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Abstract

The R package emdi facilitates the estimation of regionally disaggregated indicators using small area
estimation methods and provides tools for model building, diagnostics, presenting, and exporting the
results. The package version 1.1.7 includes unit-level small area models that rely on access to micro data.
The area-level model by Fay & Herriot (1979) and various extensions have been added to the package
since the release of version 2.0.0. These extensions include (a) transformed area-level models with back-
transformations, (b) spatial and robust extensions, (c) adjusted variance estimation methods, and (d)
area-level models that account for measurement errors. Corresponding mean squared error estimators are
implemented for assessing the uncertainty. User-friendly tools like a stepwise variable selection function,
model diagnostics, benchmarking options, high quality maps and export options of the results enable
the user a complete analysis procedure. The functionality of the package is demonstrated by illustrative
examples based on synthetic data for Austrian districts.

1 Introduction

Small area estimation (SAE) has gained importance not only in research but also in many fields of
application to get a better insight of indicators at a small-scale level. Among others, SAE is used for
estimating socio-economic measures like income, poverty and health or indicators for agriculture (Datta
et al., 1991; Tzavidis et al., 2012; Zhang et al., 2015; Pratesi, 2016). Especially official statistics and
economic or political decision makers benefit from reliable estimation of disaggregated indicators and
thus SAE methods. Existing surveys were often not planned for these disaggregated levels and show
only small sample sizes which often lead to a low precision of the estimates. SAE methods can be
employed to avoid expensive and time-consuming enlargements of the sample size of surveys. The idea is
to combine data sources with model-based approaches. Existing survey data will be enriched by auxiliary
information, e.g., from census or register data, to improve the accuracy of the estimation of the indicators
on area- or domain- level. The terms area and domain can be used interchangably and refer either to a
geographic area or to any subpopulation of a population of interest like socio-demographic groups. Among
others, Pfeffermann (2013), Rao & Molina (2015), Tzavidis et al. (2018) and Jiang & Rao (2020) give
comprehensive overviews of SAE methods.

The main goal of the package emdi is the simplification of estimating these regionally disaggregated
indicators. The package version 1.1.7 contains direct estimation based exclusively on survey data and
model-based estimation using the unit-level empirical best predictor (EBP) method (Molina & Rao,
2010). The EBP approach is powerful since it enables the simultaneous estimation of various indicators.
For this, it relies on unit-level information, i.e., information about each unit in each domain. Even though
survey data often provides unit-level information, access to census or register data at unit-level is less
likely. Hence, area-level models provide a valuable alternative. First, only area-level aggregates are needed
for the estimation of the regional indicators. Second, area-level models can consider the survey design
by integrating the sampling weights. Third, the computation is faster compared to the computational
intensive EBP approach.

Various R packages that employ different area-level models are available on the Comprehensive R

Archive Network (CRAN), among others: The package smallarea (Nandy, 2015) offers several variance
estimation methods (maximum likelihood (ML), residual maximum likelihood (REML), Prasad-Rao- and
Fay-Herriot method-of-moment) for the standard Fay-Herriot (FH) model and a function to estimate
unknown sampling variances. The opportunity of estimating unit- and area-level models under het-
eroscedasticity is given by the JoSAE package (Breidenbach, 2018). The package saery (Lefler et al.,
2014) provides functions for the estimation of temporal FH models. The robust estimation of area-level
models with spatial and/or temporal structures in the random effects is supported by package saeRobust
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Standard variance estimation
√ √ √ √ √

Adjusted variance estimation
√

Unknown sampling variances
√

Heteroscedasticity
√

Spatial correlation
√ √

Spatio-temporal correlation
√

Temporal correlation
√

Robust
√ √

Robust, spatial correlation
√ √

Robust, (spatio-)temporal correlation
√

Multivariate
√

Bayesian formulation
√ √

Measurement error
√ √

Transformation (log, arcsin)
√

Table 1: Overview of selected implemented area-level models in R packages available on CRAN.

(Warnholz, 2022). Package mcmcsae (Boonstra, 2021) also takes spatial and temporal correlation of the
random effects into account, but fits unit- and area-level models with the help of Markov Chain Monte
Carlo simulation. The estimation of univariate and multivariate FH models is possible with package msae

(Permatasari & Ubaidillah, 2022). The package hbsae (Boonstra, 2022) allows for the fitting of unit-
and area-level models by frequentist or hierarchical Bayesian approaches. The possibility of estimating
FH models and some of its extensions in a Bayesian framework is also given by the BayesSAE package
(Developer, 2018). Package tipsae (De Nicolò & Gardini, 2022) provides estimation and mapping tools
within a Bayesian setting for proportions that are defined on the unit interval. Further on, the mme pack-
age (Lopez-Vizcaino et al., 2019) allows the building of Gaussian area-level multinominal mixed-effects
models in the SAE context. Package saeME (Mubarak & Ubaidillah, 2022) comprises an area-level model
when the auxiliary variables are measured with error. The fitting of stationary and nonstationary FH
models is provided by package NSAE (Chandra et al., 2022). One of the commonly used packages is the
sae package (Molina & Marhuenda, 2015). It includes a wide range of area-level models (the standard
FH model with REML, ML and FH method-of-moment model fitting and a spatial and a spatio-temporal
extension of the FH model) and unit-level models (the nested error linear regression model of Battese
et al. (1988) and the EBP approach). Table 1 gives an overview of selected packages and the implemented
methodology. Besides packages that include particular area-level models, packages saeMSPE (Xiao et al.,
2022) and SAEval (Fasulo, 2022) offer different analytical and resampling based MSE estimators and tools
for diagnostics and (graphical) evaluation of SAE models, respectively.
The latest version of package emdi 2.1.3 combines a wide range of SAE models with several tools that
enable an entire data analysis and therefore expands the existing packages for the following reasons:

� None of the existing packages contains such a variety of different area-level models.

� In addition to models that are already available in existing R packages, emdi includes also area-
level models that are not available in existing packages: adjusted variance estimation methods and
transformation options for the standard FH model. Adjusted variance estimation methods are
of particular importance when working in a non Bayesian framework. In a Bayesian context the
variance will be always estimated strictly positive and thus packages providing a Bayesian approach
do not need adjusted variance estimation methods.

� Package emdi offers user-friendly tools that go beyond model estimation for the new and ex-
isting methods like specific diagnostic tools both in form of a summary and graphical diagnos-
tics,benchmarking options, geographical visualization of the results in form of high quality maps,
and export of the results to Excel and OpenDocument Spreadsheet.

� Plus a stepwise variable selection algorithm for area-level models is included in emdi to allow the
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user to build a model based on information criteria.

Thus, since package version 2.0.0 version 1.1.7 has been extended by various area-level models, but stays
in line with the user-friendly orientation of the existing version.
The structure of the paper can be described as follows. Section 2 introduces the statistical methods
implemented in the package. The included example data sets are presented in Section 3. Section 4
provides an illustrative description of the functions using the example data sets. While Section 4.1 guides
the reader from model building to model diagnostics of a standard FH model and creating maps of
the results, Section 4.2 follows with relatively short descriptions of how to build the different extended
area-level models. Finally, Section 5 concludes and gives an outlook.

2 Statistical methodology

Area-level models for the estimation of indicators like means, totals or shares have been added to the
package since the release of version 2.0.0. These comprise the area-level model by Fay & Herriot (1979) and
several extensions of this standard model to account for issues that may come up in real data applications.
To measure the precision of those models, respective MSE estimators have been integrated following the
literature.

