
Package ‘cfdecomp’
October 12, 2022

Type Package

Title Counterfactual Decomposition: MC Integration of the G-Formula

Version 0.4.0

Maintainer Maarten Jacob Bijlsma <maarten.bijlsma@gmail.com>

Description Provides a set of functions for counterfactual decomposition (cfdecomp). The func-
tions available in this package decompose differences in an outcome attributable to a mediat-
ing variable (or sets of mediating variables) between groups based on counterfactual (causal in-
ference) theory. By using Monte Carlo (MC) integration (simulations based on empirical esti-
mates from multivariable models) we provide added flexibility compared to existing (analyti-
cal) approaches, at the cost of computational power or time. The added flexibil-
ity means that we can decompose difference between groups in any outcome or and with any me-
diator (any variable type and distribution). See Sudharsanan & Bi-
jlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Maarten Jacob Bijlsma [aut, cre],
Nikkil Sudharsanan [aut],
Peng Li [ctb]

Repository CRAN

Date/Publication 2021-08-11 20:40:02 UTC

R topics documented:
cfd.example.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
cfd.FUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
cfd.mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
cfd.quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1

https://doi.org/10.4054/MPIDR-WP-2019-004


2 cfd.FUN

cfd.semipar.mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
cfd.semipar.quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
cluster.resample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
conv.mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Index 15

cfd.example.data Example Data for the cfdecomp package

Description

A dataframe with artificially generated data, intended to be used in a demonstration of the functions
in this package.

Usage

cfd.example.data

Format

a dataframe with 6 columns, which are:

SES a factor variable with 3 levels, denoting three groups to be compared. SES stands for socio-
economic status.

age a continuous variable going from 40 to 65. Age could stand for age in years.

med.gauss a mediator that is a continuous variable and normally distributed.

med.binom a mediator that is binomial.

med.pois a mediator that is a count variable and poisson distributed.

out.gauss an outcome that is a continuous variable and normally distributed.

id a variable with cluster id information

cfd.FUN Flexible Function Decomposition: decompose any function that re-
turns a vector

Description

Flexible Function Decomposition: decompose any function that returns a vector



cfd.FUN 3

Usage

cfd.FUN(
formula.y,
formula.m,
mediator,
group,
data,
family.y = "binomial",
family.m = "binomial",
bs.size = 250,
mc.size = 50,
FUN.y = mean,
alpha = 0.05,
cluster.sample = FALSE,
cluster.name = NA,
cluster.mrows = FALSE,
sample.resid.y = FALSE,
sample.resid.m = FALSE,
print.iteration = FALSE,
...

)

Arguments

formula.y the formula for the multivariable model (see glm) for the outcome Y.

formula.m the formula for the multivariable model (see glm) for the mediator M.

mediator the column name of the mediator M.

group column name of a factor variable containing the group identifier.

data a data frame containing the variables in the model.

family.y a description of the error distribution to be used in the model, see family for
details. For the outcome variable any member of the glm family can be used.

family.m a description of the error distribution to be used in the model, see family for
details. For the mediator, currently gaussian, binomial and poisson are sup-
ported.

bs.size the number of bootstrap iterations to be performed.

mc.size the number of Monte Carlo iterations to be performed (more = more MC error
reduction).

FUN.y a function to compute the statistics which can be applied to all data subsets, this
function should return a vector and should be ran on pred_y (simulated y values
in the natural course or counterfactual) and optional additional columns.

alpha the alpha level used to construct confidence intervals (0.05 = 95 percent confi-
dence interval).

cluster.sample set to TRUE if data are clustered in the long format (i.e. multiple rows per
individual or other cluster).

cluster.name the name (as a character) of the column containing the cluster identifiers.



