This vignette is adapted from the official Armadillo documentation.
Mat<type>
, mat
and cx_mat
are classes for dense matrices, with elements stored in column-major ordering (e.g., column by column).
The root matrix class is Mat<type>
, where type
is one of:
float
double
std::complex<float>
std::complex<double>
short
int
long
unsigned short
unsigned int
unsigned long
For convenience the following typedefs have been defined:
mat = Mat<double>
dmat = Mat<double>
fmat = Mat<float>
cx_mat = Mat<cx_double>
(cx_double
is a shortcut for std::complex<double>
)cx_dmat = Mat<cx_double>
cx_fmat = Mat<cx_float>
(cx_float
is a shortcut for std::complex<float>
)umat = Mat<uword>
(uword
is a shortcut for unsigned int
)imat = Mat<sword>
(sword
is a shortcut for signed int
)The mat
type is used for convenience, and it is possible to use other matrix types (e.g, fmat
, cx_mat
) instead.
Matrix types with integer elements (such as umat
and imat
) cannot hold special values such as NaN and Inf.
Functions which use LAPACK (generally matrix decompositions) are only valid for the following matrix types: mat
, dmat
, fmat
, cx_mat
, cx_dmat
, cx_fmat
.
mat()
mat(n_rows, n_cols)
mat(n_rows, n_cols, fill_form)
(elements are initialised according to fill_form
)mat(size(X))
mat(size(X), fill_form)
(elements are initialised according to fill_form
)mat(mat)
mat(vec)
mat(rowvec)
mat(initializer_list)
mat(string)
mat(std::vector)
(treated as a column vector)mat(sp_mat)
(for converting a sparse matrix to a dense matrix)cx_mat(mat,mat)
(for constructing a complex matrix out of two real matrices)The elements can be explicitly initialised during construction by specifying fill_form
, which is one of:
fill::zeros
set all elements to 0 (default in cpp11armadillo)fill::ones
set all elements to 1fill::eye
set the elements on the main diagonal to 1 and off-diagonal elements to 0fill::randu
set all elements to random values from a uniform distribution in the [0,1] intervalfill::randn
set all elements to random values from a normal distribution with zero mean and unit variancefill::value(scalar)
set all elements to specified scalarfill::none
do not initialise the elements (matrix may have garbage values)For the mat(string)
constructor, the format is elements separated by spaces, and rows denoted by semicolons. For example, the 2x2 identity matrix can be created using "1 0; 0 1"
. Note that string based initialisation is slower than directly setting the elements or using element initialisation.
Each instance of mat
automatically allocates and releases internal memory. All internally allocated memory used by an instance of mat is automatically released as soon as the instance goes out of scope. For example, if an instance of mat is declared inside a function, it will be automatically destroyed at the end of the function. To forcefully release memory at any point, use .reset()
. Note that in normal use this is not required.
mat(ptr_aux_mem, n_rows, n_cols, copy_aux_mem = true, strict = false)
ptr_aux_mem
is a pointer to the memory. By default the matrix allocates its own memory and copies data from the auxiliary memory (for safety). However, if copy_aux_mem
is set to false
, the matrix will instead directly use the auxiliary memory (e.g., no copying). This is faster, but can be dangerous unless you know what you are doing.strict
parameter comes into effect only when copy_aux_mem is set to false
(e.g., the matrix is directly using auxiliary memory).
strict
is set to false
, the matrix will use the auxiliary memory until a size change or an aliasing event.strict
is set to true
, the matrix will be bound to the auxiliary memory for its lifetime. The number of elements in the matrix cannot be changed.mat(const ptr_aux_mem, n_rows, n_cols)
ptr_aux_mem
is a pointer to the memorymat::fixed<n_rows, n_cols>
umat
, imat
, fmat
, mat
, cx_fmat
, cx_mat
). The typedefs specify a square matrix size, ranging from 2x2 to 9x9. The typedefs were defined by appending a two digit form of the size to the matrix type. Examples: mat33
is equivalent to mat::fixed<3,3>
, and cx_mat44
is equivalent to cx_mat::fixed<4,4>
.mat::fixed<n_rows, n_cols>(fill_form)
fill_form
.mat::fixed<n_rows, n_cols>(const ptr_aux_mem)
set.seed(123)
matrix(runif(25), nrow = 5, ncol = 5) a <-
cpp11::register]] doubles_matrix<> matrix1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a);
double x = A(0, 0); // access an element on row 1, column 1
// scalar addition
A = A + x;
// matrix addition
mat B = A + A; // matrix multiplication
mat C = A * B; // element-wise matrix multiplication
mat D = A % B;
mat res = B + C + D;
return as_doubles_matrix(res); // convert from C++ to R
}
cpp11::register]] list matrix2_(const doubles_matrix<>& a) {
[[
mat A = as_Mat(a);
mat B = A + A;
// construct a complex matrix out of two real matrices
cx_mat X(A,B);
// set all elements to zero
B.zeros(); // resize the matrix
B.set_size(A.n_rows, A.n_cols); 5, 6); // same as mat B(5, 6, fill::ones)
B.ones(
5,6> F; // fixed size matrix
mat::fixed<
double aux_mem[24]; // auxiliary memory
0], 4, 6, false); // use auxiliary memory
mat H(&aux_mem[
0, 0, 4, 4) + H(1, 2)
X = X + F.submat(
double> res_real = real(X);
Mat<double> res_imag = imag(X);
Mat<
writable::list res;"real"_nm = as_doubles_matrix(res_real)});
res.push_back({"imag"_nm = as_doubles_matrix(res_imag)});
res.push_back({
return res;
}
Col<type>
, vec
and cx_vec
are classes for column vectors (dense matrices with one column).
The Col<type>
class is derived from the Mat<type>
class and inherits most of the member functions.
For convenience the following typedefs have been defined:
vec = colvec = Col<double>
dvec = dcolvec = Col<double>
fvec = fcolvec = Col<float>
cx_vec = cx_colvec = Col<[cx_double](#cx_double)>
cx_dvec = cx_dcolvec = Col<[cx_double](#cx_double)>
cx_fvec = cx_fcolvec = Col<[cx_float](#cx_double)>
uvec = ucolvec = Col<[uword](#uword)>
ivec = icolvec = Col<[sword](#uword)>
The vec
and colvec
types have the same meaning and are used interchangeably.
The types vec
or colvec
are used for convenience. It is possible to use other column vector types instead (e.g., fvec
or fcolvec
).
Functions which take mat
as input can generally also take Col
as input. Main exceptions are functions that require square matrices.
vec()
vec(_n_elem_)
vec(_n_elem, fill_form)
(elements are initialised according to fill_form
)vec(size(X))
vec(size(X), fill_form)
(elements are initialised according to fill_form
)vec(vec)
vec(mat)
(std::logic_error
exception is thrown if the given matrix has more than one column)vec(initializer_list)
vec(string)
(elements separated by spaces)vec(std::vector)
cx_vec(vec,vec)
(for constructing a complex vector out of two real vectors)vec(ptr_aux_mem, number_of_elements, copy_aux_mem = true, strict = false)
:
false
, the vector will instead directly use the auxiliary memory (e.g., no copying). This is faster, but can be dangerous unless you know what you are doing.strict
parameter comes into effect only when copy_aux_mem
is set to false
(e.g., the vector is directly using auxiliary memory).strict
is set to false
, the vector will use the auxiliary memory until a size change or an aliasing event.strict
is set to true
, the vector will be bound to the auxiliary memory for its lifetime. The number of elements in the vector cannot be changed.vec(const ptr_aux_mem, number_of_elements)
: Create a column vector by copying data from read-only auxiliary memory, where ptr_aux_mem is a pointer to the memory.vec::fixed<number_of_elements>
:
uvec
, ivec
, fvec
, vec
, cx_fvec
, cx_vec
as well as the corresponding colvec
versions). The pre-defined typedefs specify vector sizes ranging from 2 to 9. The typedefs were defined by appending a single digit form of the size to the vector type. Examples: vec3
is equivalent to vec::fixed<3>
, and cx_vec4
is equivalent to cx_vec::fixed<4>
.vec::fixed<number_of_elements>(fill_form)
: Create a fixed size column vector, with the elements explicitly initialised according to fill_form
.vec::fixed<number_of_elements>(const ptr_aux_mem)
: Create a fixed size column vector, with the size specified via the template argument. The data is copied from auxiliary memory, where ptr_aux_mem
is a pointer to the memory.set.seed(123)
runif(10)
x <- rep(1, 10) y <-
cpp11::register]] doubles column1_(const doubles& x, const doubles& y) {
[[// convert from R to C++
vec X = as_Col(x);
vec Y = as_Col(y);
10, 10, fill::randu);
mat A(5); // extract a column vector
vec Z = A.col(
Z = Z + Y + X;
return as_doubles(Z); // convert from C++ to R
}
Row<type>
, rowvec
and cx_rowvec
are classes for row vectors (dense matrices with one row).
The template Row<type>
class is derived from the Mat<type>
class and inherits most of the member functions.
For convenience the following typedefs have been defined:
rowvec = Row<double>
drowvec = Row<double>
frowvec = Row<float>
cx_rowvec = Row<cx_double>
cx_drowvec = Row<cx_double>
cx_frowvec = Row<cx_float>
urowvec = Row<uword>
irowvec = Row<sword>
The rowvec
type is used for convenience. It is possible to use other row vector types instead (e.g., frowvec
).
