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Abstract

extremefit is a package to estimate the extreme quantiles and probabilities of rare
events. The idea of our approach is to adjust the tail of the distribution function over
a threshold with a Pareto distribution. We propose a pointwise data driven procedure
to choose the threshold. To illustrate the method, we use simulated data sets and three
real-world data sets included in the package. We refer to the original paper published in
Journal of Statistical Software Durrieu, Grama, Jaunatre, Pham, and Tricot (2018).

Keywords: nonparametric estimation, tail conditional probabilities, extreme conditional quan-
tile, adaptive estimation, application, case study.

1. Introduction
Extreme values investigation plays an important role in several practical domains of applica-
tions, such as insurance, biology and geology. For example, in Buishand, de Haan, and Zhou
(2008), the authors study extremes to determine how severe rainfall periods occur in North
Holland. Sharma, Khare, and Chakrabarti (1999) use an extreme values procedure to pre-
dict violations of air quality standards. Various applications were presented in a lot of areas
such as hydrology (Davison and Smith 1990; Katz, Parlange, and Naveau 2002), insurance
(McNeil 1997; Rootzén and Tajvidi 1997) or finance (Danielsson and de Vries 1997; McNeil
1998; Embrechts, Resnick, and Samorodnitsky 1999; Gençay and Selçuk 2004). Other appli-
cations range from rainfall data (Gardes and Girard 2010) to earthquake analysis (Sornette,
Knopoff, Kagan, and Vanneste 1996). The extreme value theory consists of using appropriate
statistical models to estimate extreme quantiles and probabilities of rare events.
The idea of the approach implemented in the R (R Core Team 2018) package extremefit
(Durrieu, Grama, Jaunatre, Pham, and Tricot 2017), which is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=extremefit,
is to fit a Pareto distribution to the data over a threshold τ using the peak-over-threshold
method. The choice of τ is a challenging problem, a large value can lead to an important
variability while a small value may increase the bias. We refer to Hall and Welsh (1985),
Drees and Kaufmann (1998), Guillou and Hall (2001), Huisman, Koedijk, Kool, and Palm
(2001), Beirlant, Goegebeur, Teugels, and Segers (2004), Grama and Spokoiny (2008, 2007)
and El Methni, Gardes, Girard, and Guillou (2012) where several procedures for choosing

https://CRAN.R-project.org/package=extremefit
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the threshold τ have been proposed. Here, we adopt the method from Grama and Spokoiny
(2008) and Durrieu, Grama, Pham, and Tricot (2015). The package extremefit includes the
modeling of time dependent data. The analysis of time series involves a bandwidth parameter
h whose data driven choice is non-trivial. We refer to Staniswalis (1989) and Loader (2006)
for the choice of the bandwidth in a nonparametric regression. For the purposes of extreme
value modeling, we use a cross-validation approach from Durrieu et al. (2015).
The extremefit package is based on the methodology described in Durrieu et al. (2015). The
package performs a nonparametric estimation of extreme quantiles and probabilities of rare
events. It proposes a pointwise choice of the threshold τ and, for time series, a global choice
of the bandwidth h and it provides graphical representations of the results.
The paper is organized as follows. Section 2 gives an overview of several existing R packages
dealing with extreme value analysis. In Section 3, we describe the model and the estimation
of the parameters, including the threshold τ and the bandwidth h choices. Section 4 contains
a simulation study whose aim is to illustrate the performance of our approach. In Section 5,
we give several applications on real data sets and we conclude in Section 6.