4 cfd.FUN

cluster.mrows for the mediator model, only allows 1 observation per mediator so that the me-
diator model is not weighted by number of observations. e.g. set to TRUE if the
mediator is time constant in longitudinal analysis of long format data.

sample.resid.y sample.resid if the outcome is Gaussian, should the simulation sample from the
residuals of the linear regression model of the outcome to approximate the em-
pirical distribution of the outcome in the simulation (Monte Carlo integration)
(if so, set to TRUE), or should it sample from a Gaussian distribution with the
standard deviation of the outcome? If the true distribution of the continuous
outcome is not very Gaussian, the former may be preferred.

sample.resid.m sample.resid if the mediator is Gaussian, should the simulation sample from
the residuals of the linear regression model of the mediator to approximate the
empirical distribution of the mediator in the simulation (Monte Carlo integra-
tion) (if so, set to TRUE), or should it sample from a Gaussian distribution with
the standard deviation of the mediator? If the true distribution of the continuous
mediator is not very Gaussian, the former may be preferred.

print.iteration

print the bootstrap iteration

... further arguments passed to or used by methods.

Value

out_nc_m returns the mean level of the mediator under the natural course, which is a value that
should be close to the empirically observed value of the mediator for each group. out_nc_quantile
provides the alpha/2 and 1-alpha/2 bootstrap quantiles for this mean (AKA bootstrap percentile
confidence intervals). out_nc_y provides the output of the function fed into FUN.y for each boot-
strap iteration, with out_nc_quantile_y providing the alpha/2 and 1-alpha/2 bootstrap quan-
tiles of that output. Similarly, out_cf_m, out_cf_quantile_m,out_cf_y, and out_cf_quantile_y
provide the corresponding values for the counterfactual scenario where the mediators of the groups
are equalized. mediation and mediation_quantile are not provided for this function, so should
be calculated by the user based on the output. mc_conv_info_m and mc_conv_info_y provide in-
formation that can help determine the number of Monte Carlo and Bootstrap iterations needed to
achieve stability. See the Examples for more information.

Examples

set.seed(100)
# the decomposition functions in our package are computationally intensive
# to make the example run quick, I perform it on a subsample (n=250) of the data:
cfd.example.sample <- cfd.example.data[sample(250),]
# define some function (here one that calculates the mean from the data)
# such a function already exists, but this is to demonstrate how to do it for one that
# will be implemented in cfd.FUN:
mean.fun <- function(data,yname) {
x <- data
return(mean(x[,yname],na.rm=TRUE))
}
# test if the function works on normal data:
mean.fun(cfd.example.sample,yname="med.pois")
# then enter it into cfd.FUN and run:



cfd.mean 5

mean.results <- cfd.FUN(formula.y='out.gauss ~ SES + med.gauss + med.binom + age',
formula.m='med.gauss ~ SES + age',
mediator='med.gauss',
group='SES',
data=cfd.example.sample,
family.y='gaussian',
family.m='gaussian',
FUN.y=mean.fun,
bs.size=15,
mc.size=5,
alpha=0.05,
print.iteration=TRUE,
yname="pred_y")

# more advanced code demonstrating how to do this with a function that calculates
# the age-adjusted rate ratio and life expectancy will hopefully soon be available
# in a publication.
#' @import stats utils

cfd.mean Mean Decomposition: parametric version

Description

Decompose the mean difference in outcome Y between groups.

Usage

cfd.mean(
formula.y,
formula.m,
mediator,
group,
data,
family.y = "binomial",
family.m = "binomial",
bs.size = 1000,
mc.size = 50,
alpha = 0.05,
cluster.sample = FALSE,
cluster.name = NA,
sample.resid = FALSE,
print.iteration = FALSE

)

Arguments

formula.y the formula for the multivariable model (see glm) for the outcome Y.

formula.m the formula for the multivariable model (see glm) for the mediator M.



