Package ‘checkCLI’

January 17, 2026
Type Package
Title 'CLI' Messages for Checkmate Assertions and Checks
Version 1.0

Description Providing more beautiful and more meaningful return messages for checkmate assertions
and checks helping users to better understand errors.

License MIT + file LICENSE

Imports checkmate, cli, glue, purrr, stringr
Encoding UTF-8

Suggests knitr, R6, rmarkdown, testthat (>= 3.0.0)
Depends R (>=4.1.0)

Config/testthat/edition 3

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Author Reginaldo Ré [aut] (ORCID: <https://orcid.org/0000-0001-6452-3466>),
Luiz Fernando Esser [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-2982-7223>)

Maintainer Luiz Fernando Esser <luizesser@gmail.com>
Repository CRAN
Date/Publication 2026-01-17 20:00:02 UTC

Contents
assert_Cli . . . oL L 2
checkcli-containers . . . . . . . . . . . ... e e e e e e 3
checkcli-datetime-0S . . . . . . . . ... e e 7
checkcli-files . . . . . . . . .. 9
checkcli-names-sets . . . . . . . . . ... e e e e 11
checkcli-scalars . . . . . . . . . .. e e e e 15
fix_braced_list. . . . . . . . . e 21


https://orcid.org/0000-0001-6452-3466
https://orcid.org/0000-0003-2982-7223

2 assert_cli

fmt_bullet_cli . . . . . . . . e e e 21
make_asSertion . . . . . . . ... e e e e e e e e 22
sanitize_Cli . . . . . . L e e e e 22
Index 24

assert_cli Combine multiple CLI assertions

Description

Combine multiple ‘check_*_cli()‘ expressions with ‘"or"* or “"and"‘ logic and assert them jointly.

Usage

assert_cli(..., combine = "or"”, .var.name = NULL, add = NULL)
Arguments

Expressions evaluating to the result of ‘check_*_cli()* calls.

combine Either “"or"* or “"and"‘.

.var.name Optional variable name(s) for the combined assertion.

add Optional [checkmate::AssertCollection] to collect failures.
Value

Invisible ‘TRUE* on success, otherwise error or collected failures.

Examples

x <- 1L

assert_cli(
check_int_cli(x),
check_numeric_cli(x),
combine = "or",

nyn

.var.name = "X



checkcli-containers 3

checkcli-containers Container and data structure CLI assertions

Description

These functions wrap container and structural checks from checkmate and either return the un-
derlying check result (‘check_*_cli()‘) or raise a ‘cli::cli_abort()‘ error via [make_assertion()] (‘as-
sert_*_cli()‘). They target common R data structures such as arrays, matrices, generic vectors, lists,
data frames, factors, environments, functions, formulas, R6 objects, and raw vectors, while emitting
consistent CLI-styled error messages.

Usage

check_array_cli(...)
assert_array_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_matrix_cli(...)
assert_matrix_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_vector_cli(...)

assert_vector_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_list_cli(...)

assert_list_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_data_frame_cli(...)

assert_data_frame_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_factor_cli(...)

assert_factor_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_environment_cli(...)

assert_environment_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_function_cli(...)

assert_function_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_formula_cli(...)



checkcli-containers

assert_formula_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_r6_cli(...)

assert_r6_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_raw_cli(...)

assert_raw_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

Arguments

.var.name

add

Value

Additional arguments passed on to the corresponding checkmate function (e.g.
‘lower*, ‘upper, ‘any.missing‘, ‘all.missing‘, ‘min.len‘, ‘null.ok®).

Object to be checked. This is the value whose type, length, or other properties
are validated.

Character scalar used in error messages to refer to the checked object. Defaults
to [checkmate::vname()], which tries to infer the variable name from the calling
context.

Optional [checkmate::AssertCollection] to which assertion failures are added

instead of triggering an immediate error. Defaults to ‘NULL, which causes a
‘cliz:cli_abort() on failure.

- Generic containers: - [check_array_cli()], [assert_array_cli()] for multi-dimensional
arrays. - [check_matrix_cli()], [assert_matrix_cli()] for 2D matrices. - [check_vector_cli()],
[assert_vector_cli()] for (atomic or list) vectors. - [check_list_cli()], [assert_list_cli()]

for lists. - [check_data_frame_cli()], [assert_data_frame_cli()] for data frames. -

Typed / special containers: - [check_factor_cli()], [assert_factor_cli()] for factor

vectors. - [check_environment_cli()], [assert_environment_cli()] for environ-

ments. - [check_function_cli()], [assert_function_cli()] for functions. - [check_formula_cli()],
[assert_formula_cli()] for formulas. - [check_r6_cli()], [assert_r6_cli()] for R6

objects. - [check_raw_cli()], [assert_raw_cli()] for raw vectors.

In all ‘assert_*_cli()‘ functions, ‘x‘ is the object being checked and ‘.var.name*

is used only for error message construction; the return value is always ‘x* (in-

visibly) on success.