2. Extreme value packages
There exist several R packages dealing with the extreme value analysis. We give a short
description of some of them. For a detailed description of these packages, we refer to Gilleland,
Ribatet, and Stephenson (2013). There also exists a CRAN Task View on extreme value
analysis which gives a description of registered packages available on CRAN (Dutang and
Jaunatre 2017). Among those available packages, the well known peak-over-threshold method,
we mentioned before, has many implementations, e.g., in the POT package (Ribatet and
Dutang 2016).
Some of the packages have a specific use, such as the package SpatialExtremes (Ribatet,
Singleton, and R Core Team 2011), which models spatial extremes and provides maximum
likelihood estimation, Bayesian hierarchical and copula modeling, or the package fExtremes
(Wuertz and many others 2017) for financial purposes using functions from the packages evd
(Stephenson and Ferro 2018), evir (Pfaff, McNeil, and Stephenson 2018) and others.
The copula package (Hofert, Kojadinovic, Maechler, and Yan 2010) provides tools for ex-
ploring and modeling dependent data using copulas. The evd package provides both block
maxima and peak-over-threshold computations based on maximum likelihood estimation in
the univariate and bivariate cases. The evdbayes package (Stephenson and Ribatet 2014)
provides an extension of the evd package using Bayesian statistical methods for univariate
extreme value models. The package extRemes (Gilleland 2018) implements also univariate
estimation of block maxima and peak-over-threshold by maximum likelihood estimation allow-
ing for non-stationarity. The package evir is based on fitting a generalized Pareto distribution
with the Hill estimator over a given threshold. The package lmom (Hosking 2017) is deal-
ing with L-moments to estimate the parameters of extreme value distributions and quantile
estimations for reliability or survival analysis. The package texmex (Southworth and Hef-
fernan 2010) provides statistical extreme value modeling of threshold excesses, maxima and
multivariate extremes, including maximum likelihood and Bayesian estimation of parameters.
In contrast to previous described packages, the extremefit package provides tools for modeling
heavy tail distributions without assuming a general parametric structure. The idea is to fit
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a parametric Pareto model to the tail of the unknown distribution over some threshold.
The remaining part of the distribution is estimated nonparametrically and a data driven
algorithm for choosing the threshold is proposed in Section 3.2. We also provide a version of
this method for analyzing extreme values of a time series based on the nonparametric kernel
function estimation approach. A data driven choice of the bandwidth parameter is given in
Section 3.3. These estimators are studied in more details in Durrieu et al. (2015).

3. Extreme value prediction using a semi-parametric model

3.1. Model and estimator

We consider Ft(x) = P(X ≤ x|T = t) the conditional distribution of a random variable X
given a time covariate T = t, where x ∈ [x0,∞) and t ∈ [0, Tmax]. We observe independent
random variables Xt1 , . . . , Xtn associated to a sequence of times 0 ≤ t1 < . . . < tn ≤ Tmax,
such that for each ti, the random variable Xti has the distribution function Fti . The purpose
of the extremefit package is to provide a pointwise estimation of the tail probability St (x) =
1 − Ft (x) and the extreme p quantile F−1

t (p) functions for any t ∈ [0, Tmax], given x > x0
and p ∈ (0, 1). We assume that Ft is in the domain of attraction of the Fréchet distribution.
The idea is to adjust, for some τ ≥ x0, the excess distribution function

Ft,τ (x) = 1− 1− Ft (x)
1− Ft (τ) , x ∈ [τ,∞) (1)

by a Pareto distribution:

Gτ,θ (x) = 1−
(
x

τ

)− 1
θ

, x ∈ [τ,∞), (2)

where θ > 0 and τ ≥ x0 an unknown threshold, depending on t. The justification of this
approach is given by the Fisher-Tippett-Gnedenko theorem (Beirlant et al. 2004, Theorem
2.1) which states that Ft is in the domain of attraction of the Fréchet distribution if and only
if 1 − Ft,τ (τx) → x−1/θ as τ → ∞. This consideration is based on the peak-over-threshold
(POT) approach (Beirlant et al. 2004). We consider the semi-parametric model defined by:

Ft,τ,θ (x) =
{

Ft (x) if x ∈ [x0, τ ],
1− (1− Ft (τ)) (1−Gτ,θ (x)) if x > τ,

(3)

where τ ≥ x0 is the threshold parameter. We propose in the sequel how to estimate Ft and
θ which are unknown in (3).
The estimator of Ft(x) is taken as the weighted empirical distribution given by

