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Abstract

Exact inference is based on the conditional distribution of the sufficient statistics for
the parameters of interest given the observed values for the remaining sufficient statistics.
Exact inference for logistic regression can be problematic when data sets are large and the
support of the conditional distribution cannot be represented in memory. Additionally,
these methods are not widely implemented except in commercial software packages such
as LogXact and SAS. Therefore, we have developed elrm, software for R implementing
(approximate) exact inference for binomial regression models from large data sets. We
provide a description of the underlying statistical methods and illustrate the use of elrm

with examples. We also evaluate elrm by comparing results with those obtained using
other methods.

Keywords: conditional inference, exact test, logistic regression, Markov chain Monte Carlo,
Metropolis-Hastings algorithm.

1. Introduction

Statistical inference for logistic regression models typically involves large sample approxima-
tions based on the unconditional likelihood. Unfortunately, these asymptotic approximations
are unreliable when sample sizes are small or the data are sparse or skewed. In these sit-
uations, exact inference is reliable no matter how small or imbalanced the data set. Exact
inference is based on the conditional distribution of the sufficient statistics for the parameters
of interest given the observed values for the remaining sufficient statistics. As the sample size
grows and the data become better balanced and less sparse, conventional large sample infer-
ence will coincide with exact inference. Exact logistic regression refers to exact conditional
inference for binomial data modelled by a logistic regression. Current implementations of
exact logistic regression have difficulty handling large data sets with conditional distributions
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whose support is too large to be represented in memory. We extend an existing algorithm for
(approximate) exact inference to accommodate large data sets and implement this extension
in an R (R Development Core Team 2007) package called elrm. We begin this paper with a
short review of exact logistic regression in Section 2. In Section 3, we discuss related work
and our extension. Section 4 describes the inference provided by elrm, our implementation
of this extension. In Section 5 we illustrate the usage of elrm and its features. In Section 7,
we evaluate our package and present the results. Section 8 provides a summary of our work.

2. Exact logistic regression

Hirji (2006) provides a useful introduction to exact inference and to approximate exact infer-
ence. In this article, we focus on approximate exact inference for logistic regression models.

In logistic regression, the outcome of interest is modeled as a binomial random variable. Let Yi

be the ith binomial response with mi trials and success probability pi. The logistic regression
model is

logit (pi) = w⊤
i β + z⊤

i γ, i = 1, . . . , n,

where β is a vector of nuisance parameters corresponding to the first p explanatory variables
wi = (wi1,wi2, . . . , wip)⊤ for the ith response, γ is a vector of parameters corresponding to the
remaining q explanatory variables zi = (zi1,zi2, . . . , ziq)⊤ and n is the number of responses.
We are not interested in making inferences about β; however, including the wi’s in the model
reduces noise and provides better inference about the regression parameters, γ, of interest.
Ultimately, we are interested in studying the relationship between pi and zi.

Let Y = (Y1, . . . , Yn)⊤, W be an n × p matrix whose ith row is w⊤
i and Z be an n × q matrix

whose ith row is z⊤
i . Exact conditional inference is based on the distribution of the sufficient

statistic T = Z⊤Y for the parameters of interest, γ, given the sufficient statistic S = W⊤Y

for the nuisance parameters β. Equivalently, inference is based on the conditional distribution
of Y given S,

f (y|S = s) ∝

[

n
∏

i=1

(

mi

yi

)]

exp
{

γ⊤Z⊤y
}

. (1)

This distribution does not depend on β since we are conditioning on its sufficient statistic S.

To make exact conditional inference about γ, we need to be able to evaluate the distribu-
tion f (y|S = s). Approximate exact inference is based on an estimate of f (y|S = s) that
is obtained by sampling from the distribution. However, computation of the proportionality
constant in equation (1) can be problematic for large data sets, because it requires enumera-
tion of the potentially large support of f (y|S = s). Fortunately, Markov chain Monte Carlo
(MCMC) approaches require knowledge of f (y|S = s) up to a proportionality constant only.