Functions which take mat
as input can generally also take Row
as input. Main exceptions are functions which require square matrices.
rowvec()
rowvec(n_elem)
rowvec(n_elem, fill_form)
(elements are initialised according to fill_form
)rowvec(size(X))
rowvec(size(X), fill_form)
(elements are initialised according to fill_form
)rowvec(rowvec)
rowvec(mat)
(std::logic_error
exception is thrown if the given matrix has more than one row)rowvec(initializer_list)
rowvec(string)
(elements separated by spaces)rowvec(std::vector)
cx_rowvec(rowvec,rowvec)
(for constructing a complex row vector out of two real row vectors)rowvec(ptr_aux_mem, number_of_elements, copy_aux_mem = true, strict = false)
false
, the vector will instead directly use the auxiliary memory (e.g., no copying); this is faster, but can be dangerous unless you know what you are doing.strict
parameter comes into effect only when copy_aux_mem is set to false
(e.g., the vector is directly using auxiliary memory).
strict
is set to false
, the vector will use the auxiliary memory until a size change or an aliasing event.strict
is set to true
, the vector will be bound to the auxiliary memory for its lifetime. The number of elements in the vector cannot be changed.rowvec(const ptr_aux_mem, number_of_elements)
ptr_aux_mem
is a pointer to the memory.rowvec::fixed<number_of_elements>
urowvec
, irowvec
, frowvec
, rowvec
, cx_frowvec
, cx_rowvec
). The pre-defined typedefs specify vector sizes ranging from 2 to 9. The typedefs were defined by appending a single digit form of the size to the vector type. Examples: rowvec3
is equivalent to rowvec::fixed<3>
, and cx_rowvec4
is equivalent to cx_rowvec::fixed<4>
.rowvec::fixed<number_of_elements>(fill_form)
fill_form
.rowvec::fixed<number_of_elements>(const ptr_aux_mem)
ptr_aux_mem
is a pointer to the memory.⚠️Important⚠️: ‘cpp11armadillo’ is an opinionated package and it follows the notation from Econometrics by Bruce E. Hansen. It intentionally exports/imports matrices and column vectors. You can use row vectors in the functions, but the communication between R and C++ does not accept row vectors unless you transpose or convert those to matrices.
set.seed(123)
runif(10)
x <- rep(1, 10) y <-
cpp11::register]] doubles row1_(const doubles& x, const doubles& y) {
[[// convert from R to C++
vec X = as_Col(x);
vec Y = as_Col(y);
10, 10, fill::randu);
mat A(
5); // extract a row vector
rowvec Z = A.row(// transpose Y and X to be able to sum
Z = Z + Y.t() + X.t();
vec res = Z.t();
return as_doubles(res); // convert from C++ to R
}
Cube<type>
, cube
and cx_cube
are classes for cubes, also known as quasi 3rd order tensors or “3D matrices”.
The data is stored as a set of slices (matrices) stored contiguously within memory. Within each slice, elements are stored with column-major ordering (e.g., column by column)
The root cube class is Cube<type>
, where type
is one of: float
, double
, std::complex<float>
, std::complex<double>
, short
, int
, long
and unsigned versions of short
, int
, long
.
For convenience the following typedefs have been defined:
cube = Cube<double>
dcube = Cube<double>
fcube = Cube<float>
cx_cube = Cube<cx_double>
cx_dcube = Cube<cx_double>
cx_fcube = Cube<cx_float>
ucube = Cube<uword>
icube = Cube<sword>
The cube
type is used for convenience. It is possible to use other types instead (e.g., fcube
).
Each cube slice can be interpreted as a matrix, hence functions which take Mat
as input can generally also take cube slices as input.
cube()
cube(n_rows, n_cols, n_slices_)
cube(n_rows, n_cols, n_slices, fill_form)
(elements are initialised according to fill_form
)cube(size(X))
cube(size(X), fill_form)
(elements are initialised according to fill_form
)cube(cube)
cx_cube(cube, cube)
(for constructing a complex cube out of two real cubes)The elements can be explicitly initialised during construction by specifying fill_form
, which is one of:
fill::zeros
: set all elements to 0 (default in cpp11armadillo)fill::ones
: set all elements to 1fill::randu
: set all elements to random values from a uniform distribution in the [0,1] intervalfill::randn
: set all elements to random values from a normal distribution with zero mean and unit variancefill::value(scalar)
: set all elements to specified scalarfill::none
: do not initialise the elements (cube may have garbage values)Each instance of cube
automatically allocates and releases internal memory. All internally allocated memory used by an instance of cube
is automatically released as soon as the instance goes out of scope. For example, if an instance of cube
is declared inside a function, it will be automatically destroyed at the end of the function. To forcefully release memory at any point, use .reset()
note that in normal use this is not required.
cube::fixed<n_rows, n_cols, n_slices>
: Create a fixed size cube, with the size specified via template arguments. Memory for the cube is reserved at compile time. This is generally faster than dynamic memory allocation, but the size of the cube cannot be changed afterwards (directly or indirectly).cube(ptr_aux_mem, n_rows, n_cols, n_slices, copy_aux_mem = true, strict = false)
:
ptr_aux_mem
is a pointer to the memory. By default the cube allocates its own memory and copies data from the auxiliary memory (for safety). However, if copy_aux_mem
is set to false
, the cube will instead directly use the auxiliary memory (e.g., no copying). This is faster, but can be dangerous unless you know what you are doing.strict
parameter comes into effect only when copy_aux_mem
is set to false
(e.g., the cube is directly using auxiliary memory).strict
is set to false
, the cube will use the auxiliary memory until a size change or an aliasing event.strict
is set to true
, the cube will be bound to the auxiliary memory for its lifetime. The number of elements in the cube cannot be changed.cube(const ptr_aux_mem, n_rows, n_cols, n_slices)
: Create a cube by copying data from read-only auxiliary memory, where ptr_aux_mem
is a pointer to the memory.set.seed(123)
matrix(runif(4), nrow = 2, ncol = 2)
a <- matrix(rnorm(4), nrow = 2, ncol = 2) b <-
cpp11::register]] doubles_matrix<> cube1_(const doubles_matrix<>& a,
[[const doubles_matrix<>& b) {
// convert from R to C++
mat A = as_Mat(a);
mat B = as_Mat(b);
2); // create a cube with 2 slices
cube X(A.n_rows, A.n_cols, 0) = A; // copy A into first slice
X.slice(1) = B; // copy B into second slice
X.slice(
// cube addition
cube Y = X + X; // element-wise cube multiplication
cube Z = X % X;
0) + Z.slice(1);
mat res = Y.slice(
return as_doubles_matrix(res); // convert from C++ to R
}
The size of individual slices cannot be changed. The following will not work:
5,6,7);
cube c(0) = randu<mat>(10,20); // wrong size c.slice(
field<object_type>
is a class for storing arbitrary objects in matrix-like or cube-like layouts.
It is similar to a matrix or cube, but instead of each element being a scalar, each element can be a vector, or matrix, or cube. This is similar to a list in R.
Each element can have an arbitrary size (e.g., in a field of matrices, each matrix can have a unique size).
object_type
is another class (e.g., vec
, mat
, std::string
, etc)
field<object_type>()
field<object_type>(n_elem)
field<object_type>(n_rows, n_cols)
field<object_type>(n_rows, n_cols, n_slices)
field<object_type>(size(X))
field<object_type>(field<object_type>)
set.seed(123)
matrix(runif(4), nrow = 2, ncol = 2)
a <- matrix(rnorm(4), nrow = 2, ncol = 2) b <-
cpp11::register]] doubles_matrix<> field1_(const doubles_matrix<>& a,
[[const doubles_matrix<>& b) {
// convert from R to C++
mat A = as_Mat(a);
mat B = as_Mat(b);
3); // create a field with 2 matrices
field<mat> F(A.n_rows, A.n_cols, 0) = A; // copy A into first location
F(1) = B; // copy B into second location
F(2) = F(0) + F(1); // matrix addition
F(
0) + F(1) + F(2).t();
mat res = F(
return as_doubles_matrix(res); // convert from C++ to R
}
To store a set of matrices of the same size, the Cube
class is more efficient.
Function/Variable | Description |
---|---|
.n_rows |
number of rows |
.n_cols |
number of columns |
.n_elem |
number of elements |
.n_slices |
number of slices |
() |
element access |
[] |
element access |
.at() |
element access |
.zeros |
set all elements to zero |
.ones |
set all elements to one |
.eye |
set elements along main diagonal to one and off-diagonal elements to zero |
.randu |
set all elements to random values from a uniform distribution |
.randn |
set all elements to random values from a normal distribution |
.fill |
set all elements to specified value |
.imbue |
imbue (fill) with values provided by functor or lambda function |
.clean |
replace elements below a threshold with zeros |
.replace |
replace specific elements with a new value |
.clamp |
clamp values to lower and upper limits |
.transform |
transform each element via functor or lambda function |
.for_each |
apply a functor or lambda function to each element |
.set_size |
change size without keeping elements (fast) |
.reshape |
change size while keeping elements |
.resize |
change size while keeping elements and preserving layout |
.copy_size |
change size to be same as given object |
.reset |
change size to empty |
.diag |
read/write access to matrix diagonals |
.each_col |
vector operations applied to each column of matrix (aka “broadcasting”) |
.each_row |
vector operations applied to each row of matrix (aka “broadcasting”) |
.each_slice |
matrix operations applied to each slice of cube (aka “broadcasting”) |
.set_imag |
set imaginary part |
.set_real |
set real part |
.insert_rows |
insert vector/matrix/cube at specified row |
.insert_cols |
insert vector/matrix/cube at specified column |
.insert_slices |
insert vector/matrix/cube at specified slice |
.shed_rows |
remove specified rows |
.shed_cols |
remove specified columns |
.shed_slices |
remove specified slices |
.swap_rows |
swap specified rows |
.swap_cols |
swap specified columns |
.swap |
swap contents with given object |
.memptr |
raw pointer to memory |
.colptr |
raw pointer to memory used by specified column |
.as_col |
return flattened matrix column as column vector |
.as_row |
return flattened matrix row as row vector |
.col_as_mat |
return matrix representation of cube column |
.row_as_mat |
return matrix representation of cube row |
.as_dense |
return dense vector/matrix representation of sparse matrix expression |
.t |
return matrix transpose |
.st |
return matrix conjugate transpose |
.i |
return inverse of square matrix |
.min |
return minimum value |
.max |
return maximum value |
.index_min |
return index of minimum value |
.index_max |
return index of maximum value |
.eval |
force evaluation of delayed expression |
.in_range |
check whether given location or span is valid |
.is_empty |
check whether object is empty |
.is_vec |
check whether matrix is a vector |
.is_sorted |
check whether vector or matrix is sorted |
.is_trimatu |
check whether matrix is upper triangular |
.is_trimatl |
check whether matrix is lower triangular |
.is_diagmat |
check whether matrix is diagonal |
.is_square |
check whether matrix is square sized |
.is_symmetric |
check whether matrix is symmetric |
.is_hermitian |
check whether matrix is hermitian |
.is_sympd |
check whether matrix is symmetric/hermitian positive definite |
.is_zero |
check whether all elements are zero |
.is_finite |
check whether all elements are finite |
.has_inf |
check whether any element is +/- infinity |
.has_nan |
check whether any element is NaN |
n_*
provides information for different objects:
.n_rows
number of rows for Mat
, Col
, Row
, Cube
, field
, and SpMat
..n_cols
number of columns for Mat
, Col
, Row
, Cube
, field
, and SpMat
..n_elem
total number of elements for Mat
, Col
, Row
, Cube
, field
, and SpMat
..n_slices
number of slices for Cube
and field
..n_nonzero
number of non-zero elements for SpMat
.For the Col
and Row
classes, n_elem
also indicates vector length.