F̂t,h (x) = 1∑n
j=1Wt,h(tj)

n∑
i=1

Wt,h(ti)1{Xti≤x}, (4)

where, for i = 1, . . . , n, Wt,h(ti) = K
(
ti−t
h

)
are the weights and K(·) is a kernel function

assumed to be continuous, non-negative, symmetric with support on the real line such that
K(x) ≤ 1, and h > 0 is a bandwidth.
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By maximizing the weighted quasi-log-likelihood function (see Durrieu et al. 2015; Staniswalis
1989; Loader 2006)

Lt,h(τ, θ) =
n∑
i=1

Wt,h(ti) log dFt,τ,θ
dx

(Xti) (5)

with respect to θ, we obtain the estimator

θ̂t,h,τ = 1
n̂t,h,τ

n∑
i=1

Wt,h(ti)1{Xti>τ} log
(
Xti

τ

)
, (6)

where n̂t,h,τ =
∑n
i=1Wt,h(ti)1{Xti>τ} is the weighted number of observations over the thresh-

old τ .
Plugging-in (4) and (6) in the semi-parametric model (3), we obtain:

F̂t,h,τ (x) =

 F̂t,h (x) if x ∈ [x0, τ ],
1−

(
1− F̂t,h (τ)

)(
1−G

τ,θ̂t,h,τ
(x)
)

if x > τ.
(7)

For any p ∈ (0, 1), the estimator of the p quantile of Xt is defined by

q̂p(t, h) =

 F̂−1
t,h (p) if p < p̂τ ,

τ
(

1−p̂τ
1−p

)θ̂t,h,τ otherwise,
(8)

where p̂τ = F̂t,h (τ).

3.2. Selection of the threshold

The determination of the threshold τ in model (3) is based on a testing procedure which is a
goodness-of-fit test for the parametric-based part of the model. At each step of the procedure,
the tail adjustment to a Pareto distribution is tested based on k upper statistics. If it is not
rejected, the number k of upper statistics is increased and the tail adjustment is tested again
until it is rejected. If the test rejects the parametric tail fit from the very beginning, the Pareto
tail adjustment is not significant. On the other hand, if all the tests accept the parametric
Pareto fit then the underlying distribution Ft,τ,θ follows a Pareto distribution Gτ,θ. The
critical value denoted by D depends on the kernel choice and is determined by Monte-Carlo
simulation, using the CriticalValue function of the package.
In Table 1, we display the critical values using CriticalValue obtained for several kernel
functions.
The default values of the parameters in the algorithm yielded satisfying estimation results
in a simulation study without being time-consuming even for large data sets. The choice of
these tuning parameters is explained in Durrieu et al. (2015).
The following commands compute the critical value D for the truncated Gaussian kernel with
σ = 1 (default value) and display the empirical distribution function of the goodness-of-fit test
statistic which determines the threshold τ . The parameters n and NMC define respectively
the sample size and the number of Monte-Carlo simulated samples.
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Kernel D K(x)
Biweight 7 15

16(1− x2)21|x|≤1

Epanechnikov 6.1 3
4(1− x2)1|x|≤1

Rectangular 10.0 1|x|≤1

Triangular 6.9 (1− |x|)1|x|≤1

Truncated Gaussian, σ = 1/3 8.3 3√
2π exp(− (3x)2

2 )1|x|≤1

Truncated Gaussian, σ = 1 3.4 1√
2π exp

(
−x2

2

)
1|x|≤1

Table 1: Critical values associated with kernel functions. The Gaussian kernel with standard
deviation 1/3 is approximated by the truncated Gaussian kernel 1√

2πσ exp
(
− x2

2σ2

)
1|x|≤1 with

σ = 1/3.
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Figure 1: Empirical distribution function of the test statistic for the truncated Gaussian
kernel with NMC = 1000 Monte-Carlo samples of size n = 500. The vertical dashed line
represents the critical value (D = 3.4) corresponding to the 0.99-empirical quantile of the test
statistic.

