## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(epiCo) library(incidence) data("divipola_table") ## ----------------------------------------------------------------------------- ibague_code <- "73001" # DIVIPOLA code for the city of Ibagu year <- 2016 # Year to consult ibague_pyramid_2016 <- population_pyramid(ibague_code, year) # Population # pyramid (dataframe) for the city of Ibagu in the year 2019 # dissagregated by sex knitr::kable(ibague_pyramid_2016[1:5, ]) ## ----fig.cap='Population pyramid for the city of Ibagué in 2019'-------------- ibague_code <- "73001" # DIVIPOLA code for the city of Ibagué year <- 2019 # Year to consult age_range <- 5 # Age range or window ibague_pyramid_2019 <- population_pyramid(ibague_code, year, range = age_range, sex = TRUE, total = TRUE, plot = TRUE ) ## ----fig.cap='Treemap plot of the distribution of occupations reported in the line list'---- demog_data <- data.frame( id = c(0001, 002, 003, 004, 005, 006, 007, 008), ethnicity_label = c(3, 4, 2, 3, 3, 3, 2, 3), occupation_label = c(6111, 3221, 5113, 5133, 6111, 23, 25, 99), sex = c("F", "M", "F", "F", "M", "M", "F", "M"), stringsAsFactors = FALSE ) ethnicities <- describe_ethnicity(demog_data$ethnicity_label) knitr::kable(ethnicities) occupations <- describe_occupation( isco_codes = demog_data$occupation_label, sex = demog_data$sex, plot = "treemap" ) knitr::kable(occupations$data) ## ----------------------------------------------------------------------------- data("epi_data") data_tolima <- epi_data[lubridate::year(epi_data$fec_not) == 2019, ] knitr::kable(data_tolima[1:5, 4:12]) ## ----------------------------------------------------------------------------- incidence_object <- incidence( dates = data_tolima$fec_not, groups = data_tolima$cod_mun_o, interval = "1 epiweek" ) incidence_rate_object <- incidence_rate(incidence_object, level = 2) knitr::kable(incidence_rate_object$counts[1:5, 1:12]) ## ----fig.cap='Age risk plot for the city of Ibagué in 2019'------------------- data_ibague <- data_tolima[data_tolima$cod_mun_o == 73001, ] age_risk_data <- age_risk( age = data_ibague$edad, population_pyramid = ibague_pyramid_2019$data, sex = data_ibague$sexo, plot = TRUE )