The variables are read-only and of type uword
. To change the size, use set_size
, copy_size
, zeros_member
, ones_member
, or reset
.
To avoid compiler warnings about implicit conversion when operating uword
with integers
/doubles
to pass data to R, converte uword
to int
with static_cast<int>
or declare these as int
.
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] integers attr1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a);
// uword or int can be used
int n_rows = A.n_rows; // number of rows
int n_cols = A.n_cols; // number of columns
int n_elem = A.n_elem; // number of elements
writable::integers res({n_rows, n_cols, n_elem});"names") = strings({"n_rows", "n_cols", "n_elem"});
res.attr(
return res;
}
Provide access to individual elements or objects stored in a container object (e.g., Mat
, Col
, Row
, Cube
, field
).
(i)
For vec
and rowvec
, access the element stored at index i
. For Mat
, Cube
and field
, access the element/object stored at index i
under the assumption of a flat layout, with column-major ordering of data (e.g., column by column). An exception is thrown if the requested element is out of bounds..at(i)
or [i]
As for (i)
, but without a bounds check. Not recommended.(r,c)
For Mat
and 2D field classes, access the element/object stored at row r
and column c
. An exception is thrown if the requested element is out of bounds..at(r,c)
As for (r,c)
, but without a bounds check. Not recommended.(r,c,s)
For Cube
and 3D field classes, access the element/object stored at row r
, column c
, and slice s
. An exception is thrown if the requested element is out of bounds..at(r,c,s)
As for (r,c,s)
, but without a bounds check. Not recommended. matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> access1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a); 1,1) = 123.0; // set element at row 2, column 2
A(
2, fill::randu);
vec B(
double x = A(0,1); // copy element at row 1, column 2 to a double
double y = B(1); // copy element at coordinate 2 to a double
// int also works
uword i, j;
uword N = A.n_rows;
uword M = A.n_cols;
for(i = 0; i < N; ++i) {
for(j = 0; j < M; ++j) {
A(i,j) = A(i,j) + x + y;
}
}
return as_doubles_matrix(A); // convert from C++ to R
}
For .at()
or [i]
, .at(r,c)
and .at(r,c,s)
:
[r,c]
and [r,c,s]
does not work correctly in C++; instead use (r,c)
and (r,c,s)
The indices of elements are specified via the uword
type, which is a typedef
for an unsigned integer type. When using loops to access elements, it more efficient to use uword
instead of int
.
Set elements in Mat
, Col
and Row
via braced initialiser lists.
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> initialization1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a); 1, 2}, {3, 4}}; // create new matrix
mat B = {{1, 2}; // create new column vector
vec C = {
// sum C to the diagonal of A
0,0) = A(0,0) + C(0);
A(1,1) = A(1,1) + C(1);
A(
mat D = A + B;
return as_doubles_matrix(D); // convert from C++ to R
}
Set the elements of an object to zero, optionally first changing the size to specified dimensions.
.zeros()
(member function of Mat
, Col
, Row
, SpMat
, Cube
) .zeros(n_elem)
(member function of Col
and Row
) .zeros(n_rows, n_cols)
(member function of Mat
and SpMat
) .zeros(n_rows, n_cols, n_slices)
(member function of Cube
) .zeros(size(X))
(member function of Mat
, Col
, Row
, Cube
, SpMat
)
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> zeros1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a); // set all elements to zero
A.zeros();
mat B;// set size to be the same as A and set all elements to zero
B.zeros(size(A));
mat C(A.n_rows, A.n_cols, fill::zeros);
mat D = A + B + C;
return as_doubles_matrix(D); // convert from C++ to R
}
Set all the elements of an object to one, optionally first changing the size to specified dimensions.
Function | Mat | Col | Row | Cube |
---|---|---|---|---|
.ones() |
✓ | ✓ | ✓ | ✓ |
.ones(n_elem) |
✓ | ✓ | ||
.ones(n_rows, n_cols) |
✓ | |||
.ones(n_rows, n_cols, n_slices) |
✓ | |||
.ones(size(X)) |
✓ | ✓ | ✓ | ✓ |
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> ones1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a); // set all elements to zero
A.ones();
mat B;// set size to be the same as A and set all elements to zero
B.ones(size(A));
mat C(A.n_rows, A.n_cols, fill::ones);
mat D = A + B + C;
return as_doubles_matrix(D); // convert from C++ to R
}
.eye()
is member function of Mat
and SpMat
. .eye(n_rows, n_cols)
sets the elements along the main diagonal to one and off-diagonal elements to zero, optionally first changing the size to specified dimensions. .eye(size(X))
creates an identity matrix is generated when n_rows = n_cols
.
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> eye1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a); // create an identity matrix
A.eye();
mat B;// another identity matrix
B.eye(size(A));
uword N = A.n_rows;
uword M = A.n_cols;
mat C(N, M, fill::randu);// yet another identity matrix
C.eye(N, M);
mat D = A + B + C;
return as_doubles_matrix(D); // convert from C++ to R
}
Set all the elements to random values from a uniform distribution in the [0,1] interval, optionally first changing the size to specified dimensions.
For complex elements, the real and imaginary parts are treated separately.
Function/Method | Mat | Col | Row | Cube |
---|---|---|---|---|
.randu() |
✓ | ✓ | ✓ | ✓ |
.randu(n_elem) |
✓ | ✓ | ||
.randu(n_rows, n_cols) |
✓ | |||
.randu(n_rows, n_cols, n_slices) |
✓ | |||
.randu(size(X)) |
✓ | ✓ | ✓ | ✓ |
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> randu1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a);
mat B;// random uniform matrix with the same size as A
B.randu(size(A));
mat C(A.n_rows, A.n_cols, fill::randu);
mat D = A + B + C;
return as_doubles_matrix(D); // convert from C++ to R
}
cpp11::register]] doubles_matrix<> randu2_(const int& n) {
[[// Ensure R's RNG state is synchronized
GetRNGstate();
mat y(n, n);double>::fill(y.memptr(), y.n_elem);
::arma_rng::randu<
PutRNGstate();
return as_doubles_matrix(y);
}
Set all the elements to random values from a normal distribution with zero mean and unit variance, optionally first changing the size to specified dimensions.
For complex elements, the real and imaginary parts are treated separately.
Function/Method | Mat | Col | Row | Cube |
---|---|---|---|---|
.randn() |
✓ | ✓ | ✓ | ✓ |
.randn(n_elem) |
✓ | ✓ | ||
.randn(n_rows, n_cols) |
✓ | |||
.randn(n_rows, n_cols, n_slices) |
✓ | |||
.randn(size(X)) |
✓ | ✓ | ✓ | ✓ |
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> randn1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a);
mat B;// random normal matrix with the same size as A
B.randn(size(A));
mat C(A.n_rows, A.n_cols, fill::randn);
mat D = A + B + C;
return as_doubles_matrix(D); // convert from C++ to R
}
cpp11::register]] doubles_matrix<> randn2_(const int& n) {
[[// Ensure R's RNG state is synchronized
GetRNGstate();
mat y(n, n);double>::fill(y.memptr(), y.n_elem);
::arma_rng::randn<
PutRNGstate();
return as_doubles_matrix(y);
}
Sets the elements to a specified value
.fill(value)
is a member function of Mat
, Col
, Row
, Cube
, field
.
The type of value must match the type of elements used by the container object (e.g., for Mat
the type is double
)
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> fill1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a);
uword N = A.n_rows;
uword M = A.n_cols;
200.0)); // create a matrix filled with 200.0
mat B(size(A), fill::value(100.0)); // matrix filled with 100.0
mat C(N, M, fill::value(// matrix filled with zeros
mat D(N, M, fill::zeros); // matrix filled with ones
mat E(N, M, fill::ones);
mat F = A + B + C + D + E;
return as_doubles_matrix(F); // convert from C++ to R
}
.imbue(functor)
is a member function of Mat
, Col
, Row
and Cube
, it fills the elements with values provided by a functor. The argument can be a functor or lambda function.
For matrices, filling is done column-by-column (e.g., column 0 is filled, then column 1, etc.)
For cubes, filling is done slice-by-slice, with each slice treated as a matrix
matrix(runif(4), nrow = 2, ncol = 2) a <-
cpp11::register]] doubles_matrix<> imbue1_(const doubles_matrix<>& a) {
[[// convert from R to C++
mat A = as_Mat(a);
std::mt19937 engine; // Mersenne twister random number engine
std::uniform_real_distribution<double> distr(0.0, 1.0);
// create an empty matrix
mat B(size(A), fill::none); return distr(engine); }); // fill with random values
B.imbue([&]() {
mat C = A + B;
return as_doubles_matrix(C); // convert from C++ to R
}
cpp11::register]] doubles_matrix<> imbue2_(const doubles_matrix<>& a) {
[[// Ensure R's RNG state is synchronized
GetRNGstate();
// Convert from R to C++
mat A = as_Mat(a);
// Create an empty matrix
mat B(size(A), fill::none); return unif_rand(); }); // Fill with random values
B.imbue([]() {
mat C = A + B;
PutRNGstate();
return as_doubles_matrix(C); // Convert from C++ to R
}
.clean(threshold)
is a member function of Mat
, Col
, Row
, Cube
, and SpMat
. It can be used to sparsify a matrix, in the sense of zeroing values with small magnitudes.
cpp11::register]] doubles_matrix<> clean1_(const int& n) {
[[// create a random matrix
mat A(n, n, fill::randu);
0, 0) = datum::eps; // set the diagonal with small values (+/- epsilon)
A(1, 1) = -datum::eps;
A(
// set elements with small values to zero
A.clean(datum::eps);
return as_doubles_matrix(A); // Convert from C++ to R
}
To explicitly convert from dense storage to sparse storage, use the SpMat
.
.replace( old_value, new_value )
is a member function of Mat
, Col
, Row
, Cube
, and SpMat
.