R> library("extremefit")
R> set.seed(3110)
R> n <- 1000
R> NMC <- 500
R> CriticalValue(NMC, n, TruncGauss.kernel, prob = 0.99, plot = TRUE)

[1] 3.272382

For a given t, the function hill.adapt allows a data driven choice of the threshold τ and the
estimation of θt.

3.3. Selection of the bandwidth h
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We determine the bandwidth h by cross-validation from a sequence of the form hl = aql,

l = 0, . . . ,Mh with q = exp
(

log b−log a
Mh

)
, where a is the minimum bandwidth of the sequence,

b is the maximum bandwidth of the sequence and Mh is the length of the sequence. The
choice is performed globally on the grid Tgrid = {t1, . . . , tK} of points ti ∈ [0, Tmax], where
the number K of the points on the grid is defined by the user. The choice K = n is possible
but can be time consuming for large samples. We recommend to use a fraction of n.
We choose hcv by minimizing in hm, m = 1, . . . ,Mh the cross-validation function

CV (hm, pcv) = 1
Mhcard(Tgrid)

∑
hl

∑
ti∈Tgrid

∣∣∣∣∣∣log q̂
(−i)
pcv (ti, hm)
F̂−1
ti,hl

(pcv)

∣∣∣∣∣∣ , (9)

where F̂−1
ti,hl

(pcv) is the empirical quantile from the observations in the window [ti−hl, ti+hl],
q̂

(−i)
pcv (ti, hm) is the quantile estimator inside the window [ti− hm, ti + hm] defined by (8) with
the observation Xti removed and τ being the adaptive threshold given by the remaining
observations inside the window [ti − hm, ti + hm]. The function bandwidth.CV selects the
bandwidth h by cross-validation.

4. Package presentation on simulated data
In this section, we demonstrate the extremefit package by applying it to two simulated data
sets.
The following code displays the computation of the survival probabilities and quantiles using
the adaptive choice of the threshold provided by the hill.adapt function.

R> set.seed(5)
R> X <- abs(rcauchy(200))
R> n <- 100
R> HA <- hill.adapt(X)
R> predict(HA, newdata = c(3, 5, 7), type = "survival")$p

[1] 0.2037851 0.1137516 0.0774763

R> predict(HA, newdata = c(0.9, 0.99, 0.999, 0.9999), type = "quantile")$y

[1] 5.597522 42.084647 316.410998 2378.917884

A simple use of the method described in Section 3 is given by the following example. With
ti = i/n, we consider data Xt1 , . . . , Xtn generated by the Pareto change-point model defined
by

Ft(x) =
(
1− x−1/2θt

)
1x≤τ +

(
1− x−1/θtτ1/2θt

)
1x>τ , (10)

where θt is a time varying parameter depending on t ∈ [0, 1] defined by θt = 0.5+0.25 sin(2πt)
and τ = 3 as described in Durrieu et al. (2015). We consider the sample size n = 50000. The
following commands generate one sample from model (10).
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R> set.seed(5)
R> n <- 50000; tau <- 3
R> theta <- function(t){0.5 + 0.25 * sin(2 * pi * t)}
R> Ti <- 1:n / n; Theta <- theta(Ti)
R> X <- rparetoCP(n, a0 = 1 / (Theta * 2), a1 = 1 / Theta, x1 = tau)

The extremefit package provides the estimates of θt, qp(t, h) and Ft (x) for large values of
x particularly. We select the bandwidth hcv by minimizing the cross-validation function im-
plemented in bandwidth.CV. The weights are computed using the truncated Gaussian kernel
(σ = 1), which is implemented in TruncGauss.kernel. This kernel implies D = 3.4. To
select the bandwidth hcv, we define a grid of possible values of h as indicated in Section 3.3
with a = 0.005, b = 0.05 and Mh = 20. Moreover, we fix the parameter pcv = 0.99. The
parameter Tgrid defines a grid of t ∈ Tgrid to perform the cross-validation.