- ‘check_*_cli()‘ functions return “TRUE® on success or a character vector describing the failure,
exactly like the corresponding checkmate checks. - ‘assert_*_cli()‘ functions return ‘x‘ invisibly
on success and either: - raise a ‘cli::cli_abort()‘ error with bullet-style messages, or - push messages
into an [checkmate::AssertCollection] if ‘add‘ is supplied.

See Also

[checkmate::check_array()], [checkmate::check_matrix()], [checkmate::check_vector()], [checkmate::check_list()],

[checkmate::check_data_frame()], [checkmate::check_factor()], [checkmate::check_environment()],
[checkmate::check_function()], [checkmate::check_formula()], [checkmate::check_raw()], [check-
mate::check_r6()], [make_assertion()], [assert_cli()]



checkcli-containers

Other checkCLI: checkcli-datetime-os, checkcli-files, checkcli-names-sets, checkcli-scalars

Examples

# Arrays and matrices:

# 3D array (e.g. raster stack, simulation outputs)

arr <- array(1:12, dim = c(2, 2, 3))
check_array_cli(arr)
try(check_array_cli(list(1, 2, 3)))

assert_array_cli(arr)
try(assert_array_cli(list(1, 2, 3)))

# Simple 2x2 matrix

mat <- matrix(1:4, nrow = 2)
check_matrix_cli(mat)
try(check_matrix_cli(1:4))

assert_matrix_cli(mat)
try(assert_matrix_cli(1:4))

# Vectors, lists, and data frames:

# Generic vector (atomic or list)
v <- 1:5

check_vector_cli(v)
try(check_vector_cli(mean))

assert_vector_cli(v)
try(assert_vector_cli(mean))

# Lists

1st <- list(a =1, b = 2)
check_list_cli(lst)
try(check_list_cli(1:3))

assert_list_cli(lst)
try(assert_list_cli(1:3))

# Data frames (e.g. species-by-site table)

df <- data.frame(x = 1:3, y = c("a", "b", "c"
check_data_frame_cli(df)
try(check_data_frame_cli(list(x = 1:3)))

assert_data_frame_cli(df)
try(assert_data_frame_cli(list(x = 1:3)))

# Factors:
f <- factor(c("forest”, "savanna", "forest"))

check_factor_cli(f)
try(check_factor_cli(c("forest”, "savanna")))

# failure: not an array

# cli-styled error

# failure: not a matrix

# failure: function, not vector

# failure: atomic, not list

# failure

# failure: not a factor



assert_factor_cli(f)
try(assert_factor_cli(c("forest”, "savanna”)))

# Environments and functions:

env <- new.env()

envex <- 1

check_environment_cli(env)
try(check_environment_cli(list(x = 1))) # failure

assert_environment_cli(env)
try(assert_environment_cli(list(x = 1)))

fun <- function(x) x * 2
check_function_cli(fun)
try(check_function_cli(1:3)) # failure

assert_function_cli(fun)
try(assert_function_cli(1:3))

# Formulas:
fo <- abundance ~ temperature + precipitation
check_formula_cli(fo)

try(check_formula_cli("abundance ~ temperature”)) # failure

assert_formula_cli(fo)
try(assert_formula_cli("abundance ~ temperature”))

# R6 objects:

if (requireNamespace("R6", quietly = TRUE)) {
Model <- R6::R6Class(”"Model”, public = list(fit = function(x) x))
m <- Model$new()

check_r6_cli(m)
try(check_r6_cli(list())) # failure

assert_r6_cli(m)
try(assert_r6_cli(list()))
# Raw vectors:
r <- charToRaw("abc")
check_raw_cli(r)

try(check_raw_cli(c(1L, 2L))) # failure

assert_raw_cli(r)
try(assert_raw_cli(c(1L, 2L)))

checkcli-containers



checkcli-datetime-os 7

checkcli-datetime-os  Date, time, and OS CLI assertions

Description

These functions wrap checkmate checks for dates, POSIXct date-times, and operating systems, re-

turning the underlying check result (‘check_*_cli()‘) or raising a “cli::cli_abort() error via [make_assertion()]
(‘assert_*_cli()‘). They are useful in user-facing workflows that depend on temporal objects (e.g.,

time series, observation timestamps) or that only support specific operating systems, while emitting
consistent CLI-styled error messages.

Usage

check_date_cli(...)

assert_date_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_posixct_cli(...)

assert_posixct_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_os_cli(...)

assert_os_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

Arguments

Additional arguments passed on to the corresponding checkmate function (e.g.
‘lower*, ‘upper, ‘any.missing‘, ‘all.missing‘, ‘min.len‘, ‘null.ok®).

X Object to be checked. This is the value whose type, length, or other properties
are validated.

.var.name Character scalar used in error messages to refer to the checked object. Defaults
to [checkmate::vname()], which tries to infer the variable name from the calling
context.

add Optional [checkmate::AssertCollection] to which assertion failures are added
instead of triggering an immediate error. Defaults to ‘NULL‘, which causes a
‘cli::cli_abort()‘ on failure.
- Dates: - [check_date_cli()], [assert_date_cli()] ensure that ‘x is a ‘Date* vector
and can enforce additional constraints such as length, bounds, or missingness. -
POSIXct date-times: - [check_posixct_cli()], [assert_posixct_cli()] ensure that
‘x‘ is a ‘POSIXct’ vector, suitable for time stamps with time zones. - Operating
system: - [check_os_cli()], [assert_os_cli()] check that the current OS matches
a given specification (e.g. ‘"

ne n

windows"*, ‘"unix" ).