6 cfd.mean

mediator the column name of the mediator M.

group column name of a factor variable containing the group identifier.

data a data frame containing the variables in the model.

family.y a description of the error distribution to be used in the model, see family for
details. For the outcome variable any member of the glm family can be used.

family.m a description of the error distribution to be used in the model, see family for
details. For the mediator, currently gaussian, binomial and poisson are sup-
ported.

bs.size the number of bootstrap iterations to be performed.

mc.size the number of Monte Carlo iterations to be performed (more = more MC error
reduction).

alpha the alpha level used to construct confidence intervals (0.05 = 95 percent confi-
dence interval).

cluster.sample set to TRUE if data are clustered in the long format (i.e. multiple rows per
individual or other cluster).

cluster.name the name (as a character) of the column containing the cluster identifiers.

sample.resid if the mediator is Gaussian, should the simulation sample from the residuals of
the linear regression model of the mediator to approximate the empirical distri-
bution of the mediator in the simulation (Monte Carlo integration) (if so, set to
TRUE), or should it sample from a Gaussian distribution with the standard devi-
ation of the mediator? If the true distribution of the continuous mediator is not
very Gaussian, the former may be preferred.

print.iteration

print the bootstrap iteration

Value

out_nc_m returns the mean level of the mediator under the natural course, which is a value that
should be close to the empirically observed value of the mediator for each group. out_nc_quantile
provides the alpha/2 and 1-alpha/2 bootstrap quantiles for this mean (AKA bootstrap percentile
confidence intervals). out_nc_y and out_nc_quantile_y provide the corresponding values, but
then for the outcome variable Y. Similarly, out_cf_m, out_cf_quantile_m,out_cf_y, and out_cf_quantile_y
provide the corresponding values for the counterfactual scenario where the mediators of the groups
are equalized. mediation returns the proportion mediated by setting the intervened on mediator to
be equal in level to the reference group and mediation_quantile returns the 1-alpha confidence
interval. mc_conv_info_m and mc_conv_info_y provide information that can help determine the
number of Monte Carlo and Bootstrap iterations needed to achieve stability. See the Examples for
more information.

Examples

set.seed(100)
# the decomposition functions in our package are computationally intensive
# to make the example run quick, I perform it on a subsample (n=125) of the data:
cfd.example.sample <- cfd.example.data[sample(125),]
mean.results.1 <- cfd.mean(formula.y='out.gauss ~ SES + med.gauss + med.binom + age',



cfd.quantile 7

formula.m='med.gauss ~ SES + age',
mediator='med.gauss',
group='SES',
data=cfd.example.sample,
family.y='gaussian',
family.m='gaussian',
bs.size=50,
mc.size=10,
alpha=0.05,
cluster.sample=TRUE,
cluster.name='id')

# also note that normally we would recommend a bs.size of 250+
# and an mc.size of 50+
# let's interpret the output of this function:
mean(mean.results.1$out_nc_y[,2] - mean.results.1$out_nc_y[,1])
# and after giving the gaussian mediator of SES group 2 the distribution of the one in group 1
# the difference becomes:
mean(mean.results.1$out_cf_y[,2] - mean.results.1$out_nc_y[,1])
# so the % of the outcome Y that is due to differences between the two SES groups
# in the gaussian mediator is
mean(1-(mean.results.1$out_cf_y[,2] - mean.results.1$out_nc_y[,1]) /
(mean.results.1$out_nc_y[,2] - mean.results.1$out_nc_y[,1]))
# we can also get this number, and the one from the comparison of the other SES group
# with group 1, straight from the object
mean.results.1$mediation
# and we can get the 1-alpha CI for each:
mean.results.1$mediation_quantile
# see README.md for a more detailed description of the functions in this package.

cfd.quantile Quantile Decomposition: parametric version

Description

Decompose the difference in a quantile of some outcome Y between groups.