3. Related work and extensions

3.1. Currently available methods

Oster (2002) and Oster (2003) review and compare exact methods implemented in various
software packages. For logistic regression, exact inference is based on the conditional distri-
bution of the sufficient statistics for the regression parameters of interest given the sufficient
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statistics for the remaining nuisance parameters. A recursive algorithm for generating the re-
quired conditional distribution is implemented in the commercial software package LogXact

(Cytel Inc. 2006a). However, the algorithm can only handle problems with modest samples
sizes and numbers of covariates (Corcoran et al. 2001). To increase the size of problem that
can be analyzed, Mehta et al. (2000) developed a Monte Carlo method for (approximate)
exact inference and implemented it in LogXact. Their method represents the support of the
conditional distribution by a network of arcs and nodes. The limiting factor for their approach
is the size of the network, which must be stored in memory. Forster et al. (1996) circum-
vented the need to represent the support by developing a Gibbs sampler to generate dependent
Monte Carlo samples. One potential drawback of a Gibbs sampling approach is that it would
sample from the conditional distribution of a particular sufficient statistic given the observed
values of the sufficient statistics for the nuisance parameters and the current values of the
sufficient statistics for the remaining parameters of interest. In exact conditional inference
for logistic regression, conditioning on too many sufficient statistics can greatly restrict the
set of support points for the conditional distribution, making the distribution highly discrete
or even degenerate. This “overconditioning" problem is particularly acute when conditioning
on sufficient statistics associated with continuous covariates in the logistic regression model.
In the context of Gibb’s sampling, such overconditioning can lead to poor mixing or even a
degenerate conditional distribution for the complete vector of sufficient statistics of interest.
For large problems, in which storage of the network is not possible and the Gibbs sampler
proves unreliable, Forster et al. (2003) propose an alternative method that makes use of the
Metropolis-Hastings algorithm.

3.2. The Forster et al. (2003) algorithm

The Metropolis-Hastings algorithm proposed by Forster et al. (2003) generates proposals for
the binomial response vector that differ only in a few entries from the current state of the
Markov chain, such that the values of the sufficient statistics for the nuisance parameters
remain the same. Specifically, the algorithm involves generating proposals y∗ of the form
y∗ = y + d · v, where, for a given integer r, the perturbation v is a vector from

V =

{

v :
n
∑

i=1

|vi| ≤ r and vi coprime for i = 1, ..., n and W⊤v = 0

}

and d is an integer such that 0 ≤ yi + dvi ≤ mi for i = 1, ..., n. Initially, the set

V′ =

{

v :
n
∑

i=1

|vi| ≤ r and vi coprime for i = 1, . . . , n

}

is enumerated for a given r chosen so that enumeration is feasible. Only those v for which
W⊤v = 0 are kept. Usually, the vector of ones is in the column space of the design matrix

W because a constant term is included in the linear model. Hence
n
∑

i=1

vi = 0 and so
n
∑

i=1

|vi|

and therefore r must be even. The Metropolis-Hastings algorithm involves first selecting one
of the possible v ∈ V with equal probability and then generating d using

q (d|v, y) ∝ exp
{

γ⊤Z⊤ (y+dv)
}

n
∏

i=1

(

mi

yi + dvi

)

,
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where the support of q (d|v, y) is given by

0 ≤ yi + dvi ≤ mi (2)

for all i. Since y∗ = y + dv, where W⊤v = 0, the sufficient statistics W⊤y∗ for the nui-
sance parameters are maintained. In order to obtain the required stationary distribution, the
algorithm accepts the proposal y∗ with probability 1. The selected value of r controls the
mixing of the Markov chain. Large values allow for larger transitions in the chain and better
mixing. On the other hand, since the size of the initial set V′ increases with r, smaller values
of r ensure its enumeration is feasible. Additionally, r affects the second-stage sampling of d
conditional on the realized value of v and y. In particular, large values of r will increase the
chance that d = 0 is the only integer satisfying the constraints (2). If d = 0 with high proba-
bility the Markov chain will mix poorly as this represents a “transition” to the current state.
Forster et al. (2003) suggest choosing r to be 4, 6, or 8. Small values of r correspond to more
transitions to new states, but the Markov chain may remain trapped in a local neighborhood
(Forster et al. 2003; Zamar 2006).