In all ‘assert_*_cli() functions, ‘x‘ is the object being checked and ‘.var.name*
is used only for error message construction; the return value is always ‘x‘ (in-
visibly) on success.



8 checkcli-datetime-os

Value

- ‘check_*_cli()* functions return ‘TRUE® on success or a character vector describing the failure,
exactly like the corresponding checkmate checks. - ‘assert_*_cli()‘ functions return ‘x‘ invisibly
on success and either: - raise a ‘cli::cli_abort()‘ error with bullet-style messages, or - push messages
into an [checkmate::AssertCollection] if ‘add® is supplied.

See Also

[checkmate::check_date()], [checkmate::check_posixct()], [checkmate::check_os()], [make_assertion()],
[assert_cli()]

Other checkCLI: checkcli-containers, checkcli-files, checkcli-names-sets, checkcli-scalars

Examples

# Dates:

# Valid Date vector
d <- as.Date(c("2020-01-01", "2020-02-01"))
check_date_cli(d)

# Character input is not a Date
try(check_date_cli(c("2020-01-01", "2020-02-01"))) # failure

assert_date_cli(d)
try(assert_date_cli(c("2020-01-01", "2020-02-01")))

# Single observation date
obs_date <- Sys.Date()
assert_date_cli(obs_date)

# POSIXct date-times:

# Valid POSIXct vector
t <- as.POSIXct(c("2020-01-01 12:00:00", "2020-01-02 08:30:00"), tz = "UTC")
check_posixct_cli(t)

# Plain Date is not POSIXct
try(check_posixct_cli(as.Date("2020-01-01"))) # failure

assert_posixct_cli(t)
try(assert_posixct_cli(as.Date("2020-01-01")))

# Typical use in logging or time series
ts_times <- Sys.time() + 0:9
assert_posixct_cli(ts_times)

# Operating system:
# Check that the current 0S is one of the supported ones

# (e.g., skip functions not available on Windows)
try(check_os_cli("unix")) # TRUE on Linux/mac0OS, failure on Windows



checkcli-files 9

# Assert 0S:
try(assert_os_cli("unix"))

checkcli-files File, directory, and path CLI assertions

Description

These functions wrap filesystem-related checks from checkmate and either return the underly-
ing check result (‘check_*_cli()) or raise a ‘cli::cli_abort()* error via [make_assertion()] (‘as-
sert_*_cli()‘). They are useful for validating input and output locations in user-facing functions,
ensuring that required files and directories exist (or can be created) and that paths are safe to write
to, while emitting consistent CLI-styled error messages.

Usage
check_file_cli(...)
assert_file_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_file_exists_cli(...)
assert_file_exists_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_directory_cli(...)
assert_directory_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_directory_exists_cli(...)
assert_directory_exists_cli(

X’

.var.name = checkmate::vname(x),
add = NULL

)
check_path_for_output_cli(...)

assert_path_for_output_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

Arguments

Additional arguments passed on to the corresponding checkmate function (e.g.
‘lower*, ‘upper’, ‘any.missing‘, ‘all.missing‘, ‘min.len‘, ‘null.ok*).



10 checkcli-files

X Object to be checked. This is the value whose type, length, or other properties
are validated.

.var.name Character scalar used in error messages to refer to the checked object. Defaults
to [checkmate::vname()], which tries to infer the variable name from the calling
context.

add Optional [checkmate::AssertCollection] to which assertion failures are added
instead of triggering an immediate error. Defaults to ‘NULL, which causes a
‘cli::cli_abort()‘ on failure.

- Files: - [check_file_cli()], [assert_file_cli()] validate file paths with proper-
ties such as existence, readability, and writability. - [check_file_exists_cli()],
[assert_file_exists_cli()] specifically check that a file exists. - Directories: -
[check_directory_cli()], [assert_directory_cli()] wrap [checkmate::checkDirectory()]
for directory-like paths (often used for input). - [check_directory_exists_cli()],
[assert_directory_exists_cli()] ensure that a directory already exists. - Output
paths: - [check_path_for_output_cli()], [assert_path_for_output_cli()] ensure
that a path is suitable for writing output (e.g., directory exists, file does not
unexpectedly overwrite unless allowed).

In all ‘assert_*_cli()* functions, ‘x* is the object being checked and ‘.var.name’
is used only for error message construction; the return value is always ‘x* (in-
visibly) on success.

Value

- ‘check_*_cli()* functions return ‘TRUE® on success or a character vector describing the failure,
exactly like the corresponding checkmate checks. - ‘assert_*_cli()‘ functions return ‘x‘ invisibly
on success and either: - raise a ‘cli::cli_abort()‘ error with bullet-style messages, or - push messages
into an [checkmate::AssertCollection] if ‘add® is supplied.