R> a <- 0.005; b <- 0.05; Mh <- 20
R> hl <- bandwidth.grid(a, b, Mh, type = "geometric")
R> Tgrid <- seq(0, 1, 0.02)
R> Hcv <- bandwidth.CV(X, Ti, Tgrid, hl, pcv = 0.99,
+ kernel = TruncGauss.kernel, CritVal = 3.4, plot = FALSE)
R> Hcv$h.cv

[1] 0.02727797

For each t ∈ Tgrid, we determine the data driven threshold τ and the estimates θ̂t,hcv ,τ using
the function hill.ts.

R> Tgrid <- seq(0, 1, 0.01)
R> hillTs <- hill.ts(X, Ti, Tgrid, h = Hcv$h.cv,
+ kernel = TruncGauss.kernel, CritVal = 3.4)

For each t ∈ Tgrid, we display θ̂t,hcv ,τ and the true value θt = 0.5 + 0.25 sin(2πt) in Figure 2.

R> plot(Tgrid, hillTs$Theta)
R> lines(Ti, Theta, col = "red")

The estimates of the quantiles and the survival probabilities are determined using the S3
method predict for ‘hill.ts’ objects. For instance the estimate of the p quantile F−1

t (p)
of order p = 0.99 and p = 0.999 are computed with the following R commands:

R> p <- c(0.99, 0.999)
R> PredQuant <- predict(hillTs, newdata = p, type = "quantile")

Figure 3 displays the true and the estimated quantiles of order p = 0.99 and p = 0.999 of the
Pareto change-point distribution defined by (10). The true quantiles can be accessed with
the qparetoCP function.
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Figure 2: Plot of the θt estimate θ̂t,hcv ,τ (black dots) and the true θt (red line) for each
t ∈ Tgrid.
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Figure 3: Plot of the true log quantiles F−1
t (p) with p = 0.99 (black line) and p = 0.999 (red

line) and the corresponding estimated quantiles with p = 0.99 (black dots) and p = 0.999
(black cross) as function of t ∈ Tgrid.

R> TrueQuant <- matrix(0, ncol = 2, nrow = n)
R> for (i in 1:length(p)) {
+ TrueQuant[, i] <- qparetoCP(p[i], a0 = 1 / (Theta * 2),
+ a1 = 1 / Theta, x1 = tau)
+ }
R> plot(Tgrid, log(as.numeric(PredQuant$y[1, ])), ylim = c(1.5, 6.3),
+ ylab = "estimated log-quantiles")
R> points(Tgrid, log(as.numeric(PredQuant$y[2, ])), pch = "+")
R> lines(Ti, log(TrueQuant[,1]))
R> lines(Ti, log(TrueQuant[,2]), col = "red")

In the same way, we estimate for each t ∈ Tgrid the survival probabilities St(x) = 1 − Ft(x).
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Figure 4: Plot of the true survival probabilities St(x) at x = 20 (black line) and x = 30
(red line) and the corresponding estimated survival probabilities at x = 20 (black dots) and
x = 30 (black cross) as function of t ∈ Tgrid.

The predict method for ‘hill.ts’ objects with the option type = "survival" computes
the estimated survival function for a given x. For each t ∈ Tgrid, the following commands
compute the estimate of St(x) for x = 20 and x = 30.

R> x <- c(20, 30)
R> PredSurv <- predict(hillTs, newdata = x, type = "survival")
R> TrueSurv <- matrix(0, ncol = 2, nrow = n)
R> for (i in 1:length(x)) {
+ TrueSurv[, i] <- 1 - pparetoCP(x[i], a0 = 1 / (Theta * 2),
+ a1 = 1 / Theta, x1 = tau)
+ }
R> plot(Tgrid, as.numeric(PredSurv$p[1, ]),
+ ylab = "estimated survival probabilities")
R> points(Tgrid, as.numeric(PredSurv$p[2,]), pch = "+")
R> lines(Ti, TrueSurv[, 1])
R> lines(Ti, TrueSurv[, 2], col = "red")

The estimations of the quantile and the survival function displayed in Figures 3 and 4 have
been performed for one sample. Now we analyze the performance of the quantile estimator
via a Monte-Carlo study. We obtain in Figure 5 satisfying results on a simulation study
using NMC = 1000 Monte-Carlo replicates. The iteration of the previous R commands on
NMC = 1000 simulations are not given because of the computation time.
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Figure 5: Boxplots of the log q̂0.99(t, hcv) adaptive estimators with bandwidth hcv chosen by
cross-validation and t ∈ Tgrid. The true log 0.99-quantile is plotted as a red line.