3.3. The elrm algorithm

The Forster et al. (2003) algorithm proposes uniform sampling of perturbation vectors from
the set V after enumerating V and storing it in memory. However, the size of the initial set
V′ that is used to construct V grows rapidly with the length of the response vector. Thus,
for large data sets, the required enumeration of V′ can be impractical. Additionally, V may
be too large to store in memory. To accommodate large data sets, we implement an extension
of this algorithm with two important differences:

1. We sample from a subset VA of V whose vectors satisfy the additional constraint that
|vi| ≤ mi for all 1 ≤ i ≤ n.

2. We sample vectors uniformly from VA without enumerating a larger set V′ or storing
VA.

Sampling from VA instead of V improves mixing because vectors for which some |vi| > mi

will only satisfy constraint (2) if d = 0, so that y∗ = y with probability one. For details on
how uniform samples from VA are obtained, readers are referred to Zamar (2006).

4. Inference provided by elrm

Let S1, ..., Sp denote the sufficient statistics for the nuisance parameters β1, ..., βp in the lo-
gistic regression model. Likewise let T1, ..., Tq denote the sufficient statistics for γ1, ..., γq, the
parameters of interest. In this section, we describe the methods used by elrm to conduct
hypothesis tests and produce point and interval estimates for the parameters of interest.

4.1. Hypothesis tests

To conduct joint inference on γ1, ..., γq, elrm first produces a sample of dependent observations
from the joint distribution

fT1,...,Tq
(t1, ..., tq | S1 = s1, ..., Sp = sp, γ1 = · · · = γq = 0) . (3)
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In order to test
H0 : γ1 = · · · = γq = 0

against the two-sided alternative

H1 : ∃ γi 6= 0, i = 1, ..., q

we compute an approximate two-sided p value for the conditional probabilities test (e.g. Mehta
and Patel 1995). The two-sided p value for the conditional probabilities test is obtained by
summing estimates of the probabilities (3) over the critical region

Ecp =
{

u : f̂T (u | S = s, γ = 0) ≤ f̂T (t| S = s, γ = 0)
}

,

where t is the observed value of the sufficient statistics for γ1, ..., γq and f̂T is an estimate of
(3). The Monte Carlo standard error of the resulting p value estimate is computed by the
batch-means method (e.g. Geyer 1992).

To conduct separate inference on each γi, we consider γ1, ..., γi−1, γi+1, ..., γq together with
β1, ..., βp as nuisance parameters. Generalizing the distribution (3), inference is based on a
sample of dependent observation from

fTi
(u | S = s, T−i = t−i, γi = 0) , (4)

where T−i and t−i are, respectively, the vector of sufficient statistics for the parameters of
interest and its observed value for all but the ith element. The required sample may be ex-
tracted from the original Markov chain generated for the joint hypothesis test. Consequently,
this extracted sample may be much smaller than the length of the original chain, especially
if the joint hypothesis test involves several parameters. If accurate inference for a particular
γi is required, it may be best to re-run elrm with γi as the only parameter of interest. That
said, we may still attempt to use the existing chain to test

H0 : γi = 0

against the two-sided alternative
H1 : γi 6= 0.

We compute an approximate two-sided p value by summing estimates of the probabilities (4)
over the critical region

Ecp =
{

u : f̂Ti
(u | S = s, T−i = t−i, γi = 0) ≤ f̂Ti

(ti | S = s, T−i = t−i, γi = 0)
}

.

The Monte Carlo standard error of each resulting p value is again computed by the batch-
means method.

4.2. Point and interval estimates

The elrm package returns a point estimate and confidence interval for each γi of interest.
Where possible, the estimate of each γi is obtained by maximizing the conditional likelihood
function in (4) with respect to γi. Estimation of the conditional distribution of Ti under
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different values γ́i of the parameter of interest is conveniently achieved by re-weighting the
sample frequencies under γi = 0 as

f̂
(

Ti = t | S = s, T−i = t−i, γi = γ́i

)

=
f̂
(

Ti = t | S = s, T−i = t−i, γi = 0
)

exp {γ́i t}
∑

u
f̂ (Ti = u | S = s, T−i = t−i, γi = 0) exp {γ́i u}

.