See Also

[checkmate::checkFile()], [checkmate::check_file_exists()], [checkmate::checkDirectory()], [check-
mate::check_directory_exists()], [checkmate::check_path_for_output()], [make_assertion()], [assert_cli()]

Other checkCLI: checkcli-containers, checkcli-datetime-os, checkcli-names-sets, checkcli-scalars

Examples

# Files:

# Create a temporary file for demonstration
f <- tempfile(fileext = ".csv")
write.csv(data.frame(x = 1:3), f, row.names = FALSE)

# Check that f is a readable file
check_file_cli(f, access = "r")
check_file_exists_cli(f)

# Clearly invalid path
bad_file <- file.path(tempdir(), "does_not_exist.csv")
try(check_file_cli(bad_file, access = "r")) # failure



checkcli-names-sets

try(check_file_exists_cli(bad_file)) # failure
assert_file_cli(f, access = "r")
try(assert_file_cli(bad_file, access = "r"))

assert_file_exists_cli(f)
try(assert_file_exists_cli(bad_file))

# Directories:
d <- tempdir()

# Generic directory check (using checkDirectory)
check_directory_cli(d)

# Directory must exist
check_directory_exists_cli(d)

bad_dir <- file.path(tempdir(), "no_such_dir_xyz")
try(check_directory_cli(bad_dir)) # typically failure
try(check_directory_exists_cli(bad_dir)) # failure

assert_directory_cli(d)
try(assert_directory_cli(bad_dir))

assert_directory_exists_cli(d)
try(assert_directory_exists_cli(bad_dir))

# Output paths:

# Valid output path in an existing directory
out_file <- file.path(tempdir(), "results.rds")
check_path_for_output_cli(out_file)

# Directory part does not exist
bad_out <- file.path(tempdir(), "no_such_dir"”, "results.rds")
try(check_path_for_output_cli(bad_out)) # failure

assert_path_for_output_cli(out_file)
try(assert_path_for_output_cli(bad_out))

# Combine with other assertions in a pipeline:
out_file2 <- file.path(tempdir(), "summary.csv")
assert_directory_exists_cli(dirname(out_file2))
assert_path_for_output_cli(out_file2)

checkcli-names-sets Names, sets, and class CLI assertions




12 checkcli-names-sets

Description

These functions wrap checkmate checks related to names, sets, permutations, choices, and class
membership, returning the check result (‘check_*_cli()) or raising a ‘cli::cli_abort()‘ error via
[make_assertion()] (‘assert_*_cli()*). They are useful for validating input names, restricting val-
ues to a fixed set, checking set relationships, or ensuring that objects inherit from one or more
expected classes, while emitting consistent CLI-styled error messages.

Usage

check_names_cli(...)

assert_names_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_subset_cli(...)

assert_subset_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_permutation_cli(...)

assert_permutation_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_choice_cli(...)

assert_choice_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_set_equal_cli(...)

assert_set_equal_cli(x, y, ..., .var.name = checkmate::vname(x), add = NULL)
check_disjunct_cli(...)

assert_disjunct_cli(x, y, ..., .var.name = checkmate::vname(x), add = NULL)
check_class_cli(...)

assert_class_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_multi_class_cli(...)

assert_multi_class_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

Arguments

Additional arguments passed on to the corresponding checkmate function (e.g.
‘lower*, ‘upper, ‘any.missing‘, ‘all.missing‘, ‘min.len‘, ‘null.ok®).

X Object to be checked. This is the value whose type, length, or other properties
are validated.



checkcli-names-sets 13

.var.name Character scalar used in error messages to refer to the checked object. Defaults
to [checkmate::vname()], which tries to infer the variable name from the calling
context.

add Optional [checkmate::AssertCollection] to which assertion failures are added

instead of triggering an immediate error. Defaults to ‘NULL, which causes a
‘cli::cli_abort()‘ on failure.

- Names: - [check_names_cli()], [assert_names_cli()] check that object names
satisfy constraints such as being non-missing, unique, or matching a pattern.
- Set membership and subsets: - [check_subset_cli()], [assert_subset_cli()] en-
sure that all elements of ‘x‘ are contained in ‘choices‘. - [check_choice_cli()],
[assert_choice_cli()] ensure that scalar ‘x‘ is one of a set of allowed values
(‘choices®). - [check_permutation_cli()], [assert_permutation_cli()] ensure that
‘X is a permutation of integers ‘1:n‘. - Set relationships: - [check_set_equal_cli()],
[assert_set_equal_cli()] check that two sets contain the same elements (order ig-
nored). - [check_disjunct_cli()], [assert_disjunct_cli()] check that two sets are
disjoint. - Class membership: - [check_class_cli()], [assert_class_cli()] ensure
that ‘x inherits from at least one of the given classes. - [check_multi_class_cli()],
[assert_multi_class_cli()] are similar but designed for objects that may have
multiple acceptable classes.