2.1 Standard Fay-Herriot model

Throughout the paper, a finite population U is assumed that consists of N units that are subdivided into
D domains or areas of specific sizes N1, ..., ND. Then a random sample of size n can be drawn from U
and partitioned into D areas with n1, ..., nD observations per domain.

The FH model links area-level direct estimators that are based on survey data to covariates aggregated
on an area level that stem from e.g., administrative (like register or census) data or alternative data sources
(like satellite, social media or mobile phone data). The FH model is composed of two levels. The first
one is the sampling model

θ̂Dir
i = θi + ei, i = 1, . . . , D.

θ̂Dir
i is an unbiased direct estimator for a population indicator of interest θi, for instance a mean or a

ratio. ei stands for independent and normally distributed sampling errors with ei
ind
∼ N

"
0, σ2

ei

�
. Even

though the model assumes known sampling variances, in practical applications σ2
ei are usually unknown

and have to be estimated from the unit-level sample data (Rivest & Vandal, 2003; Wang & Fuller, 2003;
You & Chapman, 2006). Package emdi provides a non-parametric bootstrap for estimating the variances
of the direct estimator (Alfons & Templ, 2013). To allow for complex survey designs, sampling weights
(w) can be considered in the direct estimation (Horvitz & Thompson, 1952). For example, an estimator
for the population mean θi of a continous variable of interest y for each area i is estimated by

θ̂Dir
i =

�ni

j=1 wijyij�ni

j=1 wij
,

where the index j indicates an individual with j = 1, ..., ni in the i-th area. The second level links the
target indicator θi linearly to area-specific covariates xi,

θi = x¦

i ´ + ui,

where ´ is a vector of unknown fixed-effect parameters, ui is an independent and identically normally

distributed random effect with ui
iid
∼ N

"
0, σ2

u

�
.

The combination of the sampling and the linking model leads to a special linear mixed model

θ̂Dir
i = x¦

i ´ + ui + ei, i = 1, . . . , D. (1)

The empirical best linear unbiased estimators ˆ́ of ´ are computed by weighted least square theory. The
empirical best linear unbiased predictor (EBLUP) of θi is obtained by substituting the variance parameter
σ2
u with an estimate. The resulting estimator can then be written as

θ̂FHi = x¦

i
ˆ́+ ûi

= γ̂iθ̂
Dir
i + (1− γ̂i)x

¦

i
ˆ́. (2)

The EBLUP/FH estimator can be understood as a weighted average of the direct estimator θ̂Dir
i and

a regression-synthetic part x¦

i
ˆ́. The estimated shrinkage factor γ̂i =

σ̂2

u

σ̂2
u
+σ2

ei

puts more weight on the
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direct estimator when the sampling variance is small and vice versa. Areas for which no direct estimation
results exist are called out-of-sample domains. For those domains the prediction reduces to the regression-
synthetic component θ̂FHi,out = x¦

i
ˆ́ (Rao & Molina, 2015).

Estimation methods for Ã2

u

The variance of the random effects has to be estimated. Commonly used approaches are the FH method-
of-moment estimator (Fay & Herriot, 1979), the ML, and the REML estimators (Rao & Molina, 2015).
The likelihood methods are known to perform more efficiently than the methods of moments (Rao &
Molina, 2015). The commonly used methods can produce negative variance estimates that are supposed
to be strictly positive. In the estimation methods mentioned above, negative variance estimates are set to
zero (σ̂2

u = max
"
σ̃2
u, 0
�
) resulting in zero estimates of the shrinkage factor γi. Therefore no weight is put

on the direct estimator ignoring its possible reliability. This poses a problem especially when the number
of areas is small. To avoid this so-called over-shrinkage problem, Li & Lahiri (2010) and Yoshimori &
Lahiri (2014) proposed methods that adjust the respective likelihoods of the standard ML and REML
approaches by a factor:

Ladj

"
σ2
u

�
= A× L

"
σ2
u

�
,

where A denotes the adjustment factor and L(σ2
u) the given likelihood function. The proposed adjustment

factors are:

� by Li & Lahiri (2010): A = σ2
u,

� by Yoshimori & Lahiri (2014): A =

�
tan−1

�
D�
i=1

γi

""1/D

.

Simulation studies conducted by Yoshimori & Lahiri (2014) showed that the adjusted Yoshimori-Lahiri
methods are preferable when the variance of the random effect is small relative to the sampling variance.
Otherwise the adjusted Li-Lahiri methods are recommended. Package emdi offers six different variance
estimation methods: standard ML (ml) and REML (reml), adjusted ML and REML following Li & Lahiri
(2010) (amrl, ampl) and Yoshimori & Lahiri (2014) (amrl yl, ampl yl).

2.2 Extended area-level models

In real data applications, problems might occur that were theoretically not expected or assumptions
of the standard FH model, e.g., normality and independency of the error terms, may be violated. The
following section outlines the extensions of the standard FH model that are implemented in package emdi.

Transformations
When working with right skewed data like income, wealth or business data, the assumptions of a linear
relation between the response and the explanatory variables and normality of both error terms (ui and
ei) of the FH model may be violated. Applying a log-transformation could be a reasonable solution to
meet these model assumptions (Neves et al., 2013; Kreutzmann et al., 2019a). In package emdi, the direct
estimates and their variances are transformed following Neves et al. (2013):

θ̂Dir*log
i = log

�
θ̂Dir
i

�
,

var
�
θ̂Dir*log
i

�
=
�
θ̂Dir
i

�−2

var
�
θ̂Dir
i

�
,

where the *log notation stands for the logarithmic transformed scale. To obtain the FH estimator on
the transformed scale θ̂FH*log

i , θ̂Dir
i is substituted by θ̂Dir*log

i and var(θ̂Dir*log
i ) serves as estimate for the

sampling variances (σ2
ei) in Equation 2. Since the logarithm is a nonlinear transformation, the final FH

estimates on the original scale require a bias-corrected back-transformation (Slud & Maiti, 2006; Sugawasa
& Kubokawa, 2017). Package emdi allows to choose two options:

1. A crude method (bc crude) that takes the properties of the log-normal distribution into account:

θ̂FH, crude
i = exp

�
θ̂FH*log
i + 0.5MSE

�
θ̂FH*log
i

��
.

2. A bias correction suggested by Slud & Maiti (2006) (bc sm) that further regards the bias due to the
random effects:

θ̂FH, Slud-Maiti
i = exp

�
θ̂FH*log
i + 0.5σ̂2

u

�
1− γ̂*log

i

��
.
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The FH estimator on the transformed scale is denoted by θ̂FH*log
i and accordingly MSE(θ̂FH*log

i ) stands
for a MSE estimator on the transformed scale, e.g., the Prasad-Rao or Datta-Lahiri MSE (cf. following
subsection). The Slud-Maiti back-transformation is derived for the ML variance estimation of the random
effect and is implemented for in-sample domains. In the presence of out-of-sample domains, the crude

method can be applied which allows to use also other variance estimation methods.
Another transformation provided by package emdi is the arcsin transformation that is widely used

when the direct estimator of the FH model is a ratio (Casas-Cordero et al., 2016; Schmid et al., 2017).
Package emdi automatically transforms the direct estimates and the sampling variances as suggested by
Jiang et al. (2001):

θ̂Dir*arcsin
i = sin−1

���
θ̂Dir
i

��
,

var
�
θ̂Dir*arcsin
i

�
= 1/ (4ñi) ,

where the *arcsin denotes the arcsin transformed scale and ñi the effective sample size which can be
described as the sample size adjusted by the sampling design (Jiang et al., 2001). The FH model is
estimated using Equation 2 and the results are additionally truncated to the interval [0, π/2] to ensure
results between 0 and 1, if needed. To obtain final estimates on the original scale, the final estimation
results must be subjected to a back-transformation. Two different back-transformations are available in
emdi:

1. A naive back-transformation (naive):

θ̂FH, naive
i = sin2

�
θ̂FH*arcsin
i

�
.