Sometimes maximization of the conditional likelihood is not possible, because the observed
value, ti, of the sufficient statistic for γi lies at one extreme of its range. In this case the
median unbiased point estimate (MUE) is reported (Mehta and Patel 1995).

We obtain a level-α confidence interval, (γ−, γ+) for γi, by inverting two one-sided likelihood
ratio tests for γi. More precisely, following Mehta and Patel (1995), we define

F1 (ti|γi) =
∑

v≥ti

fTi
(v|γi)

and
F2 (ti|γi) =

∑

v≤ti

fTi
(v|γi) ,

where fTi
(v|γi) is given by (4) with the conditioning arguments omitted for brevity in the

current notation. Let tmin and tmax be the smallest and largest possible values of ti in the
distribution (4). The lower confidence bound γ−, is such that

F1 (ti|γ−) = α/2 if tmin < ti ≤ tmax

γ− = −∞ if ti = tmin.

Similarly,

F2 (ti|γ+) = α/2 if tmin ≤ ti < tmax

γ+ = ∞ if ti = tmax.

5. Using elrm and its features

Our contributed R package, elrm, is available for download from the Comprehensive R Archive
Network (CRAN) website at http://CRAN.R-project.org/.

The main function of the elrm package is elrm(), which returns an object of class “elrm"
for which summary, plot and update methods are available. A call to elrm() will both
generate the Markov chain of sampled sufficient statistics for the parameters of interest in the
logistic regression model (conditional on the observed values of the sufficient statistics for the
nuisance parameters) and conduct inference. The generated chain, saved as an “mcmc" object
from the coda package (Plummer et al. 2006), is stored along with inference results in the
“elrm" object that is returned. The user specifies the logistic regression model and regression
parameters of interest by passing:

1. formula: a symbolic description in R formula format of the logistic regression model
(including nuisance parameters and parameters of interest). One exception is that the
binomial response should be specified as success/trials, where success gives the number
of successes and trials gives the number of binomial trials for each row of the dataset.

http://CRAN.R-project.org/
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2. interest: a symbolic description in R formula format of the model terms for which
exact conditional inference is of interest.

3. dataset: a “data.frame" object where the data are stored. The “data.frame" object
must include a column specifying the number of successes for each row and a column
specifying the number of binomial trials for each row.

For a list of the four other arguments to elrm() and their default values, see the help file.

The summary() method for elrm formats and prints the “elrm" object. The summary includes
the matched call, coefficient estimates and confidence intervals for each model term of interest,
estimated p value for jointly testing that the parameters of interest are equal to zero, full
conditional p values from separately testing each parameter equal to zero, length of the
Markov chain upon which inference was based, and the Monte Carlo standard error of each
reported p value.

The plot method can be used as a diagnostic tool to check whether the Markov chain has
converged; it produces both a trace plot and histogram of the sampled values of the sufficient
statistic for each parameter of interest. Sampled values within the burn-in period are included
in the plot. A separate graphics page is used to display the plots corresponding to each
parameter of interest. A trace plot displays the sampled value at iteration t against the
iteration number t. If the Markov chain has converged, the trace will vary around the mode
of the distribution. A clear sign of non-convergence is when a trend is observed in the trace
plot. The histogram provides a quick summary of the range and frequency of the sampled
values. Sometimes, non-convergence may be reflected by severe multimodality (Gilks et al.
1996). In this case, it is important to let the algorithm run longer. The trace plot and
histogram are based on a random sample consisting of p×100% of all the observations in the
Markov chain, where the sampling fraction 0 < p ≤ 1 is specified by the user. The default
value of p is 1. The observations in the random sample remain in the order in which they
were generated by the Markov chain.

The update() method is used to extend the Markov chain of an “elrm" object by a specified
number of iterations. This is done by creating a new Markov chain of the specified length
using the last sampled value as the starting point. The newly created chain is then appended
to the original and inference is based on the extended Markov chain.

6. Examples

This section illustrates the use of elrm with examples.