In all ‘assert_*_cli()* functions, ‘x° is the object being checked and ‘.var.name’
is used only for error message construction; the return value is always ‘x* (in-
visibly) on success.

y Second object used in set-relationship checks. For functions such as ‘check_set_equal_cli()*
and ‘check_disjunct_cli()°, this is the object against which ‘x‘ is compared (e.g.,
another vector of labels or IDs).

Value

- ‘check_*_cli()* functions return ‘TRUE® on success or a character vector describing the failure,
exactly like the corresponding checkmate checks. - ‘assert_*_cli()* functions return ‘x‘ invisibly
on success and either: - raise a ‘cli::cli_abort()* error with bullet-style messages, or - push messages
into an [checkmate::AssertCollection] if ‘add‘ is supplied.

See Also

[checkmate::check_names()], [checkmate::check_subset()], [checkmate::check_choice()], [check-
mate::check_permutation()], [checkmate::check_set_equal()], [checkmate::check_disjunct()], [check-
mate::check_class()], [checkmate::check_multi_class()], [make_assertion()], [assert_cli()]

Other checkCLI: checkcli-containers, checkcli-datetime-os, checkcli-files, checkcli-scalars

Examples

## Names:
x <- c(a = "a", b ="b")

# Check that all names are non-missing and unique
check_names_cli(x, type = "named")



14

checkcli-names-sets

y <= c("a", "b")

try(check_names_cli(y, type = "named")) # failure: no names
assert_names_cli(x, type = "named")
try(assert_names_cli(y, type = "named”)) # cli-styled error

## Subsets and choices:

n

allowed <- c("rf", "xgboost”, "nn")

# Subset: every element of x must be in allowed

check_subset_cli(c("rf", "nn"), choices = allowed)
try(check_subset_cli(c("rf"”, "svm"), choices = allowed)) # failure
assert_subset_cli(c("rf"”, "nn"), choices = allowed)
try(assert_subset_cli(c("rf"”, "svm"), choices = allowed))

# Choice: scalar x must be one of allowed
check_choice_cli("rf", choices = allowed)
try(check_choice_cli("svm", choices = allowed)) # failure

assert_choice_cli("xgboost”, choices = allowed)
try(assert_choice_cli(”svm”, choices = allowed))

## Permutations:

# Valid permutation of 1:5
check_permutation_cli(5:1, 1:5)

# Not a permutation: duplicates or missing values
try(check_permutation_cli(c(1, 2, 2, 4, 5), 1:5)) # failure

assert_permutation_cli(c(1, 2, 3, 4), 1:4)
try(assert_permutation_cli(c(1, 3, 4, 4), 1:4))

## Set relationships:
a <= c("spl”, "sp2”, "sp3")
b <_ C(Ilsp3ll’ Ilspzll, "Sp1 II)
c <= c("spl”, "spa”)

# Equality of sets (order ignored)
check_set_equal_cli(a, b)
try(check_set_equal_cli(a, c)) # failure

assert_set_equal_cli(a, b)
try(assert_set_equal_cli(a, c))

# Disjointness
d <= c("x", "y")
e <_ C(”Z”, ”W")



checkcli-scalars 15

check_disjunct_cli(d, e)
try(check_disjunct_cli(d, c("y", "z"))) # failure: "y" is shared

assert_disjunct_cli(d, e)
try(assert_disjunct_cli(d, c("y", "z")))

## Class and multi-class:
df <- data.frame(x = 1:3)

# Single/inheritance class checks
check_class_cli(df, "data.frame")
try(check_class_cli(df, "matrix")) # failure

assert_class_cli(df, "data.frame")
try(assert_class_cli(df, "matrix"))

# Multi-class: object must inherit from at least one allowed class
allowed_classes <- c("data.frame"”, "tbl_df")
check_multi_class_cli(df, allowed_classes)

# A plain numeric vector will fail this multi-class check
v <-1:3
try(check_multi_class_cli(v, allowed_classes)) # failure

assert_multi_class_cli(df, allowed_classes)
try(assert_multi_class_cli(v, allowed_classes))

checkcli-scalars Scalar and atomic CLI assertions

Description

These functions wrap scalar and atomic checks from checkmate and either return the underly-
ing check result (‘check_*_cli()‘) or raise a ‘cli::cli_abort()‘ error via [make_assertion()] (‘as-
sert_*_cli()). They are intended for validating basic building blocks of user input (numbers, flags,
strings, etc.) in a consistent way, while preserving the semantics and arguments of the underlying
checkmate checks.

Usage
check_atomic_cli(...)
assert_atomic_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_atomic_vector_cli(...)

assert_atomic_vector_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)



16

checkcli-scalars

check_scalar_cli(...)

assert_scalar_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_scalar_na_cli(...)

assert_scalar_na_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_integer_cli(...)

assert_integer_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_integerish_cli(...)

assert_integerish_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_double_cli(...)

assert_double_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_complex_cli(...)

assert_complex_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_count_cli(...)

assert_count_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_string_cli(...)

assert_string_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_flag_cli(...)

assert_flag_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_int_cli(...)

assert_int_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_numeric_cli(...)

assert_numeric_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_number_cli(...)

assert_number_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)



checkcli-scalars 17

check_logical_cli(...)

assert_logical_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)
check_character_cli(...)

assert_character_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_null_cli(...)

assert_null_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_true_cli(...)

assert_true_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

check_false_cli(...)

assert_false_cli(x, ..., .var.name = checkmate::vname(x), add = NULL)

Arguments
Additional arguments passed on to the corresponding checkmate function (e.g.
‘lower*, ‘upper’, ‘any.missing‘, ‘all.missing‘, ‘min.len, ‘null.ok*).