For all elements equal to old_value
, set them to new_value
.
cpp11::register]] doubles_matrix<> replace1_(const int& n) {
[[// create a random matrix
mat A(n, n, fill::randu);
// set the diagonal with NaN values
A.diag().fill(datum::nan); 0); // replace each NaN with 0
A.replace(datum::nan,
return as_doubles_matrix(A); // Convert from C++ to R
}
old_value
and new_value
must match the type of elements used by the container object (e.g., for Mat
the type is double
).float
and double
) are approximations due to their limited precision.SpMat
), replacement is not done when old_value = 0
..clamp(min_value, max_value)
is a member function of Mat
, Col
, Row
, Cube
and SpMat
that transforms all values lower than min_val
to min_val
, and all values higher than max_val
to max_val
.
cpp11::register]] doubles_matrix<> clamp1_(const int& n) {
[[// create a random matrix
mat A(n, n, fill::randu); 0.1); // set the diagonal with 0.1 values
A.diag().fill(
0.2, 0.8); // clamp values to the [0.2, 0.8] interval
A.clamp(
return as_doubles_matrix(A); // Convert from C++ to R
}
.transform(functor)
is a member function of Mat
, Col
, Row
, Cube
, and SpMat
. The argument can be a functor or lambda function.
cpp11::register]] doubles_matrix<> transform1_(const int& n) {
[[// create a matrix filled with ones
mat A(n, n, fill::ones); double val) { return (val + 122.0); });
A.transform([](return as_doubles_matrix(A); // Convert from C++ to R
}
.for_each(functor)
is a member function of Mat
, Col
, Row
, Cube
, SpMat
, and field
. The argument can be a functor or lambda function.
cpp11::register]] doubles_matrix<> for_each1_(const int& n) {
[[// add 122 to each element in a dense matrix, the '&' is important
mat D(n, n, fill::ones);elem_type& val) { val += 122.0; });
D.for_each([](mat::
// add 122 to each non-zero element in a sparse matrix
sp_mat S;1.0);
S.sprandu(n, n, elem_type& val) { val += 123.0; });
S.for_each([](sp_mat::
// set the size of all matrices in a field
2, 2);
field<mat> F(// capture n for the lambda
F.for_each([n](mat& X) { X.zeros(n, n); });
0) + F(1);
mat res = D + S + F(
return as_doubles_matrix(res); // Convert from C++ to R
}
Change the size of an object, without explicitly preserving data and without initialising the elements (e.g., elements may contain garbage values, including NaN
).
.set_size(n_elem)
(member function of Col
, Row
, field
).set_size(n_rows, n_cols)
(member function of Mat
, SpMat
, field
).set_size(n_rows, n_cols, n_slices)
(member function of Cube
and field
).set_size(size(X))
(member function of Mat
, Col
, Row
, Cube
, SpMat
, field
)To initialise the elements to zero while changing the size, use .zeros()
instead. To explicitly preserve data while changing the size, use .reshape()
or .resize()
instead.
cpp11::register]] doubles set_size1_(const int& n) {
[[
mat A;// or: mat A(n, n, fill::none);
A.set_size(n, n);
mat B;// or: mat B(size(A), fill::none);
B.set_size(size(A));
vec C;// or: vec v(n, fill::none);
C.set_size(n);
1.0); // set all elements to 1.0
A.fill(2.0); // set all elements to 2.0
B.fill(3.0); // set all elements to 3.0
C.fill(
0) + B.col(1) + C;
vec res = A.col(
return as_doubles(res); // Convert from C++ to R
}
Recreate an object according to given size specifications, with the elements taken from the previous version of the object in a column-wise manner. The elements in the generated object are placed column-wise (e.g., the first column is filled up before filling the second column)
.reshape(n_rows, n_cols)
(member function of Mat
and SpMat
).reshape(n_rows, n_cols, n_slices)
(member function of Cube
).reshape(size(X))
(member function of Mat
, Cube
, SpMat
)The layout of the elements in the recreated object will be different to the layout in the previous version of the object
If the total number of elements in the previous version of the object is less than the specified size, the extra elements in the recreated object are set to zero
If the total number of elements in the previous version of the object is greater than the specified size, only a subset of the elements is taken
cpp11::register]] doubles_matrix<> reshape1_(const int& n) {
[[1, n - 1, fill::randu);
mat A(n + 1, n + 1);
A.reshape(n - return as_doubles_matrix(A); // Convert from C++ to R
}
.reshape()
is considerably slower than .set_size()
..set_size()
..resize()
vectorise()
or .as_col()
/.as_row()
.Resize an object according to given size specifications, while preserving the elements and the layout of the elements. It can be used for growing or shrinking an object (e.g., adding/removing rows, and/or columns, and/or slices).
.resize(n_elem)
: member function of Col
, Row
..resize(n_rows, n_cols)
: member function of Mat
and SpMat
..resize(n_rows, n_cols, n_slices)
: member function of Cube
..resize(size(X))
: member function of Mat
, Col
, Row
, Cube
, SpMat
.cpp11::register]] doubles_matrix<> resize1_(const int& n) {
[[1, n - 1, fill::randu);
mat A(n + 1, n + 1);
A.resize(n - return as_doubles_matrix(A); // Convert from C++ to R
}
.resize()
is considerably slower than .set_size()
..set_size()
instead..copy_size(A)
sets the size of a matrix/vector/cube to be the same as matrix/vector/cube A
.
cpp11::register]] integers copy_size1_(const int& n) {
[[
mat A(n, n, fill::randu);
mat B;
B.copy_size(A);
int N = B.n_rows;
int M = B.n_cols;
writable::integers res({N, M});"names") = strings({"n_rows", "n_cols"});
res.attr(
return as_integers(res); // Convert from C++ to R
}
To set the size of an object B
, A
must be of the same type as B
. For example, the size of a matrix cannot be set by providing a cube.
.reset()
sets a matrix/vector size to zero (the object will have no elements).
cpp11::register]] integers reset1_(const int& n) {
[[
mat A(n, n, fill::randu);
A.reset();
int N = A.n_rows;
int M = A.n_cols;
writable::integers res({N, M});"names") = strings({"n_rows", "n_cols"});
res.attr(
return as_integers(res); // Convert from C++ to R
}
A collection of member functions of Mat
, Col
and Row
classes that provide read/write access to submatrix views.
X.col(col_number)
X.row(row_number)
X.cols(first_col, last_col)
X.rows(first_row, last_row)
X.submat(first_row, first_col, last_row, last_col)
X(span(first_row, last_row), span(first_col, last_col))
X(first_row, first_col, size(n_rows, n_cols))
X(first_row, first_col, size(Y))
(Y
is a matrix)X(span(first_row, last_row), col_number)
X(row_number, span(first_col, last_col))
X.head_cols(number_of_cols)
X.head_rows(number_of_rows)
X.tail_cols(number_of_cols)
X.tail_rows(number_of_rows)
X.unsafe_col(col_number)
(use with caution)Y(span(first_index, last_index))
Y.subvec(first_index, last_index)
Y.subvec(first_index, size(X))
(X
is a vector)Y.head(number_of_elements)
Y.tail(number_of_elements)
X.elem(vector_of_indices)
X(vector_of_indices)
X.cols(vector_of_column_indices)
X.rows(vector_of_row_indices)
X.submat(vector_of_row_indices, vector_of_column_indices)
X(vector_of_row_indices, vector_of_column_indices)
Instances of span(start, end)
can be replaced by span::all_
to indicate the entire range.
For functions requiring one or more vector of indices, for example X.submat(vector_of_row_indices, vector_of_column_indices)
, each vector of indices must be of type uvec
.
In the function X.elem(vector_of_indices)
, elements specified in vector_of_indices
are accessed. X
is interpreted as one long vector, with column-by-column ordering of the elements of X
. The vector_of_indices
must evaluate to a vector of type uvec
(e.g., generated by the find()
function). The aggregate set of the specified elements is treated as a column vector (e.g., the output of X.elem()
is always a column vector).
The function .unsafe_col()
is provided for speed reasons and should be used only if you know what you are doing. It creates a seemingly independent Col
vector object (e.g., vec
), but uses memory from the existing matrix object. As such, the created vector is not alias safe, and does not take into account that the underlying matrix memory could be freed (e.g., due to any operation involving a size change of the matrix).
cpp11::register]] doubles_matrix<> subview1_(const int& n) {
[[
mat A(n, n, fill::zeros);
0,1,2,3) = randu<mat>(3,3);
A.submat(0,2), span(1,3)) = randu<mat>(3,3);
A(span(0,1, size(3,3)) = randu<mat>(3,3);
A(
0,1,2,3);
mat B = A.submat(0,2), span(1,3) );
mat C = A(span(0, 1, size(3,3) );
mat D = A(
1) = randu<mat>(5,1);
A.col(1) = randu<mat>(5,1);
A(span::all,
5, 5, fill::randu);
mat X(
// get all elements of X that are greater than 0.5
0.5) );
vec q = X.elem( find(X >
// add 123 to all elements of X greater than 0.5
0.5) ) += 123.0;
X.elem( find(X >
// set four specific elements of X to 1
2, 3, 6, 8 };
uvec indices = {
4);
X.elem(indices) = ones<vec>(
// add 123 to the last 5 elements of vector a
10, fill::randu);
vec a(5) += 123.0;
a.tail(
// add 123 to the first 3 elements of column 2 of X
2).head(3) += 123;
X.col(
return as_doubles_matrix(X); // Convert from C++ to R
}
A collection of member functions of the Cube
class that provide subcube views.
Q.slice(slice_number)
Q.slices(first_slice, last_slice)
Q.row(row_number)
Q.rows(first_row, last_row)
Q.col(col_number)
Q.cols(first_col, last_col)
Q.subcube( first_row, first_col, first_slice, last_row, last_col, last_slice)
Q(span(first_row, last_row), span(first_col, last_col), span(first_slice, last_slice))
Q(first_row, first_col, first_slice, size(n_rows, n_cols, n_slices))
Q(first_row, first_col, first_slice, size(R))
(R
is a cube)Q.head_slices(number_of_slices)
Q.tail_slices(number_of_slices)
Q.tube(row, col)
Q.tube(first_row, first_col, last_row, last_col)
Q.tube(span(first_row, last_row), span(first_col, last_col))
Q.tube(first_row, first_col, size(n_rows, n_cols))
Q.elem(vector_of_indices)
, Q(vector_of_indices)
, and Q.slices( vector_of_slice_indices)
are instances of span(a,b)
that can be replaced by:
span()
or span::all
, to indicate the entire range.span(a)
, to indicate a particular row, column or slice.An individual slice, accessed via .slice()
, is an instance of the Mat
class (a reference to a matrix is provided).
All .tube()
forms are variants of .subcube()
, using first_slice = 0
and last_slice = Q.n_slices-1
. The .tube(row,col)
form uses row = first_row = last_row
, and col = first_col = last_col
.
