## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # Get a list of all the images in the examples folder image_folders <- dir(system.file("extdata/Heliconius", package = "colordistance"), full.names = T) image_paths <- sapply(image_folders, colordistance::getImagePaths) dim(image_paths) <- NULL # Read in the first image with CIELab pixels H1 <- colordistance::loadImage(image_paths[1], lower = rep(0.8, 3), upper = rep(1, 3), CIELab = TRUE, ref.white = "D65", sample.size = 10000) ## ----------------------------------------------------------------------------- head(H1$filtered.lab.2d) ## ---- fig.width = 4, fig.height = 4, fig.align="center"----------------------- colordistance::plotPixels(H1, lower = rep(0.8, 3), upper = rep(1, 1), color.space = "lab", ref.white = "D65", main = "CIELab color space", ylim = c(-100, 100), zlim = c(0, 100)) ## ---- fig.width = 6, fig.height = 3, fig.align="center"----------------------- par(mfrow = c(1, 2)) # Setting boundaries lab_hist <- colordistance::getLabHist(image_paths[1], bins = 3, sample.size = 10000, ref.white = "D65", bin.avg = TRUE, plotting = TRUE, lower = rep(0.8, 3), upper = rep(1, 3), a.bounds = c(-100, 100), b.bounds = c(-100, 100)) # Leaving default boundaries (minor difference) lab_hist <- colordistance::getLabHist(image_paths[1], bins = 3, sample.size = 10000, ref.white = "D65", bin.avg = TRUE, plotting = TRUE, lower = rep(0.8, 3), upper = rep(1, 3)) ## ---- fig.width = 4, fig.height = 3, fig.align="center"----------------------- lab_kmeans <- colordistance::getKMeanColors(image_paths[1], n = 2, sample.size = 10000, lower = rep(0.8, 3), upper = rep(1, 3), color.space = "CIELab", ref.white = "D65") ## ---- fig.width=7, fig.height=4, fig.align="center"--------------------------- # Generate clusters par(mfrow = c(2, 4)) lab_hist_list <- colordistance::getLabHistList(image_paths, bins = 2, sample.size = 10000, ref.white = "D65", lower = rep(0.8, 3), upper = rep(1, 3), plotting = TRUE, pausing = FALSE) ## ---- fig.width = 7, fig.height = 5, fig.align="center"----------------------- # Get distance matrix par(mfrow = c(1,1)) lab_dist_matrix <- colordistance::getColorDistanceMatrix(lab_hist_list, plotting = TRUE)