2. A back-transformation with bias-correction (bc) following Sugawasa & Kubokawa (2017) and Hadam
et al. (2020):

θ̂FH, bc
i =

�
∞

−∞

sin2 (t)
1

2π
σ̂2
u
σ2
ei

σ̂2
u
+σ2

ei

exp


−

�
t− θ̂FH*arcsin

i

�2

2
σ̂2
u
σ2
ei

σ̂2
u
+σ2

ei


 dt.

Spatial FH model
The standard FH model assumes independency of the random effects. When working with geographical
areas, assuming correlated random effects to incorporate a certain neighbouring structure can be valuable.
Package emdi contains the spatial FH model introduced by Petrucci & Salvati (2006) that considers
a simultaneously autoregressive process of order one, SAR(1). Compared to the standard model, the
estimation differs mainly by discarding the assumptions of independent random effects and estimating a
spatial autoregressive coefficient (ρ) which takes values between −1 and 1. The higher the absolute value,
the stronger the relationship with the neighboring areas. The random effect ui in Equation 1 is replaced
by

u = ρ1Wu+ ϵ, ϵ ∼ N
"
0D, σ2

1ID

�
, (3)

with W being the D×D row standardized proximity matrix that describes the neighbourhood structure
of the areas, 0D a vector of zeros and ID the D×D identity matrix. The random effects u of Equation 3
follow a SAR(1). When normality of the random effects is assumed, the model can be fitted by ML and
REML. The application of spatial FH models should be considered when no geographic auxiliary variables
are available to capture the spatial relation or when ρ1 is larger than 0.5 (Bertarelli et al., 2019). Even
before estimating the model, package emdi enables the testing for spatial correlation by the Moran’s I
and Geary’s C statistics (Cliff & Ord, 1981; Pratesi & Salvati, 2008). While Moran’s I mimics an usual
correlation coefficient whose values range from −1 and 1, Geary’s C takes values between 0 and 2 (0:
positive, 1: no, 2: negative spatial autocorrelation). Both statistics behave inversely to each other.

Robust area-level models
For the case of influential outlying observations, package emdi allows for robust versions of the standard
and the spatial FH model. The theory is extensively studied in Warnholz (2016) that extended the
robust estimation procedure for linear mixed models suggested by Sinha & Rao (2009) to area-level
models. The model fitting can be understood as a robustified ML version that also contains an influence
function together with a tuning constant k. The recommendation is to set the tuning constant to 1.345
(Sinha & Rao, 2009). When non-symmetric outliers are expected to influence the robust estimation, a bias
correction should be involved. This correction can be controlled by a multiplyer constant (mult constant)
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Model Type of MSE Reference

Standard FH (depending on variance estimation of σ2

u
)

ml/ampl yl Analytical Datta & Lahiri (2000)
reml/amrl yl Analytical Prasad & Rao (1990)
ampl/amrl Analytical Li & Lahiri (2010)
ml/reml (out-of-
sample)

Analytical Rao & Molina (2015)

Transformations
log (depending on back-transformation)
bc crude Analytical Rao & Molina (2015)
bc sm Analytical Slud & Maiti (2006)
arcsin (depending on back-transformation)
naive Jackknife Jiang et al. (2001)

Weighted Jackknife Jiang et al. (2001);
Chen & Lahiri (2002)

Parametric bootstrap Hadam et al. (2020)
bc Parametric bootstrap Hadam et al. (2020)
Spatial FH (depending on variance estimation)
ml/reml Analytical Singh et al. (2005)
ml/reml Parametric bootstrap Molina et al. (2009)
reml Nonparametric bootstrap Molina et al. (2009)
Robust FH

Pseudolinear Warnholz (2016)
Parametric bootstrap Warnholz (2016)

FH with ME
Jackknife Jiang et al. (2002)

Table 2: Overview of the MSE estimation options of the fh function.

that is used for the bias correction. For further details, we also refer to Chambers et al. (2014) and Schmid
et al. (2016).
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Measurement error model
The standard FH model is based on the assumption that the covariates are measured without error (Fay &
Herriot, 1979). This characteristic is typically assumed because census or register data are used as auxiliary
information. However, when the covariate information stems from larger surveys or alternative data
sources this assumption can be violated. Package emdi includes an implementation of the measurement
error (ME) model developed by Ybarra & Lohr (2008). To account for the ME in the covariates xi, they
modified the shrinkage factor as follows:

γi =
σ2
u + ´¦Ci´

σ2
u + ´¦Ci´ + σ2

ei

,

where the Ci stands for the variance-covariance matrix of the covariates which needs to be given to the
model. The modified shrinkage factor pulls more weight on the direct estimator when the variances of the
covariates are large. For the estimation of the ´s and the σ2

u, they used a modified method of weighted
least squares and a moment estimator, respectively. Additional details are available in Ybarra & Lohr
(2008).

2.3 Mean squared error estimation

To evaluate the accuracy of the EBLUP estimates, the MSE is the most common measure used in SAE
(Rao & Molina, 2015). Package emdi offers a variety of MSE estimators stemming from both analytical
determination and resampling strategies like boostrap and jackknife methods. Table 2 gives an overview
about the included MSE approaches. For each area-level model presented in the previous sections, the
provided MSE type(s) is (are) shown. Please refer to the quoted references for extensive formulas and
derivations. As additional measure of variability of the direct and FH estimates, within various functions

and methods of package emdi, the coefficient of variation (CV) is provided: CV =

�
�MSE(θ̂i)/θ̂i, where

θ̂i either stands for θ̂
Dir
i or θ̂FHi .