In the function Q.elem(vector_of_indices)
, elements specified in vector_of_indices
are accessed. Q
is interpreted as one long vector, with slice-by-slice and column-by-column ordering of the elements of Q
. The vector_of_indices
must evaluate to a vector of type uvec
(e.g., generated by the find()
function). The aggregate set of the specified elements is treated as a column vector (e.g., the output of Q.elem()
is always a column vector).
In the function Q.slices(vector_of_slice_indices)
, slices specified in vector_of_slice_indices
are accessed. The vector_of_slice_indices
must evaluate to a vector of type uvec
.
cpp11::register]] doubles_matrix<> subview2_(const int& n) {
[[3, 4, fill::randu);
cube A(n,
1); // each slice is a matrix
mat B = A.slice(
0) = randu<mat>(2,3);
A.slice(0)(1,2) = 99.0;
A.slice(
0,0,1, 1,1,2) = randu<cube>(2,2,2);
A.subcube(0,1), span(0,1), span(1,2)) = randu<cube>(2,2,2);
A(span(0,0,1, size(2,2,2)) = randu<cube>(2,2,2);
A(
// add 123 to all elements of A greater than 0.5
0.5) ) += 123.0;
A.elem( find(A >
2); // get first two slices
cube C = A.head_slices(
2) += 123.0;
A.head_slices(
0) + B + C.slice(1);
mat res = A.slice(
return as_doubles_matrix(res); // Convert from C++ to R
}
A collection of member functions of the field
class that provide subfield views.
For a 2D field F
, the subfields are accessed as:
F.row(row_number)
F.col(col_number)
F.rows(first_row, last_row)
F.cols(first_col, last_col)
F.subfield(first_row, first_col, last_row, last_col)
F(span(first_row, last_row), span(first_col, last_col))
F(first_row, first_col, size(G))
(G
is a 2D field)F(first_row, first_col, size(n_rows, n_cols))
For a 3D field F
, the subfields are accessed as:
F.slice(slice_number)
F.slices(first_slice, last_slice)
F.subfield(first_row, first_col, first_slice, last_row, last_col, last_slice)
F(span(first_row, last_row), span(first_col, last_col), span(first_slice, last_slice))
F(first_row, first_col, first_slice, size(G))
(G
is a 3D field)F(first_row, first_col, first_slice, size(n_rows, n_cols, n_slices))
Instances of span(a,b)
can be replaced by:
span()
or span::all
, to indicate the entire range.span(a)
, to indicate a particular row or column..diag()
is a member functions of Mat
and SpMat
with read/write access to the diagonal in a matrix. The argument can be empty or a value k
to specify the diagonal to (k = 0
by default). The diagonal is interpreted as a column vector within expressions.
k = 0
indicates the main diagonal (default setting)k < 0
indicates the k
-th sub-diagonal (below main diagonal, towards bottom-left corner)k > 0
indicates the k
-th super-diagonal (above main diagonal, towards top-right corner)cpp11::register]] doubles diagonal1_(const int& n) {
[[
mat X(n, n, fill::randu);
// extract the main diagonal
vec A = X.diag(); double B = accu(X.diag(1)); // sum of elements on the first upper diagonal
double C = accu(X.diag(-1)); // sum of elements on the first lower diagonal
X.diag() = randu<vec>(n);
X.diag() += A;
X.diag() /= B;
X.diag() *= C;
0.0);
sp_mat S = sprandu<sp_mat>(n, n,
S.diag().ones();
// copy sparse diagonal to dense vector
vec v(S.diag());
v += X.diag();
return as_doubles(v); // Convert from C++ to R
}
To calculate only the diagonal elements of a compound expression, use diagvec()
or diagmat()
.
.each_col()
is a member function of Mat
. It applies a vector operation to each column of a matrix, and are similar to “broadcasting” in Matlab/Octave. The argument can be empty, a vector of indices, or a lambda function.
Operation | .each_col() |
.each_col(vector_of_indices) |
.each_col(lambda) |
---|---|---|---|
+ addition |
✓ | ✓ | |
+= in-place addition |
✓ | ✓ | |
- subtraction |
✓ | ✓ | |
-= in-place subtraction |
✓ | ✓ | |
% element-wise multiplication |
✓ | ✓ | |
%= in-place element-wise multiplication |
✓ | ✓ | |
/ element-wise division |
✓ | ✓ | |
/= in-place element-wise division |
✓ | ✓ | |
= assignment (copy) |
✓ | ✓ | |
lambda (lambda function) |
✓ |
cpp11::register]] doubles_matrix<> each_col1_(const int& n) {
[[1, fill::ones);
mat X(n, n +
// create a vector with n elements ranging from 5 to 10
5, 10, n);
vec v = linspace<vec>(
// in-place addition of v to each column vector of X
X.each_col() += v;
// generate Y by adding v to each column vector of X
mat Y = X.each_col() + v;
// subtract v from columns 1 and 2 of X
0, 1).each_col() -= v;
X.cols(
2);
uvec indices(0) = 1;
indices(1) = 2;
indices(
// copy v to columns 1 and 2 of X
X.each_col(indices) = v;
// lambda function with non-const vector
2 * a; });
X.each_col([](vec& a) {
const mat& XX = X;
// lambda function with const vector
const vec& b) { 3 * b; });
XX.each_col([](
mat res = X + Y + XX;
return as_doubles_matrix(res); // Convert from C++ to R
}
.each_row()
, .each_row(vector_of_indices)
, .each_row(lambdaction)
are member functions of Mat
. These apply a vector operation to each row of a matrix, and are similar to “broadcasting” in Matlab/Octave.
.each_row()
supports the following operations:
+
addition+=
in-place addition-
subtraction-=
in-place subtraction%
element-wise multiplication%=
in-place element-wise multiplication/
element-wise division/=
in-place element-wise division=
assignment (copy).each_row(vector_of_indices)
supports the same operations as form 1. The argument vector_of_indices
contains a list of indices of the rows to be used, and it must evaluate to a vector of type uvec
.
.each_col(lambdaction)
applies the given lambdaction
to each column vector. The function must accept a reference to a Row
object with the same element type as the underlying matrix.
cpp11::register]] doubles_matrix<> each_row1_(const int& n) {
[[1, n, fill::ones);
mat X(n +
// create a vector with n elements ranging from 5 to 10
5, 10, n);
rowvec v = linspace<rowvec>(
// in-place addition of v to each rows vector of X
X.each_row() += v;
// generate Y by adding v to each rows vector of X
mat Y = X.each_row() + v;
// subtract v from rows 1 and 2 of X
0, 1).each_row() -= v;
X.rows(
2);
uvec indices(0) = 1;
indices(1) = 2;
indices(
// copy v to columns 1 and 2 of X
X.each_row(indices) = v;
// lambda function with non-const vector
2; });
X.each_row([](rowvec& a) { a /
const mat& XX = X;
// lambda function with const vector
const rowvec& b) { b / 3; });
XX.each_row([](
mat res = X + Y + XX;
return as_doubles_matrix(res); // Convert from C++ to R
}
.each_slice()
is a member function of Cube
that applies a matrix operation to each slice of a cube, with each slice treated as a matrix. It is similar to “broadcasting” in Matlab/Octave.
.each_slice(vector_of_indices)
Supported operations:
+
addition+=
in-place addition-
subtraction-=
in-place subtraction%
element-wise multiplication%=
in-place element-wise multiplication/
element-wise division/=
in-place element-wise division*
matrix multiplication*=
in-place matrix multiplication=
assignment (copy).each_slice(lambdaction)
uvec
.*
and *=
(e.g., matrix multiplication)..each_slice(lambdaction, use_mp)
lambdaction
to each slice.Mat
object with the same element type as the underlying cube.lambdaction
to each slice, as per form 3.use_mp
is a bool to enable the use of OpenMP for multi-threaded execution of lambdaction
on multiple slices at the same time.lambdaction
must be thread-safe, e.g., it must not write to variables outside of its scope.cpp11::register]] doubles_matrix<> each_slice1_(const int& n) {
[[1, 6, fill::randu);
cube C(n, n +
1, n, n), 1, n + 1);
mat M = repmat(linspace<vec>(
// in-place addition of M to each slice of C
C.each_slice() += M;
// generate D by adding M to each slice of C
cube D = C.each_slice() + M;
// sum all slices of D into a single n x (n + 1) matrix
2);
mat D_flat = sum(D,
2);
uvec indices(0) = 2;
indices(1) = 4;
indices(
// copy M to slices 2 and 4 in C
C.each_slice(indices) = M; 2.0; }); // lambda function with non-const matrix
C.each_slice([](mat& X) { X * 2);
mat C_flat = sum(C,
const cube& CC = C;
const mat& X) { X / 3.0; }); // lambda function with const matrix
CC.each_slice([](
2);
mat CC_flat = sum(CC,
mat res = C_flat + D_flat + CC_flat;
return as_doubles_matrix(res); // Convert from C++ to R
}
.set_real(X)
sets the real part of an object. X
must have the same size as the recipient object.
cpp11::register]] list set_real1_(const int& n) {
[[1, n - 1, fill::randu);
mat A(n +
1, n - 1, fill::zeros);
cx_mat C(n +
C.set_real(A);
return as_complex_matrix(C); // Convert from C++ to R
}
To directly construct a complex matrix out of two real matrices, the following code is faster:
cpp11::register]] list set_real2_(const int& n) {
[[1, n + 1, fill::randu);
mat A(n - 1, n + 1, fill::randu);
mat B(n -
cx_mat C = cx_mat(A,B);
return as_complex_matrix(C); // Convert from C++ to R
}
.set_imaginary(X)
sets the imaginary part of an object. X
must have the same size as the recipient object.
cpp11::register]] list set_imag1_(const int& n) {
[[1, n - 1, fill::randu);
mat B(n +
1, n - 1, fill::zeros);
cx_mat C(n +
C.set_imag(B);
return as_complex_matrix(C); // Convert from C++ to R
}
To directly construct a complex matrix out of two real matrices, the following code is faster:
cpp11::register]] list set_imag2_(const int& n) {
[[1, n + 1, fill::randu);
mat A(n - 1, n + 1, fill::randu);
mat B(n -
cx_mat C = cx_mat(A,B);
return as_complex_matrix(C); // Convert from C++ to R
}
.insert_cols()
is a member function of Mat
, Row
and Cube
. The arguments can be colnumber, X
to indicate the column number and the matrix to insert, or colnumber, number_of_cols
to indicate the column number and the number of columns to insert.
