--- title: "Covariance Structure" output: bookdown::html_document2: base_format: rmarkdown::html_vignette link-citations: TRUE vignette: > %\VignetteIndexEntry{Covariance Structure} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) library(kableExtra) ``` This vignette details the different covariance structures available in clustTMB. ## Random Effect Covariance Matrices ```{r table, echo = FALSE, warnings = FALSE} tbl <- data.frame( "Covariance" = c("Spatial GMRF", "AR(1)", "Rank Reduction", "Spatial Rank Reduction"), "Notation" = c("gmrf", "ar1", "rr(random = H)", "rr(spatial = H)"), "No. of Parameters" = c("2", "2", "JH - (H(H-1))/2", "1 + JH - (H(H-1))/2"), "Data requirements" = c("spatial coordinates", "unit spaced levels", "", "spatial coordinates") ) kbl(tbl, booktabs = TRUE) ``` ### Spatial GMRF clustTMB fits spatial random effects using a Gaussian Markov Random Field (GMRF). The precision matrix, $Q$, of the GMRF is the inverse of a Matern covariance function and takes two parameters: 1) $\kappa$, which is the spatial decay parameter and a scaled function of the spatial range, $\phi = \sqrt{8}/\kappa$, the distance at which two locations are considered independent; and 2) $\tau$, which is a function of $\kappa$ and the marginal spatial variance $\sigma^{2}$: $$\tau = \frac{1}{2\sqrt{\pi}\kappa\sigma}.$$ The precision matrix is approximated following the SPDE-FEM approach [@Lindgren2011], where a constrained Delaunay triangulation network is used to discretize the spatial extent in order to determine a GMRF for a set of irregularly spaced locations, i$. $$\omega_{i} \sim GMRF(Q[\kappa, \tau])$$ #### Spatial Example Prior to fitting a spatial cluster model with clustTMB, users need to set up the constrained Delaunay Triangulation network using the R package, fmesher. This package provides a CRAN distributed collection of mesh functions developed for the package, R-INLA. For guidance on setting up an appropriate mesh, see [Triangulation details and examples](https://becarioprecario.bitbucket.io/spde-gitbook/ch-intro.html#sec:mesh) and [Tools for mesh assessment](https://becarioprecario.bitbucket.io/spde-gitbook/ch-intro.html#sec:toolsmesh) from ```{r spatial example, include = FALSE} library(clustTMB) # refactor from sp to sf when meuse dataset available through sf library(sp) # currently require sp to load meuse dataset data("meuse") library(fmesher) ``` In this example, the following mesh specifications were used: ```{r meuse mesh} loc <- meuse[, 1:2] Bnd <- fmesher::fm_nonconvex_hull(as.matrix(loc), convex = 200) meuse.mesh <- fmesher::fm_mesh_2d(as.matrix(loc), max.edge = c(300, 1000), boundary = Bnd ) ``` ```{r fig1, fig.height = 3, fig.width = 5, echo = FALSE} library(ggplot2) library(inlabru) ggplot() + gg(meuse.mesh) + geom_point(mapping = aes(x = loc[, 1], y = loc[, 2], size = 0.5), size = 0.5) + theme_classic() ``` Coordinates are converted to a spatial point dataframe and read into the clustTMB model, along with the mesh, using the spatial.list argument. The gating formula is specified using the gmrf() command: ```{r set up model} Loc <- sf::st_as_sf(loc, coords = c("x", "y")) mod <- clustTMB( response = meuse[, 3:6], family = lognormal(link = "identity"), gatingformula = ~ gmrf(0 + 1 | loc), G = 4, covariance.structure = "VVV", spatial.list = list(loc = Loc, mesh = meuse.mesh) ) ``` Models are optimized with nlminb(), model results can be viewed with nlminb commands: ```{r view results} # Estimated fixed parameters mod$opt$par # Minimum negative log likelihood mod$opt$objective ``` ## Gating Network Examples When random effects, $\mathbb{u}$, are specified in the gating network, the probability of cluster membership $\pi_{i,g}$ for observation $i$ is fit using multinomial regression: $$ \begin{align} \mathbb{\eta}_{,g} &= X\mathbb{\beta}_{,g} + \mathbb{u}_{,g} \\ \mathbb{\pi}_{,g} &= \frac{ exp(\mathbb{\eta}_{,g})}{\sum^{G}_{g=1}exp(\mathbb{\eta}_{,g})} \end{align} $$