5. Real-world data sets

5.1. Wind data

The wind is mainly studied in the framework of an alternative to fossil energy. Studies of
wind speed in extreme value theory were made to model wind storm losses or detect areas
which can be subject to hurricanes (see Rootzén and Tajvidi 1997; Simiu and Heckert 1996).
The wind data in the package extremefit comes from the Airport of Brest (France) and
represents the average wind speed per day from 1976 to 2005. The data set is included in the
package extremefit and can be loaded by the following code.

R> data("dataWind", package = "extremefit")
R> attach(dataWind)

The commands below illustrate the function hill.adapt on the wind data set and computes
a monthly estimation of the survival probabilities 1− F̂t,h,τ (x) for a given x = 100 km/h with
the predict method for ‘hill.adapt’ objects.

R> pred <- vector("numeric", 12)
R> for (m in 1:12) {
+ indices <- which(Month == m)
+ X <- Speed[indices] * 60 * 60 / 1000
+ H <- hill.adapt(X)
+ pred[m] <- predict(H, newdata = 100, type = "survival")$p
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Figure 6: Plot of the estimated survival probability 1− F̂t,h,τ (x) at x = 100 km/h.

+ }
R> plot(pred, ylab = "Estimated survival probability", xlab = "Month")

5.2. Sea shores water quality

The study of the pollution in the aquatic environment is an important problem. Humans tend
to pollute the environment through their activities and the water quality survey is necessary
for monitoring. The bivalve’s activity is investigated by modeling the valve movements using
high frequency valvometry. The electronic equipment is described in Tran, Ciret, Ciutat,
Durrieu, and Massabuau (2003) and modified by Chambon, Legeay, Durrieu, Gonzalez, Ciret,
and Massabuau (2007). More information can be found at http://molluscan-eye.epoc.
u-bordeaux1.fr/.
High-frequency data (10 Hz) are produced by noninvasive valvometric techniques and the
study of the bivalve’s behavior in their natural habitat leads to the proposal of several sta-
tistical models (Sow, Durrieu, and Briollais 2011; Schmitt, De Rosa, Durrieu, Sow, Ciret,
Tran, and Massabuau 2011; Jou and Liao 2006; Coudret, Durrieu, and Saracco 2015; Azaïs,
Coudret, and Durrieu 2014; Durrieu et al. 2015; Durrieu, Pham, Foltête, Maxime, Grama, Le
Tilly, Duval, Tricot, Naceur, and Sire 2016). It is observed that in the presence of a pollutant,
the activity of the bivalves is modified and consequently they can be used as bioindicators
to detect perturbations in aquatic systems (pollutions, global warming). A group of oysters
Crassostrea gigas of the same age are installed around the world but we concentrate on the
Locmariaquer site (GPS coordinates 47◦34 N, 2◦56 W) in France. The oysters are placed in a
traditional oyster bag. In the package extremefit, we provide a sample of the measurements
for one oyster over one day. The data can be accessed by

R> data("dataOyster", package = "extremefit")

The description of the data can be found with the R command help("dataOyster", package
= "extremefit"). The following code covers the velocities and the time covariate and also

http://molluscan-eye.epoc.u-bordeaux1.fr/
http://molluscan-eye.epoc.u-bordeaux1.fr/
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Figure 7: Plot of the velocity of the valve closing and opening over one day.

displays the data.