6.1. Simulated diabetes example

The simulated dataset, diabDat, from the elrm package will be used for this example and
can be loaded into R with the command:

R> data("diabDat")

These simulated data mimic data from 669 cases in an existing case-control study of type
1 diabetes (Graham et al. 1999). In the current investigation, age-specific, gender-adjusted
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associations between concentration levels (low and high) of the islet antigen 2 antibody (IA2A)
and HLA-DQ haplotypes 2, 8 and 6.2 were of interest. Covariates included in the analysis
are therefore age (rounded to the nearest year), gender (coded 0 for females and 1 for
males), and the number of copies (0,1 or 2) of the HLA-DQ2, HLA-DQ8 and HLA-DQ6.2
haplotypes (nDQ2, nDQ8 and nDQ6.2 respectively). The response vector for the simulated data
was generated under the following logistic regression model, which includes all main effects
and two way interactions involving genetic effects and age:

IA2A ~ age + gender + nDQ2 + nDQ8 + nDQ6.2 + age:nDQ2 + age:nDQ8 + age:nDQ6.2

The coefficients for nDQ6.2 and age:nDQ6.2 were set to zero and the coefficients for the
remaining regression parameters were assigned their estimated values based on the original
data. The first five rows of the simulated data are shown below.

R> head(diabDat)

n IA2A gender age nDQ2 nDQ8 nDQ6.2

1 9 4 1 14 1 1 0

2 7 3 0 6 1 1 0

3 1 0 0 20 1 0 0

4 6 2 1 34 0 1 0

5 3 0 0 12 1 0 0

6 3 1 0 34 0 1 0

Since the HLA-DQ6.2 haplotype is negatively associated with type 1 diabetes (e.g. Graham
et al. 1999), few patients have a copy of this haplotype. Large-sample inference may thus be
unreliable. In these simulated data, none of the 7 patients who carried the DQ6.2 haplotype
were antibody positive.

Exact inference for the joint effect of nDQ6.2 and age:nDQ6.2 could not be obtained by
available versions of the LogXact program. The approximate exact ‘Monte Carlo’ method
in LogXact ran out of memory during the network construction phase. The Gibb’s sampler
‘MCMC’ method in LogXact produced a degenerate chain. In contrast, elrm was able to
provide results. The estimated exact p value and its Monte Carlo standard error are based on
a Markov chain of length 99,500 (after a burn-in of 500 iterations). Inference was obtained
with the following call:

R> simDiab.elrm <- elrm(IA2A/n ~ gender + age + nDQ2 + nDQ8 + nDQ6.2 +

age:nDQ2 + age:nDQ8 + age:nDQ6.2, interest = ~age:nDQ6.2 + nDQ6.2,

iter = 100000, burnIn = 500, dataset = diabDat)

Generating the Markov chain ...

Progress: 100%

Generation of the Markov Chain required 1.0744 hours

Conducting inference ...

Warning messages:

1: 'nDQ6.2' conditional distribution of the sufficient statistic was found to

be degenerate
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2: 'age:nDQ6.2' conditional distribution of the sufficient statistic was found

to be degenerate

Inference required 7 secs

Once finished, the elrm() method displays any warning messages that may have arisen,
and reports the time needed to generate the chain and conduct inference. The warnings
above indicate that the estimated full conditional distributions of the sufficient statistics for
nDQ6.2 and age:nDQ6.2 were degenerate. These two variables are highly correlated and
so conditioning on the sufficient statistic for one greatly restricts the possible values of the
sufficient statistic for the other. Such degeneracy arises from over-conditioning. Applying the
summary() method gives the following results:

R> summary(simDiab.elrm)

Call:

[[1]]

elrm(formula = IA2A/n ~ gender + age + nDQ2 + nDQ8 + nDQ6.2 +

age:nDQ2 + age:nDQ8 + age:nDQ6.2, interest = ~age:nDQ6.2 +

nDQ6.2, iter = 1e+05, dataset = diabDat, burnIn = 500)