The X
argument inserts a copy of X
at the specified column. X
must have the same number of rows (and slices) as the recipient object.
The number_of_cols
argument expands the object by creating new columns that are set to zero.
cpp11::register]] doubles_matrix<> insert_columns1_(const int& n) {
[[2, fill::randu);
mat A(n, n * 1, fill::ones);
mat B(n, n -
// at column n - 1, insert a copy of B
// A will now have 3n - 1 columns
1, B);
A.insert_cols(n -
// at column 1, insert 2n zeroed columns
// B will now have 3n - 1 columns
1, n * 2);
B.insert_cols(
mat res = A + B;
return as_doubles_matrix(res); // Convert from C++ to R
}
.insert_rows()
is a member function of Mat
, Row
and Cube
. The arguments can be rownumber, X
to indicate the row number and the matrix to insert, or rownumber, number_of_rows
to indicate the row number and the number of rows to insert.
The X
argument inserts a copy of X
at the specified column. X
must have the same number of columns (and slices) as the recipient object.
The number_of_rows
argument expands the object by creating new rows that are set to zero.
cpp11::register]] doubles_matrix<> insert_rows1_(const int& n) {
[[2, n, fill::randu);
mat A(n * 1, n, fill::ones);
mat B(n -
// at row n - 1, insert a copy of B
// A will now have 3n - 1 rows
1, B);
A.insert_rows(n -
// at row 1, insert 2n zeroed rows
// B will now have 3n - 1 columns
1, n * 2);
B.insert_rows(
mat res = A + B;
return as_doubles_matrix(res); // Convert from C++ to R
}
.insert_slices()
is a member function of Cube
. The arguments can be slice_number, X
to indicate the slice number and the matrix to insert, or slice_number, number_of_slices
to indicate the slice number and the number of slices to insert.
The X
argument inserts a copy of X
at the specified slice. X
must have the same number of columns and rows as the recipient object.
The number_of_slices
argument expands the object by creating new slices that are set to zero.
cpp11::register]] doubles_matrix<> insert_slices1_(const int& n) {
[[2, fill::randu);
cube A(n, n, n * 1, fill::ones);
cube B(n, n, n -
// At slice n - 1, insert a copy of B
// A will now have 3n - 1 slices
1, B);
A.insert_slices(n -
// At slice 1, insert 2n zeroed slices
// B will now have 3n - 1 slices
1, n * 2);
B.insert_slices(
mat res = sum(A + B);
return as_doubles_matrix(res); // Convert from C++ to R
}
.shed_col(row_number)
and .shed_cols(first_row, last_row)
are member functions of Mat
, Col
, SpMat
, and Cube
. With a single scalar argument it remove the specified column, and with two scalar arguments it removes the specified range of columns.
.shed_cols(vector_of_indices)
is a member function of Mat
and Col
. With a vector of indices it must evaluate to a vector of type uvec
containing the indices of the columns to remove.
cpp11::register]] doubles_matrix<> shed_columns1_(const int& n) {
[[5, fill::randu);
mat A(n, n *
// remove the first column
0);
A.shed_col(
// remove columns 1 and 2
0, 1);
A.shed_cols(
// remove columns 2 and 4
2);
uvec indices(0) = 1;
indices(1) = 3;
indices(
A.shed_cols(indices);
return as_doubles_matrix(A); // Convert from C++ to R
}
.shed_row(row_number)
and .shed_rows(first_row, last_row)
are member functions of Mat
, Col
, SpMat
, and Cube
. With a single scalar argument it remove the specified rows, and with two scalar arguments it removes the specified range of rows.
.shed_rows(vector_of_indices)
is a member function of Mat
and Row
. With a vector of indices it must evaluate to a vector of type uvec
containing the indices of the rows to remove.
cpp11::register]] doubles_matrix<> shed_rows1_(const int& n) {
[[5, n, fill::randu);
mat A(n *
// remove the first row
0);
A.shed_row(
// remove rows 1 and 2
0, 1);
A.shed_rows(
// remove rows 2 and 4
2);
uvec indices(0) = 1;
indices(1) = 3;
indices(
A.shed_rows(indices);
return as_doubles_matrix(A); // Convert from C++ to R
}
.shed_slices()
is a member function of Cube
. With a single scalar argument it remove the specified slices, and with two scalar arguments it removes the specified range of slices. With a vector of indices it must evaluate to a vector of type uvec
containing the indices of the rows to remove. The arguments can be slice_number
to indicate the slice number to remove, first_slice, last_slice
to indicate the range of slices to remove, or vector_of_indices
to indicate the indices of the slices to remove.
cpp11::register]] doubles_matrix<> shed_slices1_(const int& n) {
[[5, fill::randu);
cube A(n, n, n *
// remove the first slice
0);
A.shed_slice(
// remove slices 1 and 2
0, 1);
A.shed_slices(
// remove slices 2 and 4
2);
uvec indices(0) = 1;
indices(1) = 3;
indices(
A.shed_slices(indices);
2);
mat res = sum(A,
return as_doubles_matrix(res); // Convert from C++ to R
}
.swap_cols( col1, col2 )
is a member functions of Mat
, Col
, Row
, and SpMat
. It swaps the contents of the specified columns.
cpp11::register]] doubles_matrix<> swap_columns1_(const int& n) {
[[5, fill::randu);
mat A(n, n *
// swap columns 1 and 2
0, 1);
A.swap_cols(
// swap columns 2 and 4
1, 3);
A.swap_cols(
return as_doubles_matrix(A); // Convert from C++ to R
}
.swap_rows( col1, col2 )
is a member functions of Mat
, Col
, Row
, and SpMat
. It swaps the contents of the specified rows.
cpp11::register]] doubles_matrix<> swap_rows1_(const int& n) {
[[5, n, fill::randu);
mat A(n *
// swap rows 1 and 2
0, 1);
A.swap_rows(
// swap rows 2 and 4
1, 3);
A.swap_rows(
return as_doubles_matrix(A); // Convert from C++ to R
}
.swap( X )
is a member function of Mat
, Col
, Row
, and Cube
. It swaps the contents with object X
.
cpp11::register]] doubles_matrix<> swap1_(const int& n) {
[[1, fill::zeros);
mat A(n, n + 2, n - 1, fill::ones);
mat B(n *
A.swap(B);
return as_doubles_matrix(A); // Convert from C++ to R
}
.memptr()
is a member function of Mat
, Col
, Row
, and Cube
. It obtains a raw pointer to the memory used for storing elements. Data for matrices is stored in a column-by-column order. Data for cubes is stored in a slice-by-slice (matrix-by-matrix) order.
cpp11::register]] doubles_matrix<> memptr1_(const int& n) {
[[
mat A(n, n, fill::randu);const mat B(n, n, fill::randu);
double* A_mem = A.memptr();
const double* B_mem = B.memptr();
// alter A_mem
// B_mem is const, so it cannot be altered
for (int i = 0; i < n * n; ++i) {
123.0 + B_mem[i];
A_mem[i] +=
}
return as_doubles_matrix(A); // Convert from C++ to R
}
.colptr( col_number )
is a member function of the Mat
class that obtains a raw pointer to the memory used by elements in the specified column.
cpp11::register]] doubles_matrix<> colptr1_(const int& n) {
[[
mat A(n, n, fill::randu);
// pointer to the memory of the first column of A
double* Acol1_mem = A.colptr(0);
// alter memory
for (int i = 0; i < n; ++i) {
123.0;
Acol1_mem[i] +=
}
return as_doubles_matrix(A); // Convert from C++ to R
}
submat()
instead.Iterators for traverse over all elements within the specified range. These return the column/row/slice of an object as a uword
type.