3 Data sets

The version 1.1.7 of package emdi contains a sample (eusilcA smp) and a population data set (eusilcA pop)
at a household level. The data generating processs for both data sets is extensively described in Kreutz-
mann et al. (2019b). Besides the modification of not producing out-of-sample domains for the area-level
version of the data sets, the process is almost equivalent. As basis for the data sets serves the synthetic
Austrian European Union Statistics on Income and Living Conditions (EU-SILC) data set (eusilcP)
from 2006 of the simFrame package (Alfons et al., 2010). The lowest regional level in the eusilcP data
set consists of the nine Austrian states. Based on certain population size and income criteria, households
were allocated to 94 Austrian districts resulting in the synthetic population data set eusilcA pop. For
the eusilcA smp data set, a sample was drawn following a stratified random sampling process using the
districts as strata. To show the usage of the FH model and its extensions, area-level data is required.
The area-level survey and population data sets, eusilcA smpAgg and eusilcA popAgg, are obtained by
aggregation on the district level with the help of the direct function of the package emdi. The direct
estimates in eusilcA smpAgg are the weighted mean equivalized household income Mean, the ratio of
households that earn more than the national median income (MTMED) and their variances. These are
based on the equivalized household income eqIncome in eusilcA smp corresponding to the total income
of a household divided by the size of the household that is equalized by the modified equivalence scale of
the Organisation for Economic Co-operation and Development (OECD) (Hagenaars et al., 1994). Addi-
tionally, the mean of the variable cash, its variance and the sample sizes are included in eusilcA smpAgg

since these are used in the model extensions. The population data set eusilcA popAgg contains a variety
of variables that describe different income sources of households and a variable that describes the ratios
of the population sizes per area and the total population size ratio n. The variable Domain exists in
both data sets and indentifies the different districts. Both data sets have 94 observations standing for the
94 Austrian districts, the sample data set eusilcA smpAgg contains eight variables and the population
data set eusilcA popAgg 15. Table 3 provides an overview of all included variables of the sample and
population data set. For the creation of the proximity matrix used in the spatial FH model and also for
the usage of the map plot function, a shape file is needed. A shape file shape austria dis (.rda format,
"SpatialPolygonsDataFrame") for the 94 districts of Austria is provided. It stems from the SynerGIS
website (Bundesamt für Eich- und Vermessungswesen, 2017). The data set eusilcA prox comprising an
exemplary proximity matrix is also added to package emdi. The creation of eusilcA prox is described
in the following section.
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Variable Meaning

Sample data set
Domain Austrian districts
Mean Mean of the equivalized household income
MTMED Share of households who earn more than the

national median income
Cash Mean employee cash or near cash income
Var Mean Variance of equivalized household income
Var MTMED Variance of share of households who earn more

than the national median income
Var Cash Variance of employee cash or near cash income
n Effective sample sizes
Population data set

Domain Austrian districts
eqsize Equivalized household size according to the

modified OECD scale
cash Employee cash or near cash income
self empl Cash benefits or losses from self-employment

(net)
unempl ben Unemployment benefits (net)
age ben Old-age benefits (net)
surv ben Survivor’s benefits (net)
sick ben Sickness benefits (net)
dis ben Disability benefits (net)
rent Income from rental of a property or land (net)
fam allow Family/children related allowances (net)
house allow Housing allowances (net)
cap inv Interest, dividends, profit from capital

investments in unincorporated business (net)
tax adj Repayments/receipts for tax adjustment (net)
ratio n Ratios of the population size per area and the

total population size

Table 3: Variables of the aggregated data sets. The Domain variables are factors, the rest of
the variables are numeric. Except for the variables Domain and ratio n, the observations of all
variables of the population data set consist of the mean values per district.

4 Functionality and case studies

While the theoretical background of the implemented area-level models has been introduced in Section 2,
the focus of this section lies on the functionality and the work flow in R. All of the contained area-level
models can be applied by one function: fh. Table 4 gives an overview of the 20 input arguments of
function fh, together with a short description and default settings if specified. Not every argument needs
a specification for every estimated model. Depending on the area-level model, different arguments have
to be determined (see Table 6 in Appendix A). The flow diagram of Figure 1 demonstrates the estimation
possibilities of a standard FH model (for the extended area-level models see Figure 6 in Appendix A). In
line with the direct and ebp functions of package version 1.1.7, the S3 object system is used for function
fh (Chambers & Hastie, 1992). All three return objects of class "emdi". The application of function
direct leads to a "direct" object, and of functions ebp and fh to objects of classes "ebp" and "fh",
respectively. Even though all of the returned objects contain ten components, not every component is
available for each estimation method such that in these cases they are indicated as NULL (see Table 5).
Furthermore, the model component differs for the two classes "ebp" and "fh". The components for the
objects of class "fh" are provided in Table 7 in Appendix B. Not all of the components are available for
every area-level model, e.g., the shrinkage factors per domain are not provided for the spatial and robust
model extensions as they do not enable an intuitive interpretation. Due to the consistent structure, all
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Argument Description Default

fixed Formula of fixed-effects part of linear
mixed model

vardir Domain-specific sampling variances of
the direct estimates

combined data Combined sample and census data set
domains Domain indentifier for combined data NULL
method Model fitting method reml
interval Lower and upper limit for the variance

estimation
NULL

k Tuning constant for robust estimation 1.345
mult constant Bias correction multiplyer constant for

robust estimation
1

transformation Type of transformation no
backtransformation Type of back-transformation NULL
eff smpsize Effective sample sizes for the arcsin trans-

formation
NULL

correlation Correlation of random effects no
corMatrix Proximity matrix for the spatial model NULL
Ci Array of the variance-covariance matrix

of the explanatory variables for each area
for the ME model

NULL

tol Tolerance value for the variance
estimation

0.0001

maxit Maximum number of iteration for the
variance estimation

100

MSE MSE estimation FALSE
mse type Type of MSE estimator analytical
B Numbers of bootstrap iteration for

computation of a bootstrap MSE and
information criteria by Marhuenda et al.
(2014)

c(50,0)

seed Seed for random number generator 123

Table 4: Input arguments of function fh.

functions and methods of emdi version 1.1.7 can be applied to objects of class "fh". Additionally, new
functions and methods are available for the area-level models. Furthermore, a variety of methods that
are available in base R and used by other model fitting R packages are included in the latest package
version 2.1.3 for the different "emdi" objects. New generic functions used are for example coef and
logLik. Figure 2 demonstrates the steps of a full data analysis procedure and the respective functions
from model building and diagnostics to presenting the results. Section 4.1 explains the procedure shown
in Figure 2 for the standard FH model by using the Austrian EU-SILC data described in Section 3. To
understand how the different extended area-level models are fitted with function fh, Section 4.2 shortly
gives instructions.

4.1 Estimation procedure for the standard Fay-Herriot model

The aim of the illustrative example is to estimate the equivalized income for the 94 Austrian districts.
The package and the example data sets are loaded as follows:

> library("emdi")

> data("eusilcA_popAgg")

> data("eusilcA_smpAgg")

Combine input data
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Standard FH model

non-adjusted
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u
)
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analytical
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analytical
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Rao MSE:
analytical

Figure 1: Overview of the standard FH model and adjusted variance estimation methods.

The function fh requires one data set (argument combined data) that comprises the sample and popu-
lation data. Thus, the data set has to contain all variables of the formula object fixed, the variances of
the direct estimates and optionally, a domain identifier. In case the sample and population data are only
available separately, a merging function combine data is provided.

Name Description Available for
direct ebp fh

1 ind Point estimates per area
√ √ √

2 MSE Variance/MSE estimaties
per area

√ √ √

3 transform param Transformation and shift
parameters

√

4 model Fitted model
√ √

5 framework List for data description
√ √ √

6 transformation Type of transformation
√ √

7 method Estimation method
√ √

8 fixed Formula of fixed effects
√ √

9 call Function call
√ √ √

10 successful bootstraps Number of successful
bootstraps

√ √

Table 5: The ten "emdi" object components distuingished in "direct", "ebp" and "fh". More
detailed information are provided by the package documentation.
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Combine sample
and population

data: combine data

Identify spatial structures:
spatialcor.tests

Perform model
selection: step

Estimate EBLUPs
and MSEs: fh

Assess the estimated
model: summary, plot

Compare results with
direct estimates: compare

and compare plot

Benchmark the
EBLUPs: benchmark

Extract and visu-
alize the results:

estimators and map plot

Export the results:
write.excel, write.ods

Figure 2: Estimation proce-
dure for area-level models.