X Object to be checked. This is the value whose type, length, or other properties
are validated.

.var.name Character scalar used in error messages to refer to the checked object. Defaults
to [checkmate::vname()], which tries to infer the variable name from the calling
context.

add Optional [checkmate::AssertCollection] to which assertion failures are added

instead of triggering an immediate error. Defaults to ‘NULL‘, which causes a
‘cli::cli_abort()‘ on failure.

- Generic atomic containers: - [check_atomic_cli()], [assert_atomic_cli()] for
atomic vectors of any storage mode. - [check_atomic_vector_cli()], [assert_atomic_vector_cli()]
for atomic vectors with additional constraints (e.g., length, missingness).

- Generic scalars: - [check_scalar_cli()], [assert_scalar_cli()] for length-one
atomic values. - [check_scalar_na_cli()], [assert_scalar_na_cli()] for a single
‘NA‘ value.

- Integer and numeric: - [check_integer_cli()], [assert_integer_cli()] for integer
vectors. - [check_integerish_cli()], [assert_integerish_cli()] for integer-like nu-
merics (e.g., ‘1%, 2.0°). - [check_int_cli()], [assert_int_cli()] for integer vectors
(thin wrapper around [checkmate::check_int()]). - [check_numeric_cli()], [as-
sert_numeric_cli()] for numeric vectors of any type. - [check_number_cli()],
[assert_number_cli()] for numeric scalars (length-one). - [check_double_cli()],
[assert_double_cli()] for double vectors. - [check_count_cli()], [assert_count_cli()]
for non-negative integer counts. - [check_complex_cli()], [assert_complex_cli()]
for complex vectors.



18 checkcli-scalars

- Logical and character: - [check_flag_cli()], [assert_flag_cli()] for single log-
ical flags. - [check_logical_cli()], [assert_logical_cli()] for logical vectors. -
[check_true_cli()], [assert_true_cli()] for conditions that must be ‘TRUE‘.
[check_false_cli()], [assert_false_cli()] for conditions that must be ‘FALSE°.
- [check_string_cli()], [assert_string_cli()] for length-one character strings. -
[check_character_cli()], [assert_character_cli()] for character vectors.

- Special values: - [check_null_cli()], [assert_null_cli()] for ‘'NULL* values.
In all ‘assert_*_cli()* functions, ‘x* is the object being checked and ‘.var.name’

is used only for error message construction; the return value is always ‘x* (in-
visibly) on success.

Value

- ‘check_*_cli()* functions return ‘TRUE® on success or a character vector describing the failure,
exactly like the corresponding checkmate checks. - ‘assert_*_cli()‘ functions return ‘x‘ invisibly
on success and either: - raise a ‘cli::cli_abort()‘ error with bullet-style messages, or - push messages
into an [checkmate::AssertCollection] if ‘add® is supplied.

See Also

[checkmate::check_atomic()], [checkmate::check_scalar()], [checkmate::check_integer()], [check-
mate::check_integerish()], [checkmate::check_int()], [checkmate::check_numeric()], [checkmate::check_number()],
[checkmate::check_double()], [checkmate::check_complex()], [checkmate::check_count()], [check-
mate::check_string()], [checkmate::check_flag()], [checkmate::check_logical()], [checkmate::check_character()],
[checkmate::check_null()], [checkmate::check_true()], [checkmate::check_false()], [make_assertion()],
[assert_cli()]

Other checkCLI: checkcli-containers, checkcli-datetime-os, checkcli-files, checkcli-names-sets

Examples

# Generic atomic and scalar:

# Atomic vs list
check_atomic_cli(1:3)
try(check_atomic_cli(list(1, 2))) # failure: not atomic

assert_atomic_cli(1:3)
try(assert_atomic_cli(list(1, 2)))

# Atomic vector vs scalar

check_atomic_vector_cli(1:3)
try(check_atomic_vector_cli(matrix(1:4, 2))) # failure
assert_atomic_vector_cli(1:3)

# Scalars

check_scalar_cli(1L)

try(check_scalar_cli(1:3)) # failure: length > 1

assert_scalar_cli("id")



checkcli-scalars

try(assert_scalar_cli(c("a", "b")))

check_scalar_na_cli(NA)
try(check_scalar_na_cli(c(NA, NA)))

assert_scalar_na_cli(NA)
# Integer and numeric:

# Integer vectors
check_integer_cli(1:5)
try(check_integer_cli(c(1, 2, 3.5)))

assert_integer_cli(1:3)
try(assert_integer_cli(c(1, 2, 2.5)))

