--- title: "citsr Package Examples" author: "Hanmin Gu" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{citsr Package Examples} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Overview This vignette demonstrates how to use the `citsr` package for conducting Controlled Interrupted Time Series (CITS) analysis. The package provides functions for model fitting using generalized least squares (GLS), visualizing fitted trajectories with confidence intervals, and generating counterfactual predictions for treatment groups. ```{r setup, include=FALSE} library(citsr) ``` # 1. Example Data The package includes a built-in simulated dataset named `df_cits_example`. ```{r load-data, eval=FALSE} data("df_cits_example", package = "citsr") head(df_cits_example) ``` # 2. Fit CITS Model ```{r fit-cits, eval=FALSE} res <- cits( data = df_cits_example, y_col = "y", T_col = "T", I_col = "I", E_col = "E" ) summary(res$model) ``` # 3. Visualize Fitted Values with 95% Confidence Intervals ```{r plot-fitted, eval=FALSE} plot_fitted <- plot_cits_result( res, y_col = "y", T_col = "T", E_col = "E" ) plot_fitted ``` # 4. Visualize Counterfactual Trajectory for Treatment Group ```{r plot-cf, eval=FALSE} plot_cf <- plot_cits_result_cf( res, y_col = "y", T_col = "T", I_col = "I", E_col = "E", intervention_time = 50 ) plot_cf ```