The necessary arguments are both data sets and characters spec-
ifying the domain indicator for the respective data sets.

> combined_data <- combine_data(

+ pop_data = eusilcA_popAgg, pop_domains = "Domain",

+ smp_data = eusilcA_smpAgg, smp_domains = "Domain")

Identify spatial structures
With the help of a proximity matrix, the Moran’s I and Geary’s
C test statistics can be computed to identify spatial structures
by the spatialcor.tests command. For the creation of the
proximity matrix, the shapefile has to be loaded. We load the
Austrian shapefile that is provided by package emdi for our ex-
ample and merge it to the sample data set by using the respective
domain identifiers with the help of the merge method from pack-
age sp (Pebesma & Bivand, 2005). Before merging, we sort the
Austrian shapefile corresponding to the order of the domains in
the sample data.

> library("sp")

> load_shapeaustria()

> shape_austria_dis <- shape_austria_dis[

+ order(shape_austria_dis$PB),]

> austria_shape <- merge(shape_austria_dis,

+ eusilcA_smpAgg, by.x = "PB", by.y = "Domain",

+ all.x = F)

Then the poly2nb and nb2mat functions of the spdep package
(Bivand & Wong, 2018) are used. While poly2nb generates a
list of neighbours that share joint boundaries, nb2mat computes
a weights matrix. The style argument has to be set to W, as a
row standardized proximity matrix is required.

> library("spdep")

> rel <- poly2nb(austria_shape,

+ row.names = austria_shape$PB)

> eusilcA_prox <- nb2mat(rel, style = "W",

+ zero.policy = TRUE)

Thus, a row standardized proximity matrix is generated that ini-
tially had weights amounting to one if an area shares a bound-
ary with another area and to zero when the respective areas are
not neighbours. Function spatialcor.tests makes use of the
moran.test and geary.test functions with their respective de-
fault settings of package spdep. The input arguments are the
created matrix and the direct estimates.

> spatialcor.tests(direct = combined_data$Mean,

+ corMatrix = eusilcA_prox)

Statistics Value p.value

1 Moran’s I 0.2453677 5.607958e-05

2 Geary’s C 0.6238681 2.473294e-03

Since the output indicates only a weak positive spatial autocorre-
lation, the following estimation procedure does not consider the
integration of a correlation structure of the random effects.
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Perform model selection
Besides theoretical considerations on which auxiliary variables should be part of the model, the decision for
the best model should be based on information criteria like the Akaike or Bayesian information criterion
(AIC, BIC). Many applications use selection techniques based on linear regression (Casas-Cordero et al.,
2016; Schmid et al., 2017). Instead, package emdi provides the AIC, BIC, the Kullback information
criterion (KIC) and their bootstrap and bias corrected versions (AICc, AICb1, AICb2, KICc, KICb1,
KICb2) especially developed for FH models by Marhuenda et al. (2014). These criteria are also included
in the package sae, but package emdi enables a stepwise variable selection procedure based on the chosen
information criteria comparable to the step function for lm models of package stats. The most important
input arguments are an object of class "fh" and the direction of the stepwise search (both, backward,
forward). In this example, the default setting backward and the KICb2 information criterion is used.
In the fixed argument of the fh function, the variables employee cash (cash), cash benefits from self-
employment (self empl) and unemployment benefits (unempl ben) are included. For a valid comparison
of models based on information criteria, the model fitting method has to be ml. To activate the estimation
of the information criteria by Marhuenda et al. (2014), we set the number of bootstrap iterations to 50.
The output shows the stepwise removal of variables until the lowest KICb2 is reached, the function call
and an overview of the estimated coefficients of the final recommended model.

> fh_std <- fh(fixed = Mean ~ cash + self_empl + unempl_ben, vardir = "Var_Mean",

+ combined_data = combined_data, domains = "Domain", method = "ml", B = c(0,50))

> step(fh_std, criteria = "KICb2")

Start: KICb2 = 1709.42

Mean ~ cash + self_empl + unempl_ben

df KICb2

- unempl_ben 1 1708.3

<none> 1709.4

- self_empl 1 1763.0

- cash 1 1808.6

Step: KICb2 = 1708.33

Mean ~ cash + self_empl

df KICb2

<none> 1708.3

- self_empl 1 1765.3

- cash 1 1816.1

Call:

fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

combined_data = combined_data,

domains = "Domain", method = "ml", B = c(0, 50))

Coefficients:

coefficients std.error t.value p.value

(Intercept) 3070.51231 635.94290 4.8283 1.377e-06 ***

cash 1.05939 0.07049 15.0288 < 2.2e-16 ***

self_empl 1.74564 0.22017 7.9284 2.219e-15 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

KICb2 is the lowest when the variable unempl ben is removed. Therefore, the formula Mean ∼ cash +

self empl is used in the following.

Estimate EBLUPs and MSEs
The standard FH model is built. In addition to the fixed part, required arguments are vardir and
combined data. We specify the domains (if the domains argument is set to NULL, the domains are num-
bered consecutively) and activate the estimation of the MSE and of the information criteria by Marhuenda
et al. (2014).

> fh_std <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean", combined_data =
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+ combined_data, domains = "Domain", method = "ml", MSE = TRUE, B = c(0,50))

Assess the estimated model
In many publications using FH models, model diagnostics are not or only little discussed. One reason
for this might be the lack of existing implementation of those measures in R or other statistical software.
The summary method of emdi provides additional information about the data and model components,
in particular the chosen estimation methods, the number of domains, the log-likelihood, the information
criteria by Marhuenda et al. (2014), the adjusted R2 of a standard linear model and the adjusted R2

especially for FH models proposed by Lahiri & Suntornchost (2015). Additionally, measures to validate
model assumptions about the standardized realized residuals and the random effects are provided: skew-
ness and kurtosis (skewness and kurtosis of package moments, Komsta and Novomestky, 2015) of the
standardized realized residuals and the random effects and the test statistics with corresponding p value
of the Shapiro-Wilks-test for normality of both error terms. As the introduced area-level models do not
assume a homoscedastic sampling distribution, the realized residuals (êi) are standardized by êstdi = êi/σei

for the summary and plot methods. The summary output differs slightly for the different implemented
area-level models. For example, log-likehoods and thus information criteria are not available in theory for
the robust and the ME model.

> summary(fh_std)

Call:

fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

combined_data = combined_data,

domains = "Domain", method = "ml", MSE = TRUE, B = c(0, 50))

Out-of-sample domains: 0

In-sample domains: 94

Variance and MSE estimation:

Variance estimation method: ml

Estimated variance component(s): 1371195

MSE method: datta-lahiri

Coefficients:

coefficients std.error t.value p.value

(Intercept) 3070.51231 635.94290 4.8283 1.377e-06 ***

cash 1.05939 0.07049 15.0288 < 2.2e-16 ***

self_empl 1.74564 0.22017 7.9284 2.219e-15 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Explanatory measures:

loglike AIC AICc AICb1 AICb2 BIC KIC

1 -847.8303 1703.661 1703.91 1715.758 1703.461 1713.834 1707.661

KICc KICb1 KICb2 AdjR2 FH_R2

1 1708.783 1720.632 1708.335 0.9212817 0.9482498

Residual diagnostics:

Skewness Kurtosis Shapiro_W Shapiro_p

Standardized_Residuals 0.3004662 3.971216 0.9840810 0.3119346

Random_effects -0.4113238 3.086048 0.9839858 0.3072834

Transformation: No transformation

The output of the example shows that all domains have survey information and the variance of σ2
u amounts

to 1371195. Further, all of the included auxiliary variables are significant even on a small significance
level and their explanatory power is large with an adjusted R2 (for FH models) of around 0.95. The
results of the Shapiro-Wilk-test indicate that normality is not rejected for both errors. Graphical residual
diagnostics are possible by the plot method.