R> Velocity <- dataOyster$data[, 3]
R> time <- dataOyster$data[, 1]
R> plot(time, Velocity, type = "l", xlab = "time (hour)",
+ ylab = "Velocity (mm/s)")

We observe in Figure 7 that the velocity is equal to zero in two periods of time. To facilitate
the study of these data, we have included a time grid where the intervals with null velocities
are removed. The grid of time can be accessed by dataOyster$Tgrid. We shift the data to
be positive.

R> new.Tgrid <- dataOyster$Tgrid
R> X <- Velocity + (-min(Velocity))

The bandwidth parameter is selected by the cross-validation method (hcv = 0.2981812) using
bandwidth.CV but we select it manually in the following command due to the long computa-
tion time.

R> hcv <- 0.2981812
R> TS.Oyster <- hill.ts(X ,t = time, new.Tgrid, h = hcv,
+ TruncGauss.kernel, CritVal = 3.4)

The estimations of the extreme quantile of order 0.999 and the probabilities of rare events
are computed as described in Section 3.2. The critical value of the sequential test is D = 3.4
when considering a truncated Gaussian kernel, see Table 1. A global study on a set of 16
oysters on a 6 months period is given in Durrieu et al. (2015).

R> pred.quant.Oyster <- predict(TS.Oyster, newdata = 0.999,
+ type = "quantile")
R> plot(time, Velocity, type = "l", ylim = c(-0.5, 1),
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Figure 8: Plot of the estimated 0.999-quantile (red line) and the velocities of valve closing
(black lines).

+ xlab = "Time (hour)", ylab = "Velocity (mm/s)")
R> quant0.999 <- rep(0, length(seq(0, 24, 0.05)))
R> quant0.999[match(new.Tgrid, seq(0, 24, 0.05))] <-
+ as.numeric(pred.quant.Oyster$y) - (-min(Velocity))
R> lines(seq(0, 24, 0.05), quant0.999, col = "red")

In Durrieu et al. (2015) and Durrieu et al. (2016), we observe that valvometry using extreme
value theory allows in real-time in situ analysis of the bivalve behavior and appears as an
effective early warning tool in ecological risk assessment and marine environment monitoring.

5.3. Electric consumption

Electric consumption is an important challenge due to population expansion and increasing
needs in a lot of countries. Obviously this consumption is dealing with the state procurement
policies. Therefore statistical models may give an understanding of electric consumption.
Multiple models have been used to forecast the electric consumption, as regression and time
series models (Bianco, Manca, and Nardini 2009; Ranjan and Jain 1999; Harris and Liu 1993;
Bercu and Proïa 2013). Durand, Bozzi, Celeux, and Derquenne (2004) used a hidden Markov
model to forecast the electric consumption.
A research project conducted in France (Lorient, GPS coordinates 47◦45 N, 3◦22 W) con-
cerns the measurements of electric consumption using Linky, a smart communicating electric
meter (http://www.enedis.fr/linky-communicating-meter). Installed in end-consumer’s
dwellings and linked to a supervision center, this meter is in constant interaction with the
network. The Linky electric meter allows a measurement of the electric consumption every
10 minutes.
To prevent from major power outages, the SOLENN project (http://www.smartgrid-solenn.
fr/en/) is testing an alternative to load shedding. Data of electric consumption are collected

http://www.enedis.fr/linky-communicating-meter
http://www.smartgrid-solenn.fr/en/
http://www.smartgrid-solenn.fr/en/
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Figure 9: Electric consumption of one customer from December 24, 2015 to June 29, 2016.