Usage

cfd.quantile(
formula.y,
formula.m,
mediator,
group,
data,
family.y = "binomial",
family.m = "binomial",
bs.size = 1000,
mc.size = 50,
alpha = 0.05,



8 cfd.quantile

probs = 0.5,
cluster.sample = FALSE,
cluster.name = NA,
sample.resid.y = FALSE,
sample.resid.m = FALSE,
print.iteration = FALSE

)

Arguments

formula.y the formula for the multivariable model (see glm) for the outcome Y.

formula.m the formula for the multivariable model (see glm) for the mediator M.

mediator the column name of the mediator M.

group column name of the variable containing the group identifier.

data a data frame containing the variables in the model.

family.y a description of the error distribution to be used in the model, see family for
details. For the outcome variable any member of the glm family can be used.

family.m a description of the error distribution to be used in the model, see family for
details. For the mediator, currently gaussian, binomial and poisson are sup-
ported.

bs.size the number of bootstrap iterations to be performed.

mc.size the number of Monte Carlo iterations to be performed (more = more MC error
reduction).

alpha the alpha level used to construct confidence intervals (0.05 = 95 percent confi-
dence interval).

probs the quantiles of interest to be decomposed, should be values between 0 and 1.

cluster.sample set to TRUE if data are clustered in the long format (i.e. multiple rows per
individual or other cluster).

cluster.name the name (as a character) of the column containing the cluster identifiers.

sample.resid.y sample.resid if the outcome is Gaussian, should the simulation sample from the
residuals of the linear regression model of the outcome to approximate the em-
pirical distribution of the outcome in the simulation (Monte Carlo integration)
(if so, set to TRUE), or should it sample from a Gaussian distribution with the
standard deviation of the outcome? If the true distribution of the continuous
outcome is not very Gaussian, the former may be preferred.

sample.resid.m sample.resid if the mediator is Gaussian, should the simulation sample from
the residuals of the linear regression model of the mediator to approximate the
empirical distribution of the mediator in the simulation (Monte Carlo integra-
tion) (if so, set to TRUE), or should it sample from a Gaussian distribution with
the standard deviation of the mediator? If the true distribution of the continuous
mediator is not very Gaussian, the former may be preferred.

print.iteration

print the bootstrap iteration



cfd.quantile 9

Value

out_nc_m returns the mean level of the mediator under the natural course, which is a value that
should be close to the empirically observed value of the mediator for each group. out_nc_quantile
provides the alpha/2 and 1-alpha/2 bootstrap quantiles for this mean (AKA bootstrap percentile
confidence intervals). out_nc_y and out_nc_quantile_y provide the corresponding values, but
then for the outcome variable Y. Similarly, out_cf_m, out_cf_quantile_m,out_cf_y, and out_cf_quantile_y
provide the corresponding values for the counterfactual scenario where the mediators of the groups
are equalized. mediation returns the proportion mediated by setting the intervened on mediator to
be equal in level to the reference group and mediation_quantile returns the 1-alpha confidence
interval.mc_conv_info_m and mc_conv_info_y provide information that can help determine the
number of Monte Carlo and Bootstrap iterations needed to achieve stability. See the Examples for
more information.

Examples

set.seed(100)
# the decomposition functions in our package are computationally intensive
# to make the example run quick, I perform it on a subsample (n=125) of the data:
cfd.example.sample <- cfd.example.data[sample(125),]
quantile.results.1 <- cfd.quantile(formula.y='out.gauss ~ SES + med.gauss + med.binom + age',

formula.m='med.gauss ~ SES + age',
mediator='med.gauss',
group='SES',
data=cfd.example.sample,
family.y='gaussian',
family.m='gaussian',
bs.size=50,
mc.size=10,
alpha=0.05,
probs=0.50)

# also note that normally we would recommend an bs.size of 250+
# and an mc.size of 50+
# let's interpret the output of this function:
# the differences between SES groups 1 and 2 were first:
mean(quantile.results.1$out_nc_y[,2] - quantile.results.1$out_nc_y[,1])
# and after giving the gaussian mediator of SES group 2 the distribution of the one in group 1
# the difference becomes:
mean(quantile.results.1$out_cf_y[,2] - quantile.results.1$out_nc_y[,1])
# so the % of the outcome Y that is due to differences between the two SES groups
# in the gaussian mediator is
mean(1-(quantile.results.1$out_cf_y[,2] - quantile.results.1$out_nc_y[,1]) /
(quantile.results.1$out_nc_y[,2] - quantile.results.1$out_nc_y[,1]))
# we can also get this number, and the one from the comparison of the other SES group
# with group 1, straight from the object
quantile.results.1$mediation
# and we can get the 1-alpha CI for each:
quantile.results.1$mediation_quantile
# see README.md for a more detailed description of the functions in this package.