> plot(fh_std)

Figure 3 shows normal quantile-quantile (Q-Q) plots of the standardized realized residuals and random
effects (Figure 3a) as well as plots of the kernel densities of the distribution of both error terms and for
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comparison a standard normal distribution (Figure 3b and 3c). Like in the emdi version 1.1.7, the user is
free to modify the interface of the plots. The label and color arguments are easy to edit. Additionally,
the overall appearance of the plots are changeable by the gg theme argument as the plots are built with
the ggplot2 package (Wickham, 2016). We refer to the package documentation for a detailed description
of how to customize the plot arguments. Figure 3 supports the results of the normality tests provided
in the summary output, the distribution of the standardized random effects may be slightly skewed (Fig-
ure 3c). If one would not be satisfied with the results, applying a log-transformation could improve the
distribution of the error terms.
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Figure 3: Output of plot(fh std): (a) normal quantile-quantile (Q-Q) plots of the standardized
realized residuals and random effects, (b) and (c): kernel densities of the distribution of the
standardized realized residuals and random effects (blue) in comparison to a standard normal
distribution (black).

Compare results with direct estimates
The FH results should be consistent with the direct estimates for domains with a small direct MSE and/or
large sample sizes. Further, the precision of the direct estimates should be improved by using auxiliary
information. The comparison of the direct and model-based (FH) estimates can be done graphically by
the generic function compare plot. For the fh method the required input argument is an object of class
"fh". When the default settings of the command are used, the output consists of two plots: a scatter plot
proposed by Brown et al. (2001) and a line plot. Besides the direct and FH estimates, the plot contains the
fitted regression and the identity line. Both lines should not differ too much. Preferably, the model-based
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(FH) estimates should track the direct estimates within the line plot especially for domains with a large
sample size/small MSE of the direct estimator. The points are ordered by decreasing MSE of the direct
estimates. In addition, the input arguments MSE and CV can be set to TRUE leading to two extra plots,
respectively. The MSE/CV estimates of the direct and model-based (FH) estimates are compared firstly
via boxplots and secondly via ordered scatter plots (ordered by increasing CV of the direct estimates).
Like for the plot command, a variety of customization options are offered, e.g., the label options (label),
the format of the points (shape) and the style of the line (line type).

> compare_plot(fh_std, CV = TRUE, label = "no_title")

Except of one high value, the fitted regression and identity line of the scatter plot (Figure 4a) are relatively
close. Note that the high value corresponds to the domain Eisenstadt (Stadt) with a very small sample
size of 10 and the highest MSE of the direct estimates, so the direct estimator is very uncertain. Also
the direct estimates are well tracked by the model-based (FH) estimates within the line plot (Figure 4b).
The boxplot (Figure 4c) and the ordered scatter plot (Figure 4d) show that the precision of the direct
estimates could be improved by the usage of the FH model in terms of CVs. Additionally, all of the
CV values are less than 20% which is a common rule of the UK Office for National Statistics in order to
determine whether estimation results should be published (Miltiadou, 2020).
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Figure 4: Output of compare plot(fh std): (a) and (b) scatter and line plots of direct and
model-based point estimates, (c) and (d) boxplot and scatter plots of the CV estimates of the
direct and model-based (FH) estimates.

Further on, the function compare enables the user to compute a goodness of fit diagnostic (Brown et al.,
2001) and a correlation coefficient of the direct estimates and the estimates of the regression-synthetic
part of the FH model (Chandra et al., 2015). Following Brown et al. (2001), the difference between the
model-based estimates and the direct estimates should not be significant (null hypothesis). The Wald
test statistic is specified as
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and is approximately χ2-distributed with D degrees of freedom. When working with out-of-sample do-
mains, those are not taken into account, because the direct estimates and their variances are missing.
The input argument of function compare is an "fh" object.

> compare(fh_std)

Brown test

Null hypothesis: EBLUP estimates do not differ significantly from the

direct estimates

W.value Df p.value

46.97181 94 0.9999874

Correlation between synthetic part and direct estimator: 0.94

The results of the goodness of fit statistic and the correlation coefficient confirm what the scatter and the
line plot already indicated. In the example the null hypothesis is not rejected and the correlation coeffi-
cient indicates a strong positive correlation (0.94) between the direct and model-based (FH) estimates.

Benchmarking for consistent estimates
The idea of benchmarking is that the aggregated FH estimates should sum up to estimates of a higher
regional level (τ):

D�

i=1

ξiθ̂
FH, bench
i = τ,

where ξi stands for the share of the population size of each area in the total population size (Ni/N). In
our example, the EBLUP estimates could get aggregated on a national level and then compared to or
benchmarked with the Austrian mean equivalized income. Package emdi contains a benchmark function
that allows the user to select three different options suggested by Datta et al. (2011). A general estimator
of the three options can be written as follows:

θ̂FH, bench
i = θ̂FHi +
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Depending on the weight φi, the formula leads to different benchmarking options. If φi equals ξi, all FH
estimates are adjusted by the same value (raking). A ratio adjustment (ratio) is being conducted if

φi = ξi/θ̂
FH
i . For the last option (MSE adj), φi = ξi/�MSE

�
θ̂FHi

�
. While the first option is a relatively

naive approach, the latter two conduct larger adjustments for the areas with larger FH and MSE estimates,
respectively. Thus, for the benchmark function the following arguments have to be specified: an object
of class "fh", a benchmark value, a vector containing the ξis (share) and the type of benchmarking.
The output is a data frame with an extra column FH Bench for the benchmarked EBLUP values. If the
optional argument overwrite is set to TRUE, the benchmarked results are added to the "fh" object and
the MSE estimates of the non benchmarked FH estimates are set to NULL. For the used example, the
benchmark value is calculated by taking the mean of the variable eqIncome of the eusilcA smp data
frame. The ξis can be found in eusilcA popAgg as ratio n.

> fh_bench <- benchmark(fh_std, benchmark = 20140.09, share = eusilcA_popAgg$ratio_n,

+ type = "ratio")

> head(fh_bench)

Domain Direct FH FH_Bench Out

1 Amstetten 14768.57 14242.04 14480.61 0

2 Baden 21995.72 21616.40 21978.49 0

3 Bludenz 12069.59 12680.38 12892.79 0

4 Braunau am Inn 10770.53 11925.82 12125.59 0

5 Bregenz 35731.20 32101.69 32639.43 0

6 Bruck-Mürzzuschlag 23027.37 22523.50 22900.79 0

It is recognizeable that for the first six Austrian districts the original estimates are slightly modified by
the benchmarking.
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Extract and visualize the results
To gain an overview of the point, MSE and CV results of the direct estimates compared to the model-based
(FH) results the generic function estimators (Kreutzmann et al., 2019b) can be used, but differences
among areas or hotspots of special interest are usually easier to detect on maps. With function map plot,
package emdi offers a user-friendly way to produce maps since creating maps can often become a time
consuming task. The input arguments mainly consist of an object of class "emdi" and a spatial polygon
of a shape file. The only issue that might come up is if domain identifiers in the data do not match to
the respective identifiers of the shape file. In those cases, the input argument map tab is required which
is a data frame that contains the matching of the domain indentifiers of the population and the shape
file data sets. For detailed instructions, we refer to Kreutzmann et al. (2019b) and to the help page of
function map plot.