# Integerish (numeric but whole)
check_integerish_cli(c(1, 2, 3))
try(check_integerish_cli(c(1, 2.5)))

assert_integerish_cli(c(1, 2, 3))

# ~check_int™ is a thin wrapper for integer vectors
check_int_cli(1L)
try(check_int_cli(1.5))

assert_int_cli(1L)
try(assert_int_cli(1.5))

# Numeric vs number
check_numeric_cli(c(0.1, 0.2))
try(check_numeric_cli("a"))

assert_numeric_cli(c(1, 2, 3))

check_number_cli(3.14)
try(check_number_cli(c(1, 2)))

assert_number_cli(@)
try(assert_number_cli(c(@, 1)))

# Double and count
check_double_cli(c(0.1, 0.2))
try(check_double_cli("a"))

count_vals <- c(eoL, 10L)
check_count_cli(@oL)
try(check_count_cli(-1L))

assert_count_cli(10L)
try(assert_count_cli(-5L))

# Complex, character, and logical:

failure

failure

failure

failure

failure

failure:

failure

failure:

not scalar

negative

19



checkcli-scalars

# Complex
check_complex_cli(1 + 2i)
try(check_complex_cli(1:3)) # failure

assert_complex_cli(1l + 2i)
try(assert_complex_cli(1:3))

# String vs character vector
check_string_cli("species_id")
try(check_string_cli(c("a", "b"))) # failure: length > 1

assert_string_cli("ok")
try(assert_string_cli(c("a", "b")))

check_character_cli(c("a", "b"))
try(check_character_cli(1:3)) # failure
assert_character_cli(c("a", "b"))

# Logical flags, TRUE/FALSE, and NULL:

# Single logical flag
check_flag_cli(TRUE)
try(check_flag_cli(c(TRUE, FALSE))) # failure

assert_flag_cli(FALSE)
try(assert_flag_cli(c(TRUE, FALSE)))

# Logical vectors
check_logical_cli(c(TRUE, FALSE, TRUE))
try(check_logical_cli(c(1, 0, 1))) # failure

assert_logical_cli(c(TRUE, FALSE))
# Conditions that must be TRUE / FALSE
check_true_cli(1 < 2)

try(check_true_cli(FALSE)) # failure

assert_true_cli(1 == 1)
try(assert_true_cli(1 == 2))

check_false_cli(FALSE)
try(check_false_cli(TRUE)) # failure

assert_false_cli(1 > 2)
try(assert_false_cli(1 < 2))

# NULL checks
check_null_cli(NULL)
try(check_null_cli(1)) # failure

assert_null_cli(NULL)



fix_braced_list 21

try(assert_null_cli(”"not null"))

fix_braced_list Fix braced lists in messages

Description
Rewrite brace-enclosed lists such as {'a','b', 'c'} into {a}, {b}, {c]} to improve how they are
rendered by cli.

Usage

fix_braced_list(msg)

Arguments

msg A single character string with a message.

Value

A modified message string.

Examples

fix_braced_list("allowed values: {'a','b','c'}")

fmt_bullet_cli Format CLI bullets

Description

Convert error messages into a named vector suitable for ‘cli::cli_abort()*.

Usage

fmt_bullet_cli(res, cli_bullet = "i")

Arguments
res A character vector of messages (typically from a ‘check_** call).
cli_bullet Single character bullet type (‘"i"¢, *"x", etc.).

Value

A named character vector where names are bullet types.



22

Examples

fmt_bullet_cli("Something went wrong")

sanitize_cli

make_assertion Make CLI-style assertion

Description

Internal helper used by all ‘assert_*_cli()‘ functions.

Usage

make_assertion(x, res, var.name, collection)

Arguments
X The object being checked.
res Result of a ‘checkmate::check_*()* call (“TRUE* or message).
var.name Name of the variable for error messages.
collection Optional [checkmate::AssertCollection] to collect failures.
Value

Invisibly returns ‘x‘ on success or raises a ‘cli::cli_abort()‘ error.

Examples

# Typically used via higher-level wrappers:
make_assertion(1L, checkmate::check_int(1L), "x", NULL)

sanitize_cli Sanitize CLI message

Description

Escape braces in error messages so that cli does not treat them as inline formatting.

Usage

sanitize_cli(res)

Arguments

res A character vector of error messages.



sanitize_cli

Value

A character vector with braces escaped for use in ‘cli‘ messages.