10 cfd.semipar.mean

cfd.semipar.mean Mean Decomposition: semiparametric version

Description

Decompose the mean difference in outcome Y between groups. In this semiparametric version, we
do not assume a parametric model for the mediator: instead, we sample from the distribution of the
mediator in the reference group; this can be done within strata of one or more third variables.

Usage

cfd.semipar.mean(
formula,
mediator,
group,
strata = NA,
nbin = 5,
data,
family = "binomial",
bs.size = 1000,
mc.size = 50,
alpha = 0.05,
print.iteration = FALSE

)

Arguments

formula the formula for the multivariable model (see glm) for the outcome Y.

mediator the column name of the mediator M.

group column name of the variable containing the group identifier.

strata the name of a variable containing the strata of a third variable (or set of variables)
within which we equalize mediator values. Ideally this is a factor variable.

nbin if a numeric (i.e. non-factor or character) strata variable is defined, how many
bins should be made from it within which we equalize the mediator distribution?

data a data frame containing the variables in the model.

family a description of the error distribution to be used in the model, see family for
details. For the outcome variable any member of the glm family can be used.

bs.size the number of bootstrap iterations to be performed.

mc.size the number of Monte Carlo iterations to be performed (more = more MC error
reduction).

alpha the alpha level used to construct confidence intervals (0.05 = 95 percent confi-
dence interval).

print.iteration

print the bootstrap iteration



cfd.semipar.quantile 11

Value

out_nc returns the mean level of the outcome under the natural course, which is a value that should
be close to the empirically observed value of the outcome for each group. out_nc_quantile pro-
vides the alpha/2 and 1-alpha/2 bootstrap quantiles for this mean (AKA bootstrap percentile
confidence intervals).Similarly, out_cf, out_cf_quantile,provide the corresponding values for
the counterfactual scenario where the mediators of the groups are equalized. mediation returns
the proportion mediated by setting the intervened on mediator to be equal in level to the reference
group and mediation_quantile returns the 1-alpha confidence interval.

Examples

set.seed(100)
# the decomposition functions in our package are computationally intensive
# to make the example run quick, I perform it on a subsample (n=250) of the data:
cfd.example.sample <- cfd.example.data[sample(250),]
mean.semipar.results.1 <- cfd.semipar.mean(formula='out.gauss ~ SES + med.gauss + med.binom + age',

mediator='med.gauss',
group='SES',
strata='age',
nbin=5,
data=cfd.example.sample,
family='gaussian',
bs.size=50,
mc.size=10,
alpha=0.05)

# also note that normally we would recommend an bs.size of 250+
# and an mc.size of 50+
# see README.md for a more detailed description of the functions in this package.

cfd.semipar.quantile Quantile Decomposition: semiparametric version

Description

Decompose the difference in a quantile of some outcome Y between groups. In this semiparametric
version, we do not assume a parametric model for the mediator: instead, we sample from the
distribution of the mediator in the reference group; this can be done within strata of one or more
third variables.

Usage

cfd.semipar.quantile(
formula,
mediator,
group,
strata = NA,
nbin = 5,
data,



12 cfd.semipar.quantile

family = "Gaussian",
bs.size = 1000,
mc.size = 50,
alpha = 0.05,
probs = 0.5,
print.iteration = FALSE

)

Arguments

formula the formula for the multivariable model (see glm) for the outcome Y.

mediator the column name of the mediator M.

group column name of the variable containing the group identifier.

strata the name of a variable containing the strata of a third variable (or set of variables)
within which we equalize mediator values.

nbin if a numeric (i.e. non-factor or character) strata variable is defined, how many
bins should be made from it within which we equalize the mediator distribution?