Dense matrices and vectors (Mat
, Col
, and Row
):
.begin()
is an iterator referring to the first element..end()
is an iterator referring to the past the end element..begin_col(col_number)
is an iterator referring to the first element of the specified column..end_col(col_number)
is an iterator referring to the past-the-end element of the specified column.begin_row(row_number)
is an iterator referring to the first element of the specified row.end_row(row_number)
is an iterator referring to the past-the-end element of the specified row.Cubes (Cube
):
begin()
is an iterator referring to the first element.end()
is an iterator referring to the past-the-end element.begin_slice(slice_number)
iterator referring to the first element of the specified slice.end_slice(slice_number)
iterator referring to the past-the-end element of the specified slice.Sparse matrices (SpMat
):
begin()
is an iterator referring to the first element.end()
is an iterator referring to the past-the-end element.begin_col(col_number)
is an iterator referring to the first element of the specified column.end_col(col_number)
is an iterator referring to the past-the-end element of the specified column.begin_row(row_number)
is an iterator referring to the first element of the specified row.end_row(row_number)
is an iterator referring to the past-the-end element of the specified row.Dense submatrices and subcubes (submatrix
and subcube
):
span(row, col)
and span(row, col, slice)
can be used to specify the range of elements to iterate over.Dense matrices and vectors (Mat
, Col
, and Row
):
mat::iterator
, vec::iterator
and rowvec::iterator
are random access iterators, for read/write access to elements (which are stored column by column).mat::const_iterator
, vec::const_iterator
and rowvec::const_iterator
are random access iterators, for read-only access to elements (which are stored column by column)mat::col_iterator
, vec::col_iterator
and rowvec::col_iterator
random access iterators, for read/write access to the elements of specified columns.mat::const_col_iterator
, vec::const_col_iterator
and rowvec::const_col_iterator
are random access iterators, for read-only access to the elements of specified columns.mat::row_iterator
is a bidirectional iterator, for read/write access to the elements of specified rows.mat::const_row_iterator
is a bidirectional iterator, for read-only access to the elements of specified rows.vec::row_iterator
and rowvec::row_iterator
are random access iterators, for read/write access to the elements of specified rows.vec::const_row_iterator
and rowvec::const_row_iterator
are random access iterators, for read-only access to the elements of specified rows.Cubes (Cube
):
cube::iterator
is a random access iterator, for read/write access to elements. The elements are ordered slice by slice; the elements within each slice are ordered column by column.cube::const_iterator
is a random access iterator, for read-only access to elements.cube::slice_iterator
is a random access iterator, for read/write access to the elements of a particular slice. The elements are ordered column by column.cube::const_slice_iterator
is a random access iterator, for read-only access to the elements of a particular slice.Sparse matrices (SpMat
):
sp_mat::iterator
is a bidirectional iterator, for read/write access to elements (which are stored column by column).sp_mat::const_iterator
is a bidirectional iterator, for read-only access to elements (which are stored column by column).sp_mat::col_iterator
is a bidirectional iterator, for read/write access to the elements of a specific column.sp_mat::const_col_iterator
is a bidirectional iterator, for read-only access to the elements of a specific column.sp_mat::row_iterator
is a bidirectional iterator, for read/write access to the elements of a specific row.sp_mat::const_row_iterator
is a bidirectional iterator, for read-only access to the elements of a specific row.cpp11::register]] doubles_matrix<> iterators1_(const int& n) {
[[1, fill::randu);
mat X(n, n +
mat::iterator it = X.begin();
mat::iterator it_end = X.end();
for (; it != it_end; ++it) {
123.0;
(*it) +=
}
1); // start of column 1
mat::col_iterator col_it = X.begin_col(// end of column n
mat::col_iterator col_it_end = X.end_col(n);
for (; col_it != col_it_end; ++col_it) {
321.0;
(*col_it) =
}
return as_doubles_matrix(X); // Convert from C++ to R
}
cpp11::register]] doubles_matrix<> iterators2_(const int& n) {
[[1, n + 2, fill::randu);
cube X(n, n +
cube::iterator it = X.begin();
cube::iterator it_end = X.end();
for (; it != it_end; ++it) {
123.0;
(*it) +=
}
s_it = X.begin_slice(1); // start of slice 1
cube::slice_iterator s_it_end = X.end_slice(n); // end of slice n
cube::slice_iterator
for (; s_it != s_it_end; ++s_it) {
s_it) = 321.0;
(*
}
2);
mat res = sum(X,
return as_doubles_matrix(res); // Convert from C++ to R
}
cpp11::register]] doubles_matrix<> iterators3_(const int& n) {
[[2, 0.1);
sp_mat X = sprandu<sp_mat>(n, n *
sp_mat::iterator it = X.begin();
sp_mat::iterator it_end = X.end();
for (; it != it_end; ++it) {
123.0;
(*it) +=
}
return as_doubles_matrix(X); // Convert from C++ to R
}
cpp11::register]] doubles_matrix<> iterators4_(const int& n) {
[[
mat X(n, n, fill::randu);
for (double& val : X(span(0, 1), span(1, 1))) {
123.0;
val =
}
return as_doubles_matrix(X); // Convert from C++ to R
}
.transform()
or .for_each()
instead of iterators.submatrix
and subcube
the iterators are intended only to be used with range-based for loops. Any other use is not supported. For example, the direct use of the .begin()
and .end()
functions, as well as the underlying iterators types is not supported. The implementation of submatrices and subcubes uses short-lived temporary objects that are subject to automatic deletion, and as such are error-prone to handle manually.Member functions for the Col
and Row
classes to mimic the functionality of containers in the C++ standard library:
.front()
accesses the first element in a vector..back()
accesses the last element in a vector.Member functions for the Col
, Row
, Mat
, Cube
and SpMat
classes to mimic the functionality of containers in the C++ standard library:
.clear()
removes the elements from an object..empty()
returns true
if the object has no elements and false
if the object has one or more elements..size()
returns the total number of elements in an object.cpp11::register]] doubles compatibility1_(const int& n) {
[[
vec X(n, fill::randu);
writable::doubles res = {X.front(), X.back()};
"names") = strings({"front", "back"});
res.attr(
return res;
}
cpp11::register]] integers compatibility2_(const int& n) {
[[
mat X(n, n, fill::randu);
2);
writable::integers res(0] = X.n_rows;
res[
X.clear();1] = X.n_rows;
res[
"names") = strings({"before", "after"});
res.attr(
return res;
}
.as_col()
is a member function of the Mat
class, it returns a flattened version of the matrix as a column vector. Flattening is done by concatenating all columns.
cpp11::register]] doubles as_col1_(const int& n) {
[[1, fill::randu);
mat M(n, n +
vec V = M.as_col();return as_doubles(V);
}
.as_row()
is a member function of the Mat
class, it returns a flattened version of the matrix as a row vector. Flattening is done by concatenating all rows.
cpp11::register]] doubles as_row1_(const int& n) {
[[1, fill::randu);
mat M(n, n +
vec V = M.as_row();return as_doubles(V);
}
Converting columns to rows is faster than converting rows to columns.
.col_as_mat(col_number)
is a member function of the Cube
class, it returns a matrix of the specified cube column and the number of rows is preserved. Given a cube of size R x C x S
, the resultant matrix size is R x S
.
cpp11::register]] list col_as_mat1_(const int& n) {
[[1, n + 2, fill::randu);
cube C(n, n + 0); // size n x (n + 1)
mat M = C.col_as_mat(
5);
writable::list res(0] = as_doubles_matrix(C.slice(0));
res[1] = as_doubles_matrix(C.slice(1));
res[2] = as_doubles_matrix(C.slice(2));
res[3] = as_doubles_matrix(C.slice(3));
res[4] = as_doubles_matrix(M);
res[
"names") = strings({"slice0", "slice1", "slice2", "slice3",
res.attr("col_as_mat"});
return res;
}
.row_as_mat(row_number)
is a member function of the Cube
class, it returns a matrix of the specified cube row and the number of columns is preserved. Given a cube of size R x C x S
, the resultant matrix size is S x C
.
cpp11::register]] list row_as_mat1_(const int& n) {
[[1, n + 2, fill::randu);
cube C(n, n + 0); // size (n + 2) x (n + 1)
mat M = C.row_as_mat(
5);
writable::list res(0] = as_doubles_matrix(C.slice(0));
res[1] = as_doubles_matrix(C.slice(1));
res[2] = as_doubles_matrix(C.slice(2));
res[3] = as_doubles_matrix(C.slice(3));
res[4] = as_doubles_matrix(M);
res[
"names") = strings({"slice0", "slice1", "slice2", "slice3",
res.attr("row_as_mat"});
return res;
}
.as_dense()
is a member function of the SpMat
class, it avoids the construction of an intermediate sparse matrix representation of the expression.
cpp11::register]] doubles as_dense1_(const int& n) {
[[
sp_mat A;0.1);
A.sprandu(n, n,
// extract column 1 of A directly into dense column vector
0).as_dense();
colvec c = A.col(
// store the sum of each column of A directly in dense row vector
rowvec r = sum(A).as_dense();
return as_doubles(c + r.t());
}
.t()
is a member function of the Mat
, Col
and Row
classes, it returns a transposed copy of the object. For real matrices, the transpose is a simple transposition of the elements. For complex matrices, the transpose is a Hermitian conjugate transposition of the elements (e.g., the signs of the imaginary components are flipped).
cpp11::register]] doubles_matrix<> transpose1_(const int& n) {
[[1, fill::randu);
mat A(n, n +
mat B = A.t();return as_doubles_matrix(B);
}
.st()
is a member function of the SpMat
classe, it returns a transposed copy of the object. For real matrices, it is not applicable. For complex matrices, the transpose is a simple transposition of the elements (e.g., the signs of imaginary components are not flipped).
cpp11::register]] doubles_matrix<> transpose2_(const int& n) {
[[
sp_mat A;1, 0.1);
A.sprandu(n, n +
sp_mat B = A.t();return as_doubles_matrix(B);
}
.i()
is a member function of the Mat
class, it provides an inverse of the matrix. If the matrix is not square sized, a std::logic_error
exception is thrown. If the matrix appears to be singular, the output matrix is reset and a std::runtime_error
exception is thrown.
cpp11::register]] doubles inverse1_(const doubles_matrix<>& a,
[[const doubles b) {
mat A = as_Mat(a);
vec B = as_Col(b);
mat X = inv(A);
vec Y = X * B;
return as_doubles(Y);
}
inv_sympd()
.Z = inv(X) * Y
, solve()
can be faster and/or more accurate..min()
and .max()
are member functions of the Mat
, Col
, Row
, and Cube
classes. These return the minimum and maximum values of the object, respectively. For objects with complex numbers, absolute values are used for comparison.
cpp11::register]] doubles maxmin1_(const int& n) {
[[
mat A = randu<mat>(n, n);
2);
writable::doubles res(0] = A.max();
res[1] = A.min();
res[
"names") = strings({"max", "min"});
res.attr(
return res;
}
.index_min()
and .index_max()
are member functions of the Mat
, Col
, Row
, and Cube
classes. They return the linear index of the minimum and maximum values of the object, respectively. For objects with complex numbers, absolute values are used for comparison. The returned index is of type uword
.
cpp11::register]] doubles index_maxmin1_(const int& n) {
[[
mat A = randu<mat>(n, n);
6);
writable::doubles res(0] = static_cast<int>(A.index_max());
res[1] = static_cast<int>(A.index_min());
res[2] = A(0, 0);
res[3] = A(1, 0);
res[4] = A(0, 1);
res[5] = A(1, 1);
res[
"names") = strings({"index_max", "index_min", "element0", "element1",
res.attr("element2", "element3"});
return res;
}
.in_range(** i **)
is a member function of Mat
, Col
, Row
, Cube
, SpMat
and field
, it returns true
if the given location or span is currently valid and false
if the object is empty, the location is out of bounds, or the span is out of bounds.
Function | Mat | Col | Row | Cube | SpMat | Field |
---|---|---|---|---|---|---|
.in_range(span(start, end)) |
✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
.in_range(row, col) |
✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
.in_range(span(start_row, end_row), span(start_col, end_col)) |
✓ | ✓ | ✓ | ✓ | ✓ | |
.in_range(row, col, slice) |
✓ | ✓ | ||||
.in_range(span(start_row, end_row), span(start_col, end_col), span(start_slice, end_slice)) |
✓ | ✓ | ||||
.in_range(first_row, first_col, size(X)) (X is a matrix or field) |
✓ | ✓ | ✓ | ✓ | ✓ | |
.in_range(first_row, first_col, size(n_rows, n_cols)) |
✓ | ✓ | ✓ | ✓ | ✓ | |
.in_range(first_row, first_col, first_slice, size(Q)) (Q is a cube or field) |
✓ | ✓ | ||||
.in_range(first_row, first_col, first_slice, size(n_rows, n_cols, n_slices)) |
✓ | ✓ |
Instances of span(a,b)
can be replaced by:
span()
or span::all
to indicate the entire range.span(a)
to indicate a particular row, column, or slice.cpp11::register]] logicals in_range1_(const int& n) {
[[1, fill::randu);
mat A(n, n +
3);
writable::logicals res(0] = A.in_range(0, 0);
res[1] = A.in_range(3, 4);
res[2] = A.in_range(4, 5);
res[
"names") = strings({"in_range00", "in_range34", "in_range45"});
res.attr(
return res;
}
.is_empty()
is a member function of the Mat
, Col
, Row
, Cube
, SpMat
, and field
classes. It returns true
if the object has no elements and false
if the object has one or more elements.
cpp11::register]] logicals is_empty1_(const int& n) {
[[1, fill::randu);
mat A(n, n +
2);
writable::logicals res(0] = A.is_empty();
res[
A.reset();1] = A.is_empty();
res[
"names") = strings({"before_reset", "after_reset"});
res.attr(
return res;
}
.is_vec()
, .is_colvec()
and .is_rowvec()
are member functions of Mat
and SpMat
.