Examples

sanitize_cli("Value {x} is invalid")

23



Index

x checkCLI
checkcli-containers, 3
checkcli-datetime-os, 7
checkcli-files, 9
checkcli-names-sets, 11
checkcli-scalars, 15

assert_array_cli (checkcli-containers),
3
assert_atomic_cli (checkcli-scalars), 15
assert_atomic_vector_cli
(checkcli-scalars), 15
assert_character_cli
(checkcli-scalars), 15
assert_choice_cli
(checkcli-names-sets), 11
assert_class_cli (checkcli-names-sets),
11
assert_cli, 2
assert_complex_cli (checkcli-scalars),
15
assert_count_cli (checkcli-scalars), 15
assert_data_frame_cli
(checkcli-containers), 3
assert_date_cli (checkcli-datetime-os),
7
assert_directory_cli (checkcli-files), 9
assert_directory_exists_cli
(checkcli-files), 9
assert_disjunct_cli
(checkcli-names-sets), 11
assert_double_cli (checkcli-scalars), 15
assert_environment_cli
(checkcli-containers), 3
assert_factor_cli
(checkcli-containers), 3
assert_false_cli (checkcli-scalars), 15
assert_file_cli (checkcli-files), 9
assert_file_exists_cli
(checkcli-files), 9

24

assert_flag_cli (checkcli-scalars), 15
assert_formula_cli
(checkcli-containers), 3
assert_function_cli
(checkcli-containers), 3
assert_int_cli (checkcli-scalars), 15
assert_integer_cli (checkcli-scalars),
15
assert_integerish_cli
(checkcli-scalars), 15
assert_list_cli (checkcli-containers), 3
assert_logical_cli (checkcli-scalars),
15
assert_matrix_cli
(checkcli-containers), 3
assert_multi_class_cli
(checkcli-names-sets), 11
assert_names_cli (checkcli-names-sets),
11
assert_null_cli (checkcli-scalars), 15
assert_number_cli (checkcli-scalars), 15
assert_numeric_cli (checkcli-scalars),
15
assert_os_cli (checkcli-datetime-os), 7
assert_path_for_output_cli
(checkcli-files), 9
assert_permutation_cli
(checkcli-names-sets), 11
assert_posixct_cli
(checkcli-datetime-os), 7
assert_r6_cli (checkcli-containers), 3
assert_raw_cli (checkcli-containers), 3
assert_scalar_cli (checkcli-scalars), 15
assert_scalar_na_cli
(checkcli-scalars), 15
assert_set_equal_cli
(checkcli-names-sets), 11
assert_string_cli (checkcli-scalars), 15
assert_subset_cli



INDEX

(checkcli-names-sets), 11
assert_true_cli (checkcli-scalars), 15
assert_vector_cli

(checkcli-containers), 3

check_array_cli (checkcli-containers), 3
check_atomic_cli (checkcli-scalars), 15
check_atomic_vector_cli
(checkcli-scalars), 15
check_character_cli (checkcli-scalars),

15

check_choice_cli (checkcli-names-sets),
11

check_class_cli (checkcli-names-sets),
11

check_complex_cli (checkcli-scalars), 15
check_count_cli (checkcli-scalars), 15
check_data_frame_cli
(checkcli-containers), 3
check_date_cli (checkcli-datetime-os), 7
check_directory_cli (checkcli-files), 9
check_directory_exists_cli
(checkcli-files), 9
check_disjunct_cli
(checkcli-names-sets), 11
check_double_cli (checkcli-scalars), 15
check_environment_cli
(checkcli-containers), 3
check_factor_cli (checkcli-containers),
3
check_false_cli (checkcli-scalars), 15
check_file_cli (checkcli-files), 9
check_file_exists_cli (checkcli-files),
9
check_flag_cli (checkcli-scalars), 15
check_formula_cli
(checkcli-containers), 3
check_function_cli
(checkcli-containers), 3
check_int_cli (checkcli-scalars), 15
check_integer_cli (checkcli-scalars), 15
check_integerish_cli
(checkcli-scalars), 15
check_list_cli (checkcli-containers), 3
check_logical_cli (checkcli-scalars), 15
check_matrix_cli (checkcli-containers),
3
check_multi_class_cli
(checkcli-names-sets), 11

25

check_names_cli (checkcli-names-sets),
11
check_null_cli (checkcli-scalars), 15
check_number_cli (checkcli-scalars), 15
check_numeric_cli (checkcli-scalars), 15
check_os_cli (checkcli-datetime-os), 7
check_path_for_output_cli
(checkcli-files), 9
check_permutation_cli
(checkcli-names-sets), 11
check_posixct_cli
(checkcli-datetime-os), 7
check_r6_cli (checkcli-containers), 3
check_raw_cli (checkcli-containers), 3
check_scalar_cli (checkcli-scalars), 15
check_scalar_na_cli (checkcli-scalars),
15
check_set_equal_cli
(checkcli-names-sets), 11
check_string_cli (checkcli-scalars), 15
check_subset_cli (checkcli-names-sets),
11
check_true_cli (checkcli-scalars), 15
check_vector_cli (checkcli-containers),
3
checkcli-containers, 3
checkcli-datetime-os, 7
checkcli-files, 9
checkcli-names-sets, 11
checkcli-scalars, 15

fix_braced_list, 21
fmt_bullet_cli, 21

make_assertion, 22

sanitize_cli, 22



	assert_cli
	checkcli-containers
	checkcli-datetime-os
	checkcli-files
	checkcli-names-sets
	checkcli-scalars
	fix_braced_list
	fmt_bullet_cli
	make_assertion
	sanitize_cli
	Index