For producing maps of the 94 Austrian districts, the Austrian shape file has to be loaded. In addi-
tion to the "emdi" object, the "SpatialPolygonsDataFrame" object (map obj) and a domain indicator
(map dom id) have to be specified. The map tab argument is not necessary since the identifiers match in
our example. To allow for an easier comparison of the results, we adjust the scales of the maps using the
scale points argument.

> load_shapeaustria()

> map_plot(object = fh_std, MSE = TRUE, map_obj = shape_austria_dis,

+ map_dom_id = "PB", scale_points = list(Direct = list(

+ ind = c(8000, 60000), MSE = c(200000, 10000000)), FH = list(

+ ind = c(8000, 60000), MSE = c(200000, 10000000))))

(a) (b)

(c) (d)

Figure 5: Output of map plot: Maps of the direct and FH estimates ((a) and (c)) with corre-
sponding MSE estimates ((b) and (d)).

Figures 5a and 5c show the distribution of the estimated (direct vs. model-based) equivalized income
across Austria. It is striking that white and light red tones dominate the map, indicating relatively low
mean incomes of the districts. But in contrast, districts like for example Eisenstadt (Stadt), Urfahr-
Umgebung and Mödling stand out having the largest incomes. Urfahr-Umgebung is also eye-catching
when having a look at the MSE estimates (Figures 5b and 5d). The MSE of the direct and the FH esti-
mates are quite high. Probably a single wealthy household raised the mean income and also the variance.
Figure 5b contains some districts with MSEs larger than the customized scaling (gray areas). Without
the scaling it would have been hard to identify any differences in Figure 5d.

Export the results
Some users might have an interest to store the results separately or to use them for presentations. Ex-

cel and OpenDocument Spreadsheets provide many opportunities for that. Compared to some existing R

packages, the emdi functions write.excel/write.ods do not only export the estimation results, but also
the output of summary. The usage of the functions are comprehensively descriped in Kreutzmann et al.
(2019b).
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4.2 Estimation of the extended area-level models

FH model with transformation
If the indicator of interest needs a transformation, either log or arcsin, in addition to the function used in
the previous subsection, the arguments transformation and backtransformation must be specified. If,
for example, the share of households per area that earn more than the national median income (MTMED) is
the indicator of interest, an arcsin transformation can be used. The bias-corrected back-transformation
bc is chosen in the example. Two more arguments are needed when using an arcsin transformation: the
name of the variable describing the effective sample sizes (eff smpsize) which needs to be contained in
the combined data frame. Because of having chosen the bias-corrected back-transformation, the only
possible mse type is boot, if the MSE estimation is activated.

> fh_arcsin <- fh(fixed = MTMED ~ cash + age_ben + rent + house_allow,

+ vardir = "Var_MTMED", combined_data = combined_data, domains = "Domain",

+ transformation = "arcsin", backtransformation = "bc", eff_smpsize = "n",

+ MSE = TRUE, mse_type = "boot")

Spatial FH model
In case the spatial correlation tests would have indicated a spatial correlation of the domains, a spatial
FH model for incorporating the spatial structure in the model could be used. For that, the correlation
has to be set to spatial and the exemplarily created proximity matrix has to be given to the model
within the corMatrix argument. The possible variance estimation methods are ml and reml.

> fh_spatial <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

+ combined_data = combined_data, domains = "Domain", correlation = "spatial",

+ corMatrix = eusilcA_prox, MSE = TRUE)

Robust FH model
If extreme values could influence the estimation, the application of a robust model might be appropriate.
Within the robust framework, package emdi allows the user to choose between a standard and a spatial
model (defaults to correlation = "no"). The estimation method must equal reblup or reblupbc which
includes a bias correction that can be modified by the argument mult constant. Further, the tuning
constant k defaults to 1.345 as proposed by Sinha & Rao (2009) and Warnholz (2016) and can be changed
if desired. The functions of the package saeRobust are utilized for the robust extensions. An exemplary
call with pseudolinear MSE estimation looks like this:

> fh_robust <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

+ combined_data = combined_data, domains = "Domain", method = "reblup",

+ MSE = TRUE, mse_type = "pseudo")

Measurement error model
If other data sources than register data, e.g., data from larger surveys or big data sources are used as
auxiliary information, the ME model should be applied. For the estimation of the ME model, the model
fitting method has to be set to me and the only possible MSE estimation method is jackknife. The most
complex input argument consists of the creation of the MSE array Ci. The variability of the auxiliary
variables that is taken into account by the ME model is expressed by the variance-covariance matrices
per domain (Ci). For example, for three covariates a, b and c the array should look like

Ci =




0 0 0 0
0 vari(a) covi(a, b) covi(a, c)
0 covi(a, b) vari(b) covi(b, c)
0 covi(a, c) covi(b, c) vari(c)


 , i = 1, ..., D.

The first row and column contain zeros, because the intercept is considered. The variances and covariances
can be computed by standard approaches like for example the Horvitz-Thompson estimator.

For the Austrian EUSILC data example, the equalized income can also be explained by a variable of
the sample data set. The code below demonstrates how the MSE array Ci is created for one covariate
(variable Cash and its variance Var Cash) and how the final ME model is built.

> P <- 1

> M <- 94

> Ci_array <- array(data = 0, dim = c(P + 1, P + 1, M))

> Ci_array[2,2, ] <- eusilcA_smpAgg$Var_Cash

> fh_yl <- fh(fixed = Mean ~ Cash, vardir = "Var_Mean",

+ combined_data = eusilcA_smpAgg, domains = "Domain", method = "me",

+ Ci = Ci_array, MSE = TRUE, mse_type = "jackknife")
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5 Conclusion and outlook

In this paper, we have presented how the emdi package version 1.1.7 has been extended by various area-
level models. Besides the well-known FH model, adjusted variance estimation methods and transformation
options are offered to the user. In addition, spatial, robust, and ME model extensions of the standard
model allow the user to address various issues that arise in practical data applications. All of these methods
can be estimated conveniently by using a single function that provides EBLUP and the respective MSE
estimates to measure their precision. Especially in Section 4, it becomes clear that the package does not
only contain the estimation of the different SAE models. Instead, it additionally provides user-friendly
tools to enable a whole data analysis procedure: 1. starting with model building and estimation, moving
on to 2. model assessment and diagnostics, 3. presentation of the results, and finishing with 4. exporting
the results to Excel or OpenDocument Spreadsheet.