on selected dwellings to study the effect of a decrease on the maximal power limit. For exam-
ple, an dwelling with a maximal electric power contract of 9 kiloVolt ampere is decreased to 6
kiloVolt ampere. This experiment enables to study the consumption of the dwelling with the
application of an electric constraint related to the need of the network. For instance, after
an incident such as a power outage on the electric network, the objective is to limit the num-
ber of dwellings without electricity. If during the time period where the electric constraint
is applied, the electric consumption of the dwelling exceeds the restricted maximal power,
the breaker cuts off and the dwelling has no more electricity. The consumer can, at that
time, close the circuit breaker and gets the electricity back. In any cases, at the end of the
electric constraint, the network manager can close the breaker using the Linky electric meter
which is connected to the network. The control of the cutoff breakers is crucial to prevent a
dissatisfaction of the customers and to detect which dwellings are at risk.
The extreme value modeling approach described in Section 3 was carried out on the electric
consumption data for one dwelling from December 24, 2015 to June 29, 2016. This data are
available in the extremefit package and Figure 9 displays the electric consumption of one
dwelling. This dwelling has a maximal power contract of 9 kVA.

R> data("LoadCurve", package = "extremefit")
R> Date <- as.POSIXct(LoadCurve$data$Time * 86400, origin = "1970-01-01")
R> plot(Date, LoadCurve$data$Value / 1000, type = "l",
+ ylab = "Electric consumption (kVA)", xlab = "Date")

We consider the following grid of time Tgrid:

R> Tgrid <- seq(min(LoadCurve$data$Time), max(LoadCurve$data$Time),
+ length = 400)

We observe in April 2016 missing values in Figure 9 due to a technical problem. We modify
the grid of time by removing the intervals of Tgrid with no data.

R> new.Tgrid <- LoadCurve$Tgrid
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Figure 10: Plot of the estimated 0.99-quantile (red line) for each time from December 24,
2015 to June 29, 2016.

We choose the truncated Gaussian kernel and the associated critical value of the goodness-of-
fit test is D = 3.4 (see Table 1). The bandwidth parameter is selected by the cross-validation
method (hcv = 3.44) using bandwidth.CV but we select it manually in the following command
due to long computation time.

R> HH <- hill.ts(LoadCurve$data$Value, LoadCurve$data$Time, new.Tgrid,
+ h = 3.44, kernel = TruncGauss.kernel, CritVal = 3.4)

To detect the probability to cut off the breaker, we compute for each time in the grid the
estimates of the probability to exceed the maximal power of 9kVA and of the extreme 0.99-
quantile. Figure 10 displays the electric consumption during the period of study and the
estimated quantile of order 0.99.

R> Quant <- rep(NA, length(Tgrid))
R> Quant[match(new.Tgrid,Tgrid)] <- as.numeric(predict(HH,
+ newdata = 0.99, type = "quantile")$y)
R> plot(Date, LoadCurve$data$Value/1000, ylim = c(0, 8),
+ type = "l", ylab = "Electric consumption (kVA)", xlab = "Time")
R> lines(as.POSIXlt((Tgrid) * 86400, origin = "1970-01-01",
+ tz = "Europe/Paris"), Quant / 1000, col = "red")

The plus symbol appears at the times when the maximal power was decreased corresponding
to the 11th, 13th, 18th of January, the 25th of February and the 1st, 7th, 18th of March in
2016, with a respectively decrease to 6.3, 4.5, 4.5, 4.5, 3.6, 2.7 and 2.7 kVA. Figure 11 displays
the estimated survival probability which depends on the time and the maximal power. We can
observe that the survival probability is higher than usual during this period. Furthermore,
we have the auxiliary information that this dwelling cuts off its breaker on every electric
constraint period except the 11th of January, 2016.
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Figure 11: Plot of the estimated survival probability depending on the time and the maximal
power. The plus symbol corresponds to the electric constraint period.

Using a prediction method coupled with the method implemented in the package extremefit,
it will be possible to detect high probability of cutting off a breaker and react accordingly.

6. Conclusion
This paper focus on the functions contained in the package extremefit to estimate extreme
quantiles and probabilities of rare events. The package extremefit works also well on large
data sets and the performance was illustrated on simulated data and on real-world data sets.
The choice of the pointwise data driven threshold allows a flexible estimation of the extreme
quantiles. The diffusion of the use of this method for the scientific community will improve
the choice of estimation of the extreme quantiles and probability of rare events using the
peak-over-threshold approach.
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