Results:

estimate p-value p-value_se mc_size

joint NA 0.76555 0.01838 99500

nDQ6.2 NA NA NA 10142

age:nDQ6.2 NA NA NA 10142

95% Confidence Intervals for Parameters

lower upper

nDQ6.2 NA NA

age:nDQ6.2 NA NA

The resulting p value of 0.76555 for the joint effects of nDQ6.2 and age:nDQ6.2 is consistent
with the model used to generate these simulated data. The Markov chains produced for
separately testing nDQ6.2 and age:nDQ6.2 are smaller than that produced for the joint test
because they are extracted from the chain for the joint test. No confidence intervals are
reported for nDQ6.2 and age:nDQ6.2 because the estimated full conditional distribution of
the sufficient statistic for each parameter is degenerate.

6.2. Urinary tract infection example

The utiDat dataset from the elrm package can be loaded into R with the command:

R> data("utiDat")

The data arise from a study of how first-time urinary tract infection (UTI) is related to
contraceptive use and were gathered by the Department of Epidemiology at the University of
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Michigan (Cytel Inc. 2006b). The contraceptive use of 447 sexually active college women was
surveyed. The binary covariates included in the analysis were age (coded as 0 for women less
than 24 years old and 1 otherwise), current (1 = no regular current sex partner), dia (1 =
diaphragm use), oc (1 = oral contraceptive), pastyr (1 = no regular partner with relationship
< 1yr ), vi (1 = vaginal intercourse), vic (1 = vaginal intercourse with condom), vicl (1 =
vaginal intercourse with lubricated condom), vis (1 = vaginal intercourse with spermicide).
The first five rows of the dataset are shown below.

R> utiDat[1:5,]

uti n age current dia oc pastyr vi vic vicl vis

1 1 10 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 1

3 0 4 0 0 0 0 0 1 0 0 0

4 4 4 0 0 0 0 0 1 1 0 0

5 1 2 0 0 0 0 0 1 1 0 1

The investigators were interested in whether diaphragm use increases UTI risk once the other
confounding variables are taken into account. Diaphragm use (dia) appears to be important
because all 7 diaphragm users developed UTI. To obtain exact inference for the effect of
diaphragm use, we make the following call:

R> uti.elrm <- elrm(formula = uti/n ~ age + current + dia + oc +

pastyr + vi + vic + vicl + vis, interest = ~dia, iter = 50000,

burnIn = 1000, dataset = utiDat)

Generating the Markov chain ...

Progress: 100%

Generation of the Markov Chain required 4.55 mins

Conducting inference ...

Inference required 3 secs

Applying the summary() method gives the following results:

R> summary(uti.elrm)

Call:

[[1]]

elrm(formula = uti/n ~ age + current + dia + oc + pastyr + vi + vic + vicl

+ vis, interest = ~dia, iter = 50000, dataset = utiDat, burnIn = 1000)

Results:

estimate p-value p-value_se mc_size

dia 1.96395 0.03365 0.00571 49000

95% Confidence Intervals for Parameters

lower upper

dia -0.07632582 Inf
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Figure 1: Plot of the Markov chain produced for the dia parameter in the UTI example.

The estimated exact p value for the effect of dia and its Monte Carlo standard error are based
on a Markov chain of length 49,000 (after a burn-in of 1000). Notice that the estimated exact
p value is less than 0.05, but the 95% confidence interval for dia contains 0. The apparent
disagreement arises because the reported p value is based on the conditional probabilities test
while the confidence interval is based on the conditional likelihood ratio test. A finite upper
bound for the confidence interval could not be obtained because the observed value of the
sufficient statistic is the maximum possible value. A trace plot and histogram of values of
the sufficient statistic for dia sampled by the Markov chain are shown in Figure 6.2. The
command used to produce the figure is

R> plot(uti.elrm)

The estimated conditional distribution of the sufficient statistic for dia shown in the histogram
is stored in the “elrm" object and may be displayed by typing

R> uti.elrm$dis
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$dia

dia freq

[1,] 0 0.0001428571

[2,] 1 0.0032040816

[3,] 7 0.0303061224

[4,] 2 0.0360000000

[5,] 3 0.1350816327

[6,] 6 0.1638367347

[7,] 4 0.3051836735

[8,] 5 0.3262448980

6.3. Hypothetical drug experiment example

The drugDat dataset from the elrm, shown below, can be loaded into R with the command:

R> data("drugDat")

These simulated data are for a hypothetical drug experiment comparing control versus treat-
ment. The response variable, recovered, indicates whether or not the patient recovered from
a given condition. The covariates of interest are sex (1=male, 0=female) and treatment

(1=treatment, 0=control).