data a data frame containing the variables in the model.

family a description of the error distribution to be used in the model, see family for
details. For the outcome variable any member of the glm family can be used.

bs.size the number of bootstrap iterations to be performed.

mc.size the number of Monte Carlo iterations to be performed (more = more MC error
reduction).

alpha the alpha level used to construct confidence intervals (0.05 = 95 percent confi-
dence interval).

probs the quantiles of interest to be decomposed, should be values between 0 and 1.
print.iteration

print the bootstrap iteration

Value

out_nc returns the mean level of the outcome under the natural course, which is a value that should
be close to the empirically observed value of the outcome for each group. out_nc_quantile pro-
vides the alpha/2 and 1-alpha/2 bootstrap quantiles for this mean (AKA bootstrap percentile
confidence intervals).Similarly, out_cf, out_cf_quantile,provide the corresponding values for
the counterfactual scenario where the mediators of the groups are equalized. mediation returns
the proportion mediated by setting the intervened on mediator to be equal in level to the reference
group and mediation_quantile returns the 1-alpha confidence interval.

Examples

set.seed(100)
# the decomposition functions in our package are computationally intensive
# to make the example run quick, I perform it on a subsample (n=175) of the data:
cfd.example.sample <- cfd.example.data[sample(175),]
quantile.semipar.results.1 <- cfd.semipar.quantile(formula='out.gauss ~ SES +



cluster.resample 13

med.gauss + med.binom + age',
mediator='med.gauss',
group='SES',
strata='age',
nbin=5,
data=cfd.example.sample,
family='gaussian',
bs.size=50,
mc.size=10,
alpha=0.05,
probs=0.50)

# also note that normally we would recommend an bs.size of 250+
# and an mc.size of 50+
# see README.md for a more detailed description of the functions in this package.

cluster.resample Cluster Resampling: resampling long format longitudinal or other-
wise clustered data

Description

Cluster Resampling: resampling long format longitudinal or otherwise clustered data

Usage

cluster.resample(data, cluster.name, size = NA, newID = FALSE)

Arguments

data a data frame containing the variables in the model.

cluster.name the name (as a character) of the column containing the cluster identifiers.

size a non-negative integer giving the number of items to choose, i.e. the number of
clusters to resample. If not specified, takes the original data cluster size.

newID if set to TRUE, gives each replicant a new ID, rather than having the old ID
appear multiple times. This might be needed if you work with e.g. cluster fixed
effects

Value

returns a new dataframe with resampled clusters

Examples

table(cfd.example.data$id)
# every ID appears 5 times
cfd.example.sample <- cluster.resample(cfd.example.data, cluster.name='id')
table(cfd.example.sample$id)
# some ID's now don't appear, and some appear more times (multiples of 5)



14 conv.mean

# the important part is that if a person (id) is resampled, all their rows of data are taken
# i.e. the function resamples clusters, rather than rows.
# this has produced 1 resample, so generally this function would be used
# inside a loop where it is used multiple times
# we use this function inside our decomposition functions when cluster.sample is
# set to TRUE in those functions.

conv.mean Running mean function

Description

A running mean, intended to check when convergence is achieved (useful for setting mcsize or
bssize).

Usage

conv.mean(x)

Arguments

x a variable whose convergence we want to check

Value

returns a running mean of the variable whose convergence we want to check



Index

∗ datasets
cfd.example.data, 2

cfd.example.data, 2
cfd.FUN, 2
cfd.mean, 5
cfd.quantile, 7
cfd.semipar.mean, 10
cfd.semipar.quantile, 11
cluster.resample, 13
conv.mean, 14

family, 3, 6, 8, 10, 12
formula, 3, 5, 8, 10, 12

glm, 3, 5, 8, 10, 12

15


	cfd.example.data
	cfd.FUN
	cfd.mean
	cfd.quantile
	cfd.semipar.mean
	cfd.semipar.quantile
	cluster.resample
	conv.mean
	Index

