
DynCorr, 17

FAM, 19
FCCor, 23
FClust, 24
FCReg, 26
fdapace, 28
fitted.FPCA, 29
fitted.FPCAders, 31
FLM, 32
FOptDes, 35
FPCA, 37, 53
FPCAders, 40
FPQuantile, 42
FSVD, 44
FVPA, 46

GetCovSurface, 47
GetCrCorYX, 49
GetCrCorYZ, 50
GetCrCovYX, 50

GetCrCovYZ, 52
GetMeanCI, 53
GetMeanCurve, 54
GetNormalisedSample, 56
GetNormalizedSample
(GetNormalisedSample), 56

kCFC, 57
Lwls1D, 58
Lwls2D, 59
Lwls2DDeriv, 60

MakeBWtoZscore02y, 61
MakeFPCAInputs, 62
MakeGFPPertfunctionalData, 62
MakeHCtoZscore02y, 63
MakeLNtoZscore02y, 64
MakeSparseGP, 64
medfly25, 65
MultiFAM, 66

NormCurvToArea, 70

plot.FPCA (CreateDiagnosticsPlot), 9
predict.FPCA, 70
print.FPCA, 72
print.FSVD, 72
print.WFDA, 73

SBFitting, 73
SelectK, 76
SetOptions, 76
Sparsify, 77
str.FPCA, 78
Stringing, 78

trapzRcpp, 79
TVAM, 80

VCAM, 82
INDEX

WFDA. 85
Wiener. 87