.is_vec()
returns true
if the matrix can be interpreted as a vector (either column or row vector) and false
otherwise..is_colvec()
returns true
if the matrix can be interpreted as a column vector and false
otherwise..is_rowvec()
returns true
if the matrix can be interpreted as a row vector and false
otherwise.cpp11::register]] logicals is_vec1_(const int& n) {
[[1, fill::randu);
mat A(n, 1, n, fill::randu);
mat B(0, 1, fill::randu);
mat C(1, 0, fill::randu);
mat D(
5);
writable::logicals res(0] = A.is_vec();
res[1] = A.is_colvec();
res[2] = B.is_rowvec();
res[3] = C.is_colvec();
res[4] = D.is_rowvec();
res[
"names") = strings({"Nx1_is_vec", "Nx1_is_colvec", "1xN_is_rowvec",
res.attr("0x1_is_colvec", "1x0_is_rowvec"});
return res;
}
Do not assume that the vector has elements if these functions return true
. It is possible to have an empty vector (e.g., 0x1 as in the examples).
.is_sorted()
, .is_sorted(sort_direction)
and .is_sorted(sort_direction, dim)
are member function of Mat
, Row
, and Col
. For matrices and vectors with complex numbers, order is checked via absolute values.
If the object is a vector, these return a bool
indicating whether the elements are sorted. If the object is a matrix, these return a bool
indicating whether the elements are sorted in each column (dim = 0
, default) or each row (dim = 1
), and the dim
argument is optional.
The sort_direction
argument is optional, sort_direction
can be one of the following strings:
"ascend"
: the elements are ascending, consecutive elements can be equal, and this is the default operation."descend"
: the elements are descending, and consecutive elements can be equal."strictascend"
: the elements are strictly ascending, and consecutive elements cannot be equal."strictdescend"
: the elements are strictly descending, and consecutive elements cannot be equal.cpp11::register]] logicals is_sorted1_(const int& n) {
[[
vec a(n, fill::randu);
vec b = sort(a);10, 10, fill::randu);
mat A(
4);
writable::logicals res(0] = a.is_sorted();
res[1] = b.is_sorted();
res[2] = A.is_sorted("descend", 1);
res[4] = A.is_sorted("ascend", 1);
res[
"names") = strings({"a_sorted", "b_sorted", "A_descend",
res.attr("A_ascend"});
return res;
}
.is_trimatu()
and .is_trimatl()
are member functions of Mat
and SpMat
. .is_trimatu()
returns true
if the matrix is upper triangular (e.g., the matrix is square sized and all elements below the main diagonal are zero) and false
otherwise. .is_trimatl()
returns true
if the matrix is lower triangular (e.g., the matrix is square sized and all elements above the main diagonal are zero) and false
otherwise.
cpp11::register]] logicals is_triangular1_(const int& n) {
[[
mat A(n, n, fill::randu);
mat B = trimatl(A);
3);
writable::logicals res(0] = B.is_trimatu();
res[1] = B.is_trimatl();
res[
B.reset();2] = B.is_trimatu();
res[
"names") = strings({"is_trimatu", "is_trimatl",
res.attr("is_trimatu_after_reset"});
return res;
}
If these functions return true
, do not assume that the matrix contains non-zero elements on or above/below the main diagonal. It is possible to have an empty matrix (e.g., 0x0 as in the examples).
is_diagmat()
is a member function of Mat
and SpMat
. It returns true
if the matrix is diagonal (e.g., all elements outside of the main diagonal are zero). If the matrix is not square sized, a std::logic_error
exception is thrown.
cpp11::register]] logicals is_diagonal1_(const int& n) {
[[
mat A(n, n, fill::randu);
mat B = diagmat(A);
3);
writable::logicals res(0] = A.is_diagmat();
res[1] = B.is_diagmat();
res[
A.reset();2] = A.is_diagmat();
res[
"names") = strings({"A_diagmat", "B_diagmat",
res.attr("A_diagmat_after_reset"});
return res;
}
If this function returns true
, do not assume that the matrix contains non-zero elements on the main diagonal only. It is possible to have an empty matrix (e.g., 0x0 as in the examples).
.is_square()
is a member function of the Mat
and SpMat
classes. It returns true
if the matrix is square sized (e.g., the number of rows is equal to the number of columns) and false
otherwise.
cpp11::register]] logicals is_square1_(const int& n) {
[[
mat A(n, n, fill::randu);
mat B = diagmat(A);
3);
writable::logicals res(0] = A.is_square();
res[1] = B.is_square();
res[
A.reset();2] = A.is_square();
res[
"names") = strings({"A_square", "B_square",
res.attr("A_square_after_reset"});
return res;
}
If this function returns true
, do not assume that the matrix is non-empty. It is possible to have an empty matrix (e.g., 0x0 as in the examples).
.is_symmetric()
is a member function of the Mat
and SpMat
classes. It returns true
if the matrix is symmetric (e.g., the matrix is square sized and the transpose is equal to the original matrix) and false
otherwise.
cpp11::register]] logicals is_symmetric1_(const int& n) {
[[
mat A(n, n, fill::randu);
mat B = symmatu(A);
3);
writable::logicals res(0] = A.is_symmetric();
res[1] = B.is_symmetric();
res[
A.reset();2] = A.is_symmetric();
res[
"names") = strings({"A_symmetric", "B_symmetric",
res.attr("A_symmetric_after_reset"});
return res;
}
If this function returns true
, do not assume that the matrix is non-empty. It is possible to have an empty matrix (e.g., 0x0 as in the examples).
.is_hermitian()
is a member function of the Mat
and SpMat
classes. It returns true
if the matrix is Hermitian or self-adjoint (e.g., the matrix is square sized and the conjugate transpose is equal to the original matrix) and false
otherwise.
cpp11::register]] logicals is_hermitian1_(const int& n) {
[[
cx_mat A(n, n, fill::randu);
cx_mat B = A.t() * A;
3);
writable::logicals res(0] = A.is_hermitian();
res[1] = B.is_hermitian();
res[
A.reset();2] = A.is_hermitian();
res[
"names") = strings({"A_hermitian", "B_hermitian",
res.attr("A_hermitian_after_reset"});
return res;
}
If this function returns true
, do not assume that the matrix is non-empty. It is possible to have an empty matrix (e.g., 0x0 as in the examples).
.is_sympd()
and .is_sympd(tol)
are a member function of the Mat
and SpMat
classes. It returns true
if the matrix is symmetric/hermitian positive definite within a tolerance (e.g., the matrix is square sized and all its eigenvalues are positive) and false
otherwise. The tol
argument is optional, the default is tol = 100 * datum::eps * norm(X, "fro")
.
cpp11::register]] logicals is_sympd1_(const int& n) {
[[
mat A(n, n, fill::randu);
mat B = A * A.t();
3);
writable::logicals res(0] = A.is_sympd();
res[1] = B.is_sympd();
res[
A.reset();2] = A.is_sympd();
res[
"names") = strings({"A_sympd", "B_sympd",
res.attr("A_sympd_after_reset"});
return res;
}
.is_zero()
and .is_zero(tol)
are a member function of the Mat
, Col
, Row
, Cube
, and SpMat
classes. It returns true
if all elements are zero within a tolerance and false
otherwise. For complex numbers, each component (real and imaginary) is checked separately. The tol
argument is optional.
cpp11::register]] logicals is_zero1_(const int& n) {
[[
mat A(n, n, fill::randu);
cube B(n, n, n, fill::zeros);
sp_mat C(n, n);
3);
writable::logicals res(0] = A.is_zero(0.005);
res[1] = B.is_zero(0.005);
res[2] = C.is_zero(0.005);
res[
"names") = strings({"A_is_zero", "B_is_zero", "C_is_zero"});
res.attr(
return res;
}
.is_finite()
is a member function of the Mat
, Col
, Row
, Cube
, and SpMat
classes. It returns true
if all elements are finite and false
otherwise.
cpp11::register]] logicals is_finite1_(const int& n) {
[[
mat A(n, n, fill::randu);
cube B(n, n, n, fill::randu);
sp_mat C(n, n);
// Insert infinite values
0, 0, 0) = datum::inf;
B(0, 0) = -1.0 * datum::inf;
C(
3);
writable::logicals res(0] = A.is_finite();
res[1] = B.is_finite();
res[2] = C.is_finite();
res[
"names") = strings({"A_is_finite", "B_is_finite", "C_is_finite"});
res.attr(
return res;
}
.has_inf()
is a member function of the Mat
, Col
, Row
, Cube
, and SpMat
classes. It returns true
if the object contains at least one infinite value and false
otherwise.
cpp11::register]] logicals has_inf1_(const int& n) {
[[
mat A(n, n, fill::randu);
cube B(n, n, n, fill::randu);
sp_mat C(n, n);
// Insert infinite values
0, 0, 0) = datum::inf;
B(0, 0) = -1.0 * datum::inf;
C(
3);
writable::logicals res(0] = A.has_inf();
res[1] = B.has_inf();
res[2] = C.has_inf();
res[
"names") = strings({"A_has_inf", "B_has_inf", "C_has_inf"});
res.attr(
return res;
}
.has_nan()
is a member function of the Mat
, Col
, Row
, Cube
, and SpMat
classes. It returns true
if the object contains at least one not-a-number (NaN) value and false
otherwise.
cpp11::register]] logicals has_nan1_(const int& n) {
[[
mat A(n, n, fill::randu);
cube B(n, n, n, fill::randu);
sp_mat C(n, n);
// Insert NaN values
0, 0, 0) = datum::nan;
B(0, 0) = -1.0 * datum::nan;
C(
3);
writable::logicals res(0] = A.has_nan();
res[1] = B.has_nan();
res[2] = C.has_nan();
res[
"names") = strings({"A_has_nan", "B_has_nan", "C_has_nan"});
res.attr(
return res;
}
NaN
is not equal to anything, even itself.