For future package versions, it is planned to expand the options in the field of area-level models.
In some practical applications, the incorporation of random effects is redundant. Therefore, an area-
level estimator that considers a preliminary testing for the random effects following Molina et al. (2015)
will be included. Since version 2.0.0 emdi accounts for spatial structures of the random effects. Future
developments may also account for out-of-sample EBLUP and MSE estimation for the spatial model
proposed by Saei & Chambers (2005) and for temporal and spatio-temporal extensions (Rao & Yu, 1994;
Marhuenda et al., 2013). For the existing ME model, a bootstrap MSE estimation option may be added
to the package since the Jackknife MSE estimator may produce negative MSE estimates (Marchetti et al.,
2015). Furthermore, cross-validation options additional to the model assessment via information criteria
and the R2 will be investigated.
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7 Appendix A: Area-level model options and corresponding in-

put arguments

FH model with
transformation

transformation

log arcsin

crude bias-
correction:
bc crude

Slud and
Maiti bias-

correction: bc sm

backtransformation

Naive back-
transformation:

naive

general bias-
correction: bc

crude back-transf.
Datta-Lahiri/

Prasad-Rao MSE:
analytical

Slud-Maiti
analytical MSE:
analytical

(weighted)
Jackknife MSE:
(weighted )
jackknife

bootstrap
MSE: boot

Spatial FH model

method

ml reml

analytical MSE:
analytical

parametric bootstrap
MSE: spatialparboot

nonparametric
bootstrap MSE:

spatialnonparboot

Robust FH model

correlation

no spatial

pseudo
linearisation
MSE: pseudo

parametric
bootstrap
MSE: boot

ME model

method

measurement er-
ror model: ME

Jackknife MSE:
jackknife

Figure 6: Overview of extended area-level models and combinations of estimation methods.
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Argument FH model
Standard Transformed Spatial Robust ME

fixed
√ √ √ √ √

vardir
√ √ √ √ √

combined data
√ √ √ √ √

domains (
√
) (

√
) (

√
) (

√
) (

√
)

method
√ √ √ √ √

interval (
√
) (

√
)

k
√

mult constant
√

transformation
√ √ √ √ √

backtransformation
√

eff smpsize (only if
√

transformation = "arcsin")

correlation
√ √ √ √ √

corMatrix (only if
√ √

correlation = "spatial")

Ci
√

tol
√ √ √

maxit
√ √ √

MSE
√ √ √ √ √

mse type (only if MSE = TRUE)
√ √ √ √ √

B (
√
)

√ √ √

seed (
√
) (

√
) (

√
) (

√
)

Table 6: Required
√

and optional (
√
) input arguments of function fh for the different area-levels

models. B: Only if bootstrap MSE is chosen. When the standard FH model is applied, B is
required for the computation of the information criteria by Marhuenda et al. (2014) (optionally).
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8 Appendix B: Output of the model component

Name Short description Available for
Standard Transformed Spatial Robust ME

coefficients Estimated regression
coefficients

√ √ √ √ √

variance Estimated variance of
the random effects/
estimated spatial
correlation parameter

√ √ √ √ √

random effects Random effects per
domain

√ √ √ √ √

real residuals Realized residuals per
domain

√ √ √ √ √

std real residuals Standardized realized
residuals per domain

√ √ √ √ √

gamma Shrinkage factors per
domain

√ √ √

model select Model selection and
accuracy criteria

√ √ √

correlation Selected correlation
structure of the
random effects

√ √ √ √ √

k Tuning constant
√

mult constant Multiplyer constant for
bias correction

√

seed Seed of the random
number generator

√ √ √ √

Table 7: Components of the output component model for models of class "fh".

9 Reproducibility

For the computation of the results in this paper we worked with R version 4.1.3 on a 64-bit platform under
Microsoft Windows 10 with the installed packages listed in Table 8. Using the package packrat (Ushey
et al., 2022) a snapshot of the corresponding repository was created that is available from the GitHub
folder (https://github.com/SoerenPannier/emdi.git). We suggest the following steps:

� Install Git.

� Create a new project in RStudio.

� Choose checkout from version control and select Git.

� Insert the repository URL: https://github.com/SoerenPannier/emdi.git.

� Let packrat complete the initialization process.

� Restart RStudio.

� Enter the R command packrat::restore().

� After finishing the installation process all packages are installed as provided in Table 8.
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Package Version Package Version Package Version

aoos 0.5.0 highr 0.9 RColorBrewer 1.1-3
assertthat 0.2.1 HLMdiag 0.5.0 Rcpp 1.0.9
backports 1.4.1 hms 1.1.1 RcppArmadillo 0.11.2.0.0
BBmisc 1.12 isoband 0.2.5 readODS 1.7.0
bit 4.0.4 janitor 2.1.0 readr 2.1.2
bit64 4.0.5 jsonlite 1.8.0 rematch 1.0.1
boot 1.3-28 knitr 1.39 rematch2 2.1.2
brew 1.0-7 labeling 0.4.2 reshape2 1.4.4
brio 1.1.3 laeken 0.5.2 rgeos 0.5-9
cachem 1.0.6 lifecycle 1.0.1 rlang 1.0.4
callr 3.7.1 lubridate 1.8.0 roxygen2 7.2.1
cellranger 1.1.0 magrittr 2.0.3 rprojroot 2.0.3
checkmate 2.1.0 maptools 1.1-4 s2 1.1.0
classInt 0.4-7 MASS 7.3-58 saeRobust 0.3.0
cli 3.3.0 memoise 2.0.1 scales 1.2.0
clipr 0.8.0 modules 0.10.0 sf 1.0-8
colorspace 2.0-3 moments 0.14.1 simFrame 0.5.4
commonmark 1.8.0 MuMIn 1.46.0 snakecase 0.11.0
cpp11 0.4.2 munsell 0.5.0 sp 1.5-0
crayon 1.5.1 nlme 3.1-158 spData 2.0.1
data.table 1.14.2 openxlsx 4.2.5 spdep 1.2-4
DBI 1.1.3 operator.tools 1.6.3 stringi 1.7.8
deldir 1.0-6 packrat 0.8.1 stringr 1.4.0
desc 1.4.1 parallelMap 1.5.1 terra 1.5-34
diagonals 6.4.0 pbapply 1.5-0 testthat 3.1.4
diffobj 0.3.5 pillar 1.8.0 tibble 3.1.8
digest 0.6.29 pkgconfig 2.0.3 tidyr 1.2.0
dplyr 1.0.9 pkgload 1.3.0 tidyselect 1.1.2
e1071 1.7-11 plyr 1.8.7 tzdb 0.3.0
ellipsis 0.3.2 praise 1.0.0 units 0.8-0
emdi 2.1.3 prettyunits 1.1.1 utf8 1.2.2
evaluate 0.15 processx 3.7.0 vctrs 0.4.1
fansi 1.0.3 progress 1.2.2 viridisLite 0.4.0
farver 2.1.1 proxy 0.4-27 vroom 1.5.7
fastmap 1.1.0 ps 1.7.1 waldo 0.4.0
formula.tools 1.7.1 purrr 0.3.4 withr 2.5.0
fs 1.5.2 R.cache 0.16.0 wk 0.6.0
generics 0.1.3 R.methodsS3 1.8.2 xfun 0.31
ggplot2 3.3.6 R.oo 1.25.0 xml2 1.3.3
ggrepel 0.9.1 R.rsp 0.45.0 yaml 2.3.5
glue 1.6.2 R.utils 2.12.0 zip 2.2.0
gridExtra 2.3 R6 2.5.1
gtable 0.3.0 raster 3.5-21

Table 8: Installed packages for the computation of the results in this paper.
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