R> drugDat

sex treatment recovered n

1 1 1 16 27

2 0 1 10 19

3 1 0 13 32

4 0 0 7 21

For a rough assessment, based on only 2000 Markov chain iterations, of whether the effects
of sex and treatment are jointly significant, we could call the elrm() method as follows.

R> drug.elrm <- elrm(formula = recovered/n ~ sex + treatment,

interest = ~sex + treatment, iter = 2000, dataset = drugDat)

Generating the Markov chain ...

Progress: 100%

Generation of the Markov Chain required 1 secs

Conducting inference ...

Warning messages:

1: 'sex' extracted sample is too small for inference (less than 1000)

2: 'treatment' extracted sample is too small for inference (less than 1000)

Inference required 0 secs

The warnings indicate that full conditional inference for sex and treatment will be unreliable
because the extracted Markov chains are too small. Whenever full conditional inference for a
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parameter is based on an extracted Markov chain of length less than 1000, elrm will print a
warning message and will not return the associated results. Applying the summary() method,
we obtain:

R> summary(drug.elrm)

Call:

[[1]]

elrm(formula = recovered/n ~ sex + treatment,

interest = ~sex + treatment, iter = 2000,

dataset = drugDat)

Results:

estimate p-value p-value_se mc_size

joint NA 0.097 0.0141 2000

sex NA NA NA 69

treatment NA NA NA 240

95% Confidence Intervals for Parameters

lower upper

sex NA NA

treatment NA NA

To obtain results for full conditional inference on the separate effects of sex and treatment,
we may try augmenting the Markov chain with a call to update(). For example, we could
increase the length of the chain by 50,000 iterations (from 2000 to 52,000) and use a burn-in
period of 5000:

R> drug.elrm <- update(drug.elrm, iter = 50000, burnIn = 5000)

Generating the Markov chain ...

Progress: 100%

Generation of the Markov Chain required 24 secs

Conducting inference ...

Inference required 6 secs

Once the update() is complete, applying the summary() method gives the following results:

R> summary(drug.elrm)

Call: [[1]] elrm(formula = recovered/n ~ sex + treatment,

interest = ~sex + treatment, iter = 2000,

dataset = drugDat)

[[2]] update.elrm(object = drug.elrm, iter = 50000, burnIn = 5000)
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Results:

estimate p-value p-value_se mc_size

joint NA 0.15319 0.00290 47000

sex 0.30934 0.54259 0.01499 1397

treatment 0.75603 0.07359 0.00481 6305

95% Confidence Intervals for Parameters

lower upper

sex -0.6048941 1.292658

treatment -0.1285475 1.866684

The estimated exact p value for the joint effect of sex and treatment and its Monte Carlo
standard error are based on a Markov chain of length 47,000 (after a burn-in of 5000). Full
conditional inferences for sex and treatment are based on the shorter extracted Markov
chains of length 1397 and 6305, respectively.

7. Evaluation

In this section we compare the results obtained by elrm and LogXact for the urinary tract
infection data and the hypothetical drug experiment data.

7.1. Urinary tract infection example

Exact inference for the dia parameter could not be obtained by LogXact 7 due to memory
constraints, while the Gibb’s sampler ‘MCMC’ option produced a degenerate chain. How-
ever, the ‘Monte Carlo’ approximate exact method in LogXact 7 was able to conduct the
inference. The LogXact 7 results were obtained using the default setting (10,000 independent
observations) for the Monte Carlo method, which took 10 minutes to complete and required
a cumbersome 1042 MB of memory. In contrast, elrm took 4.6 minutes to produce a chain
of 50,000 dependent observations and required only 75 MB of memory.

Inferences for the dia regression parameter obtained by LogXact 7 and elrm are shown in
Table 1, and are similar. However, as shown in Table 2, some differences may be observed in
the corresponding conditional distributions estimated by each method. A noticeable difference
is that LogXact 7 does not sample the value zero, suggesting that the elrm Markov chain mixed
well.

7.2. Hypothetical drug experiment example

The results obtained by elrm for the drugDat dataset are summarized in Table 3. Also

estimate 95% CI p value SE of p value
dia (LogXact 7) 2.0500 MUE (-0.0726, +INF) 0.0298 0.0033
dia (elrm) 1.9640 MUE (-0.0763, +INF) 0.0337 0.0057

Table 1: Inference for the dia parameter in the UTI example.
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dia elrm LogXact 7
0 0.0001 –
1 0.0032 0.0013
2 0.0360 0.0115
3 0.1351 0.0693
4 0.3052 0.2224
5 0.3262 0.4566
6 0.1638 0.2219
7 0.0303 0.0170

Table 2: Empirical conditional distribution of the sufficient statistic for the dia parameter
in the UTI example.

included in Table 3 are the exact results obtained by LogXact 7 and the absolute relative
error between the elrm and LogXact 7 results. The elrm results are in close agreement with
those produced by LogXact 7’s exact method.

The percentage errors, obtained by multiplying the relative errors by 100%, are all less than
10 percent, which is quite good given that the Markov chain was moderately small with a
length of 52,000 and that full conditional inference for sex and treatment was based on
relatively short Markov chains of length 1397 and 6305, respectively.

elrm LogXact 7 relative error
estimate p value estimate p value estimate p value

joint – 0.1532 – 0.1409 – 0.0872
sex 0.3093 0.5426 0.2862 0.5371 0.0809 0.0102
treatment 0.7560 0.0736 0.7559 0.0720 0.0002 0.0221

Table 3: Comparison of elrm and LogXact 7 results for the hypothetical drug experiment
data set.

8. Summary

Exact conditional inference is based on the distribution of the sufficient statistics for the
parameters of interest given the observed values of the sufficient statistics for the remaining
nuisance parameters. When data are sparse and asymptotic approximations based on the
unconditional likelihood are unreliable, exact inference can still be made. We consider exact
conditional inference for logistic regression models. Commercial software packages such as
LogXact (Cytel Inc. 2006a) and SAS (SAS Institute Inc. 2003) require large amounts of
computer memory to make such inference from large data sets. As pointed out by a reviewer,
during the review of this manuscript, the commercial software package Stata 10 (StataCorp.
2007) was released with a new command exlogistic that performs exact inference for logistic
regression models faster than LogXact. However, exlogistic was unable to make inference
for the larger urinary tract infection (UTI) and diabetes data sets used in our examples. (For
the smaller data set from the hypothetical drug experiment, however, exlogistic gave similar
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results to the corresponding procedure in LogXact.) To allow exact-like inference from larger
data sets, such as the UTI and diabetes data sets, we have developed elrm, an R package
for conducting approximate exact inference in logistic regression models. The Markov chain
Monte Carlo algorithm implemented in elrm extends the algorithm proposed by Forster et al.
(2003) to enable its application to large data sets. The extensions we make relax the potential
enumeration and memory constraints of their algorithm and should enhance mixing of the
chain.

Users of R should find elrm easy to work with. The logistic model and parameters of interest
are specified using R formula notation similar to that of glm. Three input arguments upon
which the elrm algorithm depends are the number of iterations of the Markov chain (default
iter = 1000), the burn-in period (default burnIn = 0) and the value of the Markov chain
mixing parameter (default r = 4). Large values of the mixing parameter r correspond to
larger, less frequent transitions in the Markov chain, while smaller values of r correspond to
smaller, more frequent transitions in the chain. Typical values of r recommended by Forster
et al. (2003) are 4, 6 or 8. Inference provided by elrm includes an approximate exact p value
for jointly testing that the parameters of interest are equal to zero, an approximate exact
p value for separately testing each parameter of interest is equal to zero, the Monte Carlo
standard error of each reported p value, and point and interval estimates of the coefficients
of interest in the logistic regression model.
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